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ABSTRACT
Boxwood (Buxus spp.) are broad-leaved, evergreen landscape plants valued for their
longevity and ornamental qualities. Volutella leaf and stem blight, caused by the
ascomycete fungi Pseudonectria foliicola and P. buxi, is one of the major diseases
affecting the health and ornamental qualities of boxwood. Although this disease is less
severe than boxwood blight caused by Calonectria pseudonaviculata and C. henricotiae,
its widespread occurrence and disfiguring symptoms have caused substantial economic
losses to the ornamental industry. In this study, we sequenced the genome of P. foliicola
isolate ATCC13545 using Illumina technology and compared it to other publicly
available fungal pathogen genomes to better understand the biology of this organism.
A de novo assembly estimated the genome size of P. foliicola at 28.7 Mb (425 contigs;
N50 = 184,987 bp; avg. coverage 188×), with just 9,272 protein-coding genes. To
our knowledge, P. foliicola has the smallest known genome within the Nectriaceae.
Consistent with the small size of the genome, the secretome, CAzyme and secondary
metabolite profiles of this fungus are reduced relative to two other surveyedNectriaceae
fungal genomes: Dactylonectria macrodidyma JAC15-245 and Fusarium graminearum
Ph-1. Interestingly, a large cohort of genes associated with reduced virulence and loss of
pathogenicity was identified from the P. foliicola dataset. These data are consistent with
the latest observations by plant pathologists that P. buxi and most likely P. foliicola,
are opportunistic, latent pathogens that prey upon weak and stressed boxwood plants.
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INTRODUCTION
Ascomycete fungi inhabit almost all known ecosystems, and play important roles as
plant and insect pathogens, endophytes, mycoparasites, and saprobes (Arnold et al., 2009).
Within the Ascomycota, the Nectriaceae family includes 55 genera with approximately 900
species (http://www.indexfungorum.org). Although best known as soil-borne saprobes
or weak plant pathogens, several species in this family are responsible for extensive
economic losses due to damage incurred to crops or in natural ecosystems (Halleen,
Fourie & Crous, 2006; Malapi-Wight et al., 2016a; Windels, 2000). The systematics and
taxonomy of the Nectriaceae family has been extensively studied (e.g., Salgado-Salazar
et al., 2014; Lombard et al., 2015) however, outside of the genus Fusarium, only a small
number of fungal species in this family have genome resources publicly available, including
Calonectria pseudonaviculata, C. pseudoteaudii,Dactylonectria macrodidyma and Ilyonectria
destructans (http://genome.jgi.doe.gov/Ilysp1/Ilysp1.home.html;Malapi-Wight et al., 2015;
Malapi-Wight et al., 2016b; Ye et al., 2017). Whole genome resources are now commonly
used to understand evolutionary characteristics of pathogenicity across fungi with different
lifestyles (Lo Presti et al., 2015) and could become useful for the characterization and
biosecurity analysis of undescribed pathogens (McTaggart et al., 2016).

Pseudonectria foliicola and P. buxi (the latter formerly known as Volutella buxi or
P. rousseliana) are nectriaceous species causing a ubiquitous leaf and stem blight disease
on boxwood (Buxus spp.), known as volutella blight (Fig. 1). To date, this disease has
been reported worldwide, throughout the US, Armenia, Belgium, Bulgaria Canada,
China, Greece, Portugal, Spain, UK and Ukraine, among others (Farr & Rossman, 2018),
although its distributionmay extend further along with the distribution of boxwood plants.
Infected plants may lack any disease symptoms, or they may manifest visually discernable
physiological changes such as leaf discoloration, stem dieback and extensive pink fungal
sporulation on the surface of leaves and twigs (Shi & Hsiang, 2014). The causal agent of
volutella blight has been described as the species P. buxi (and synonyms) since the early
nineteenth century. However, on the basis of morphological and molecular distinctiveness,
Lombard et al. (2015) recently described P. foliicola as a second species of Pseudonectria that
infects boxwood in New Zealand and the US. It is currently unclear to what extent previous
sightings of volutella blight prior to the discovery of P. foliicola were actually caused by P.
buxi, P. foliicola, or both of these pathogens.

The pathogens responsible for volutella blight disease have long been considered
saprophytes or secondary invaders, however, recent studies by Shi & Hsiang (2014)
identified P. buxi causing primary infection on wounded tissue contributing to boxwood
decline. Reports from China and Italy confirm the impact of P. buxi as a primary pathogen
of Buxus spp. (Shi & Hsiang, 2014; Garibaldi et al., 2016). Unlike boxwood blight disease
caused by C. pseudonaviculata and C. henricotiae (Gehesquière et al., 2016), volutella blight
primarily affects the ornamental value of boxwood, as plants are typically not killed by the
fungal infection. Nonetheless, financial losses due to volutella blight may be considerable.
For example, in 2008, economic losses in a single nursery in southern Ontario due to
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Figure 1 Morphological characters of Pseudonectria foliicola (ATCC 1354). (A) and (B) Mycelial
growth on potato dextrose agar (A, front; B, back). (C) and (D) Sporulation on infected boxwood leaf
tissue. E, Conidiophores. (E) and (F) conidia. Scale bars: B–D= 50 µm, E–F= 10 µm.

Full-size DOI: 10.7717/peerj.5401/fig-1

volutella blight of boxwood exceeded $60,000 (Shi & Hsiang, 2014), and similar economic
burdens could be expected across the ornamental industry in other regions.

Despite being one of the most commonly observed diseases affecting boxwood, little
is known about the genetics, biology and etiology of the causal agents of volutella blight.
In this study, we report the first draft genome sequence assembly and annotation of
P. foliicola and compare the genome characteristics against two other plant pathogenic fungi
in the Nectriaceae, Fusarium graminearum and Dactylonectria macrodidyma. Fusarium
graminearum is the hemibiotrophic pathogen that causes head blight on wheat and barley,
responsible for substantial economic losses in these industries (Goswami & Kistler, 2004).
Dactylonectria macrodidyma is a destructive necrotrophic pathogen that causes the black
foot rot of grapevine and root rots of avocado and olive trees (Urbez-Torres, Peduto
& Gubler, 2012; Vitale et al., 2012). Our goal in this study was to compare the genome
sequence of P. foliicola to these organisms to reveal genome-wide characteristics that may
help us better understand the lifestyle of this important fungal pathogen.

MATERIALS AND METHODS
Fungal isolate and nucleic acid isolation
An axenic culture of P. foliicola isolate ATCC13545 R© (also known as isolate A.R. 2711)
was used for genome sequencing. This fungal isolate was originally cultured from

Rivera et al. (2018), PeerJ, DOI 10.7717/peerj.5401 3/25

https://peerj.com
https://doi.org/10.7717/peerj.5401/fig-1
http://dx.doi.org/10.7717/peerj.5401


B. sempervirens in Maryland, US. The isolate was grown on potato dextrose agar (BD
DifcoTM, Sparks, MD, USA) for 5-days under 12-h white light photoperiod and then
transferred to yeast extract potato dextrose liquid media at 25 ◦C for 2-days under
continuous light. Genomic DNA was extracted from hyphal tissue harvested from liquid
media using the OmniPrep DNA kit (G-Biosciences, St. Louis, MO, USA) according to
manufacturer’s instructions, and subsequently purified using the Zymo Genomic DNA
Clean and Concentrator kit (Zymo Research, Irvine, CA, USA).

Whole genome sequencing and de novo assembly
A genomic DNA library was constructed using the TruSeq Nano DNA Library Prep kit
(Illumina, Inc., San Diego, CA, USA) and quantified using the Qubit 2.0 fluorometer
(Life Technologies, Grand Island, NY) and the LabChipXT DNA 750 (Caliper Life
Sciences, Hopkinton, MA, USA). The library was sequenced on an Illumina MiSeq in
two independent runs using paired-end 600-cycle reagent cartridge v.3 (Illumina, Inc.).
Reads were processed and assembled using CLC Genomics Workbench v.7.5.1 (CLC
Bio, Boston, MA, USA) with a k-mer of 24 and a minimum contig length of 500 bp.
Illumina adapters were trimmed and low quality reads (Phred score < 0.05) were removed.
Summary statistics for the draft genome were generated using CLC Genomics Workbench
and QUAST (Gurevich et al., 2013).

Completeness of the P. foliicola draft genome assembly was evaluated using BUSCO
v.1.1b1 (Simão et al., 2015). The genome assembly of P. foliicola used in this study
was deposited in NCBI GenBank under accession LMTV00000000, and datasets
are also available at the US National Agricultural Library on AgData Commons
(http://dx.doi.org/10.15482/USDA.ADC/1408094).

Nuclear genome annotation
Ab initio gene predictions for the draft genome assembly of P. foliicola were performed
using the MAKER2 v.2.31.6 annotation pipeline (Holt & Yandell, 2011). Gene training
was performed after running three rounds of the program according to the program
documentation. Gene boundaries were assigned using protein homology evidence from
Fusarium graminearum strain PH-1 (NCBI BioProject Acc: PRJNA13839; Cuomo et
al., 2007). Additional ab initio gene predictions were made using the program SNAP
(http://korflab.ucdavis.edu/software.html) and AUGUSTUS v.3.2.1 (Stanke et al., 2004)
with F. graminearum set as the prediction species model organism. New gene predictions
using MAKER2 were also performed for the previously published genome assembly of
D. macrodidyma (Malapi-Wight et al., 2015) using the same parameters as above.

Identification of transposable elements and repeat-induced mutations
The presence of transposable elements (TEs) was evaluated from the P. foliicola and
D. macrodidyma genomes using the REPET v2.5 (Flutre et al., 2011) pipeline, along with
supporting databases Repbase v.20.05 (Kapitonov & Jurka, 2008; Bao, Kojima & Kohany,
2015) and Pfam v.27.0, and run according to the accompanying program documentation
(https://urgi.versailles.inra.fr/Tools/REPET). The TEdenovo stage was used first to produce
a database of four de novo identified TEs: an incomplete helitron, a MITE (miniature
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inverted-repeat TE), a TRIM (terminal-repeat retrotransposon in miniature), and one
uncategorized TE sequence. These sequences were then used as initial input for the
first of two runs of the TEannot pipeline stage, which produced a final genome-wide
GFF annotation file using the TE classification scheme described byWicker et al. (2007). A
custom script was used to tabulate counts of TE classes, orders and superfamilies and filtered
out fragments less than 80-bp in length according toWicker et al. (2007) recommendations
to avoid misclassification. Results from TEannot based on tblastx and blastx (BLAST+
vr. 2.2.31; Camacho et al., 2009) searches against Repbase were also filtered to remove hits
sharing <70% sequence identity.

Individual TE families with ten or more sequences identified, including at least one
sequence ≥ 300-bp in length, were checked for signatures of repeat-induced point (RIP)
mutation activity using the RIPCAL vr. 2 program (Hane & Oliver, 2008; Hane, 2015).
The 300-bp length cutoff was selected based on RIPCAL’s default setting for scanning
subsequences and the program was run using both the alignment mode consensus model
with ClustalW (Larkin et al., 2007) and di-nucleotide frequency-based methods. Evidence
of the signature of RIP mutations was present if di-nucleotide frequencies matched the
indexes: (TpA / ApT) ≥ 0.89 and (CpA + TpG) / (ApC + GpT) ≤ 1.03 (Margolin et al.,
1998) and visual inspection of RIPCAL alignments showed one or more peaks for (CA←
→TA) + (TG←→TA) mutations (Hane & Oliver, 2008).

Mitochondrial genome
The P. foliicola and D. macrodidyma mitogenomes were identified by performing
tBLASTx searches of the complete genome assemblies using the 95.7 kb F. graminearum
mitochondrial genome as a query (Al-Reedy et al., 2012), with the genetic code set to
four (mold mitochondrial). Mitogenomes were annotated using MITOS (Bernt, Donath
& Jühling, 2013). Comparative analysis of genes, rRNA and tRNA was performed in the
program SimpleSynteny (Veltri, Malapi-Wight & Crouch, 2016) using the P. foliicola CDS
file to annotate all genomes (e-value cutoff 1e-5, minimum query cutoff 10%), with
circular genome mode implementation and genomes organized to minimize Euclidean
line distance.

Identification of mating type idiomorphs
We assessed the presence of theMAT1-1 andMAT1-2 idiomorphs in the P. foliicola genome
by performing a local BLASTn search (e-value cutoff 1e-5) against a MAT gene database.
The database contained nucleotide sequences for the highly conserved alpha domain DNA
binding motif (MAT1-1-1) and the high mobility group (HMG) box DNA binding motif
(MAT1-2-1) for 13 different filamentous fungal species, retrieved from the NCBI GenBank
database (Files S1 and S2).

Phylogenetic reconstruction
A phylogenetic analysis was used to illustrate the relationship between P. foliicola and 14
other fungal species. For this analysis, the predicted proteomes ofAspergillus nidulans FGSC
A4 (ASM114v1; Galagan et al., 2005), Botrytis cinerea BcDW1 (Assembly GCA000349525;
Blanco-Ulate et al., 2013), F. graminearum PH-1 (GCA000240135; Cuomo et al., 2007),
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Macrophomina phaseolina MS6 (GCA000302655; Islam et al., 2012), Magnaporthe oryzae
70-15 (MG8; Kim et al., 2010), Neurospora crassa (GCA000786625; Baker et al., 2015),
Penicillium oxalicum 114-2 (GCA000346795; Liu et al., 2013), Pyrenophora tritici-repentis
(GCA000149985; Manning et al., 2013), Sclerotinia sclerotiorum 1980 UF-70 (ASM1469v1;
Amselem et al., 2011), Trichoderma reesei RUT C-30 (GCA000513815; Koike et al., 2013),
Ustilago maydis 521 (UM1; Kämper et al., 2006), Verticillium dahliae JR2 (GCA000400815;
De Jonge et al., 2012) and Yarrowia lipolytica CLIB122 (GCA000002525; Dujon et al., 2004)
were downloaded from either the EnsemblFungi database (https://fungi.ensembl.org/index.
html) or the NCBI Genbank Genome database (https://www.ncbi.nlm.nih.gov/genbank/).
The predicted proteome of D. macrodidyma generated in our study was also included in
the analysis. All proteomes were searched against each other using BLASTp (e-value 0.001)
and clustered in orthologous gene sets using OrthoMCL v1.4 in the CYVERSE Discovery
Environment (https://de.cyverse.org/de/). Single copy genes (clusters with exactly one
member per species) found in all 15 fungal proteomes were extracted from the orthologous
dataset and the amino acid alignments were performed using MUSCLE v3.8.31 (Edgar,
2004). Gblocks v.0.91b was used to remove ambiguously aligned regions using relaxed
selection parameters following Talavera & Castresana (2007). Maximum likelihood (ML)
phylogenetic analyses were performed in RAxML (Stamatakis, 2006), using the RAxML
GUI v. 1.5b1 (Silvestro & Michalak, 2012). Phylogenetic trees were constructed using the
JTT matrix-based model (Jones, Taylor & Thornton, 1992) and 1,000 bootstrap replicates.
Ustilago maydis 521 was used as outgroup in the phylogenetic analyses.

Estimation of evolutionary divergence times
To obtain approximate information on divergence events, the phylogenetic tree was
timed using RelTime (Tamura et al., 2012) as implemented in MEGA 7 (Kumar, Stecher &
Tamura, 2016). RelTime estimated the relative divergence times for each node of the ML
tree using the same outgroup taxa. We used seven confidence intervals obtained from the
TimeTree database (http://timetree.org; Hedges et al., 2015) as minimum and maximum
times to convert the relative times into absolute times (Table S4). Time estimates were
performed using maximum-likelihood branch length, local clocks, a JTT matrix-based
model (Jones, Taylor & Thornton, 1992) and a discrete Gamma distribution among sites
(five categories).

Comparative genomic analyses
The genome sequences of D. macrodidyma JAC15-245 (NCBI GenBank accession
JYGD00000000) and F. graminearum PH-1 were downloaded from NCBI GenBank
and Ensembl-Fungi database respectively, and used for comparative analysis against
the P. foliicola draft genome assembly generated in this study. The predicted proteome
generated from this study was used for D. macrodidyma, while the published proteome
dataset for F. graminearum was downloaded from the Ensembl-Fungi database. Genome-
wide identification, comparison and visualization of orthologous gene clusters among
P. foliicola, D. macrodidyma and F. graminearum were performed using the web platform
OrthoVenn (http://www.bioinfogenome.net/OrthoVenn/;Wang et al., 2015). The program

Rivera et al. (2018), PeerJ, DOI 10.7717/peerj.5401 6/25

https://peerj.com
https://fungi.ensembl.org/index.html
https://fungi.ensembl.org/index.html
https://www.ncbi.nlm.nih.gov/genbank/
https://de.cyverse.org/de/
http://timetree.org
http://dx.doi.org/10.7717/peerj.5401#supp-7
https://www.ncbi.nlm.nih.gov/nucleotide?term=JYGD00000000
http://www.bioinfogenome.net/OrthoVenn/
http://dx.doi.org/10.7717/peerj.5401


Table 1 Genome assembly and annotation statistics for Pseudonectria foliicola,Dactylonectria macro-
didyma, and Fusarium graminearum. Values are given in base pairs, unless otherwise specified.

Genome features Pseudonectria
foliicola

Fusarium
graminearum

Dactylonectria
macrodidyma

Genome size (Mb) 28.7 38.1 58.0
Average sequence coverage 188 10 46
Total number of scaffolds 425 5 850
GC content (%) 54.3 48.2 49.9
Transposable elements (%) 0.7 0.06 6.5
Predicted proteins 9,272 14,164 16,454
NCBI accession LMTV00000000 AACM00000000 JYGD00000000

uses a modified OrthoMCL algorithm to identify orthologous gene clusters from the
UniProt/Swiss-Prot database. Proteins potentially involved in carbohydrate metabolism
were annotated for each proteome by searching against the database of automated
Carbohydrate-active enzyme ANnotation (dbCAN; http://csbl.bmb.uga.edu/dbCAN/
annotate.php; Yin et al., 2012). A X 2 test of independence, similar to that used inMartinez
et al. (2008), was used to identify statistically significant differences across the CAZyme
repertoire. Identification of putative enzymes related to the biosynthesis of secondary
metabolites was performed from the predicted proteins using the web-based program
AntiSMASH (http://antismash.secondarymetabolites.org; Medema et al., 2011; Weber et
al., 2015). The secretome was predicted by screening the predicted proteins for different
features using a bundle of eight different prediction tools implemented in the web-
based program SECRETOOL (Cortázar et al., 2014). Pathogenicity associated genes were
identified by performing a local BLASTp search of the predicted proteome against the
curated pathogen-host interaction database (PHI-base v.4.0; http://www-phi4.phibase.org/;
Winnenburg et al., 2008).

RESULTS
Nuclear genome assembly and annotation
A de novo genome assembly of P. foliicola ATCC13545 R© was generated from 19.5 million
paired end, 300-bp reads, comprising a total of 5.4 Gb of raw sequence data. The resulting
genome assembly for P. foliicola was 28.7 Mb, organized in 425 scaffolds (≥500-bp),
with an average read depth coverage of 188-fold (Table 1). The N50 scaffold length
is 184,987 bp and the three longest scaffolds are 619,696 bp, 551,775 bp, and 524,658
bp. Analysis of the P. foliicola genome assembly using BUSCO identified 420 complete
genes out of 429 conserved eukaryotic ortholog dataset and 1,416 complete genes out
of 1,438 conserved fungal ortholog dataset (genome completeness scores of 97% and
98%, respectively). Ab initio gene predictions performed with the MAKER2 pipeline for
the P. foliicola genome assembly identified 9,272 protein-coding genes with an average
predicted protein length of 484 amino acids (Table 1). Meanwhile, gene predictions for the
genome of D. macrodidyma identified 16,959 protein-coding genes with an average length
of 478 amino acids. Of the three genomes evaluated in this study, gene number predictions
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were highest for D. macrodidyma, which also had the largest estimated genome size at 58
Mb when compared to P. foliicola and F. graminearum (13,313 genes, 36.1 Mb; Cuomo et
al., 2007).

Transposable elements, repetitive DNA and repeat induced mutations
Only 0.7% (196,205-bp) of the P. foliicola nuclear genome assembly contained TEs based
on the REPET pipeline analysis (Table 1). Annotation of TEs across the P. foliicola genome
assembly identified 191 TE matches. Of these, 141 were Class I (retrotransposons) TEs
comprising ∼0.4% of genome and 45 were Class II (DNA) TEs making up ∼0.3% of
the genome. Long terminal-repeats (LTRs) were found to be the most abundant Class
I order (∼0.3% of genome) and included matches in the Copia, Gypsy and BEL/Pao
retrotransposon superfamilies. Almost all Class II TEs were identified as Helitrons, with
only∼0.001% of the genome identified with TIR or ‘‘unknown’’ TEs (Wicker code: DXX).
Evidence of RIP mutation affecting P. foliicola TEs was only found for Helitrons based on
alignment of 37 sequences (3.7-kb in length) and di-nucleotide indexes: TpA/ApT = 1.8
and (CpA + TpG)/(ApC + GpT) = 0.3.

The draft genome of D. macrodidyma genome as originally published did not include
information about TEs. Here, we also analyzed that assembly for the presence of TEs and
RIP mutations using the same parameters used for P. foliicola for comparative purposes.
As REPET identified over 2,000 D. macrodidyma TEs of ‘‘unknown’’ superfamily, we
performed an additional tblastx search (e-value: 0.01, percent query coverage per hsp:
≥70%, minimum percent identity of hits:≥70%) against Repbase and reclassified five TEs
based on the top match if it shared the same class and order. REPET analysis identified
∼6.5% (3,794,887-bp) of the D. macrodidyma genome to be made up of TEs (2,178
elements). Of these, 1,489 elements were Class I TEs and comprised ∼5.3% of the genome
and 689 were Class II TEs and comprised ∼1.2% of the genome. The most common Class
I retrotransposon orders were: LTRs (∼3.2%), ‘‘Unknown RXX’’ (∼1.1%), DIRS-like
(∼0.9%), LINE (∼0.1%) and SINE (0.001%). ForClass IIDNAelements, themost common
orders were: TIR (∼0.7%), Helitron (∼0.4%) and ‘‘Unknown DXX’’ (∼0.2%). Evidence
for RIP mutation affecting D. macrodidyma TEs using alignment and di-nucleotide counts
was identified in the sets of 91 Helitron and 146 DIRS TEs. For the Helitrons, RIP indexes
were calculated as: TpA/ApT= 1.3 and (CpA+ TpG)/(ApC+GpT)= 0.9, while for DIRS:
TpA/ApT = 1.4 and (CpA + TpG)/(ApC + GpT) = 0.3.

Mitochondrial genome size and gene content
The mitogenomes of P. foliicola and D. macrodidyma were each contained within a single
scaffold, measuring 58.3 kb and 44.2 kb respectively (scaffold 56, scaffold 68). Although
the mitogenome-containing scaffolds for these two organisms were considerably smaller
than that of F. graminearum (95.7 kb), a full complement of protein-coding genes was
contained: apocytochrome b (cob), ATP-synthase subunits (atp6, atp8, atp9), cytochrome
oxidase subunits (cox1, cox2, cox3), and NADH subunits (nad1, nad2, nad3, nad4, nad4L,
nad5, nad6). This set of 14 protein-coding mitochondrial genes is highly conserved among
fungi, and shared with animal mtDNA (Bullerwell & Lang, 2005). A full complement of
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Figure 2 Comparisons of the mitogenomes of Pseudonectria foliicola (Pf), Dactylonectria macrodidyma (Dm) and Fusarium graminearum
(Fg). Shared areas contain intergenic sequence that has been collapsed to improve diagram readability; the starting and ending coordinates are plot-
ted at the beginning and end of these regions.

Full-size DOI: 10.7717/peerj.5401/fig-2

tRNAs necessary for translation was encoded in the mitogenomes (25 total), as were
small and large subunit rRNAs (one and three copies, respectively). Neither P. foliicola
nor D. macrodidyma mitogenomes contained copies of the four large unidentified open-
reading frames that are encoded by the F. graminearum mitogenome (Al-Reedy et al.,
2012), accounting for the observed difference in sizes between these species.

Mitochondrial genome synteny
The organization of the mitogenomes of P. foliicola, D. macrodidyma and F. graminearum
was highly conserved at the gene level. As observed in the mitochondria of most ascomycete
fungi, all genes, rRNAs and tRNAs were oriented in the same direction. The three
mitogenomes contained a nearly identical ordering of shared genes (Fig. 2). Only a
single tRNA (tRNA-G) was positioned differently in the P. foliicola and D. macrodidyma
mitogenomes relative to F. graminearum. Two tRNAs (tRNA-R and tRNA-L) were
positioned differently between D. macrodidyma and P. foliicola/F. graminearum. This
conserved ordering of the three mitogenomes was consistent with previous observations
that themitochondrial DNAof fungi in the orderHypocreales is highly conserved (Al-Reedy
et al., 2012; Pantou, Kouvelis & Typas, 2008).

Identification of mating type idiomorphs in P. foliicola
The presence of the conserved alpha domain indicative of the MAT1-1 mating type
idiomorph was identified in P. foliicola scaffold 102. In the same scaffold, the APN2
(encoding DNA lyase) and SLA2 (encoding cytoskeletal protein) genes were found flanking
themating type idiomorph, as well as theMAT-locus associated geneCOX13 (cytochrome c
oxidase subunit VIa homolog). TheHMG-box region indicative of theMAT1-2mating type
idiomorph was not found within the P. foliicola genome. Based on these data, P. foliicola
appears to be a heterothallic fungus, requiring a partner of the alternate mating type in
order to initiate the sexual life cycle.

Phylogeny and divergence estimation
The phylogenetic relationships and divergence times among the fungal genomes studied is
displayed in Fig. 3. Fourteen publicly available fungal genomes were used to examine the
phylogenetic placement of P. foliicola through the analysis of single copy orthologous genes.
The program OrthoMCL identified 16,356 gene clusters, from which 1,884 orthologous
genes were shared across all 15 fungal species. From these shared gene clusters, 1,511
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Figure 3 Reconstruction of the phylogenetic relationships and divergence times of Pseudonectria foli-
icola relative to other fungal species. The maximum likelihood (ML) tree analysis and time tree (Rel-
Time method) were conducted on the concatenated dataset of 1,511 single copy orthologous genes. Num-
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indicated below the branches. The basidiomycete Ustilago maydis was used as the outgroup.

Full-size DOI: 10.7717/peerj.5401/fig-3

orthologous genes present as single copies were used for the phylogenetic analysis.
The final dataset after removal of ambiguously aligned regions consisted of 388.7 Mb.
The ML analysis identified, with high bootstrap support (>70%), five major clusters
representing the ascomycete classes Sordariomycetes, Leotiomycetes, Eurotiomycetes,
Dothideomycetes, and Saccharomycetes (Fig. 3). Within the Sordariomycetes, P. foliicola
was more closely related, albeit appearing basal, to D. macrodidyma and F. graminearum,
all of which belonged to the Nectriaceae in the order Hypocreales. These phylogenetic
relationships were consistent with previous reports (Lombard et al., 2015; Yin et al., 2015).
Using RelTime methods and a JTT matrix-based model, the estimated log likelihood
value was −142633.0660. The divergence of P. foliicola from the Nectriaceae species
D. macrodidyma and F. graminearum was estimated to have occurred ∼132 Mya. The
overall estimates of divergence times in the tree are in agreement with divergence times
reported for the order Hypocreales (Sung, Poinar & Spatafora, 2008).

Comparative genomic analysis of P. foliicola and other fungi in the
Nectriaceae
Gene orthology
Orthologous gene clusters were identified for P. foliicola, D. macrodidyma and
F. graminearum using OrthoVenn (Fig. 4). Proteins from these three fungal species formed
10,403 orthologous clusters, of which 7,135 clusters were shared among all three species.
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Figure 4 Orthologous genes shared between Pseudonectria foliicola,Dactylonectria macrodidyma and
Fusarium graminearum.

Full-size DOI: 10.7717/peerj.5401/fig-4

The top three Swiss-Prot annotations among the core shared clusters were the Acyl-CoA-
binding domain-containing protein (44 proteins), pleiotropic drug resistance protein 4
(30 proteins) and a short-chain dehydrogenase TIC 32, chloroplastic (12 proteins). Sixteen
clusters representing 48 predicted proteins were unique to P. foliicola, while 610 and 124
species-specific protein clusters were identified in D. macrodidyma and F. graminearum,
respectively. Only 0.2% of the P. foliicola proteome was unique, a low percentage relative
to 1.3% for the F. graminearum and 6.0% for the D. macrodydima proteomes. Although
the majority of the 16 clusters unique to P. foliicola had no annotations based on the
UniProt/Swiss-Prot and Gene Ontology (GO) databases, three of the unique clusters
were identified as (1) vegetative cell wall protein Gp1/structural constituent of cell wall
(GO:0005199), (2) thioredoxin/protein disulfide oxidoreductase activity (GO:0009507),
and (3) leucine-rich repeat extensin-like protein 3/structural constituent of cell wall
(GO:0005618). Biological processes andmolecular functions annotated by the GO database
for the species-unique gene clusters were most abundant in D. macrodidyma (66 biological
processes, 28 molecular functions), and least abundant in P. foliicola (five biological
processes, two molecular functions; Table S1). Three GO categories were found enriched
(hypergeometric test on OrthoVenn, p-value <0.05) in the P. foliicola unique clusters: (1)
a glycerol ether metabolic process, (2) structural constituent of cell wall and, (3) a protein
disulfide oxidoreductase activity. Despite the large number of unique gene clusters found
in D. macrodidyma, only one GO category, an oxidoreductase activity acting on single
donors with incorporation of molecular oxygen, was found to be enriched.

The CAZyme repertoire
Annotation of theP. foliicolaproteome identified 448CAZymemodules, including domains
encoding 179 glycoside hydrolases (GH), 88 glycosyl-transferases (GT), 18 polysaccharide
lyases (PL), 64 carbohydrate esterases (CE), 46 carbohydrate-binding modules (CBM), and
53 enzymes with auxiliary activities (AA) (summarized in Table 2, Fig. 5 and Table S2).
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Table 2 Summary of the carbohydrate-active enzyme (CAZyme) modules identified from the pre-
dicted proteome of Pseudonectria foliicola,Dactylonectria macrodidyma and Fusarium graminearum.
RF%: Relative frequency of CAZyme modules over the total number of predicted proteins for the corre-
sponding genome.

Name Pseudonectria
foliicola

RF% Dactylonectria
macrodidyma

RF% Fusarium
graminearum

RF%

AA 53 0.52 147 0.84 110 0.79
CBM 46 0.53 116 0.73 80 0.65
CE 64 0.83 210 1.37 127 1.08
GH 179 1.94 447 2.59 268 2.01
GT 88 1.01 125 0.78 100 0.82
PL 18 0.17 41 0.20 22 0.16
Total 448 4.83% 1,086 6.40% 707 5.31%

Notes.
AA, Auxiliary activity families; CBM, Carbohydrate-binding modules; CE, Carbohydrate esterase families; GH, Glycoside
hydrolase families; GT, Glycosyltransferase families; PL, Polysaccharide lyase families.

The D. macrodidyma and F. graminearum genomes encoded 1,086 and 707 CAZyme
modules, respectively. The CAZyme encoding genes represented between 4.8 and 6.6% of
the predicted proteome for the three fungal species (Table 2).

An increased number of CAZyme modules was identified from the D. macrodidyma
proteome when compared to P. foliicola, F. graminearum and a database of 91 other plant
pathogenic, facultative pathogenic, saprophytic and symbiotic fungi (Table S2; Zhao et
al., 2013). Although not significant in X 2 tests against P. foliicola and F. graminearum,
D. macrodidyma has an increased number of GH and CE enzymes. This is largely due to
the GH3 family, which is associated with cellulose degrading activities, the GH28 family,
with pectinase activities, as well as the less characterized GH78 and GH109 families.
Within the CE and PL module groups, increased numbers in the D. macrodidyma genome
were observed in the families CE3, CE5, CE10 and PL1 (Fig. 5). The CE3 and CE5 have
acetyl xylan esterase and cutinase activities and are common modules with a higher
representation in Ascomycetes relative to Basidiomycetes (Zhao et al., 2013). CE10 families
have carboxylesterases activities but can also act on non-carbohydrate substrates (Cantarel
et al., 2009). The PL1 family is the most commonly found among fungi, particularly in
plant pathogenic species (Zhao et al., 2013). The number of CE families inD. macrodidyma
(233) is comparable to that of the pea root pathogen Fusarium solani, previously regarded
as having the most CEs with 223 (Zhao et al., 2013).

Secondary metabolite clusters
Annotation of the P. foliicola, F. graminearum and D. macrodidyma proteomes identified
key enzyme clusters for the biosynthesis of secondary metabolites such as non-ribosomal
peptide synthases (NRPS), polyketide synthases (PKS), terpene synthases (TS), among
others (summarized in Fig. 5). The genome of P. foliicola contained 25 secondarymetabolite
clusters, in contrast with F. graminearum and D. macrodidyma with a total of 41 and 44
clusters, respectively (Fig. 5).
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Figure 5 Comparison of the predicted CAZymes and secondary metabolite clusters identified from
the genome assemblies of Pseudonectria foliicola (Pf), Dactylonectria macrodidyma(Dm) and Fusar-
ium graminearum (Fg). GH, glycoside hydrolases; CBM, Carbohydrate-binding modules; CE, Carbo-
hydrate esterases; GT, Glycosyl transferases; PL, Polysaccharide lyases; PKS, Polyketides; NRPS, Non-
ribosomal peptide synthase.

Full-size DOI: 10.7717/peerj.5401/fig-5

Secretome
The predicted secretome for P. foliicola was also relatively small, comprising just 346
proteins. In comparison, the genomes of D. macrodidyma and F. graminearum contained
607 and 457 predicted secreted proteins (Table S3 ). However, for all three species, the
secretome made up between 3.4 to 3.7% of the predicted proteome.
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Table 3 Summary of the predicted genes associated with virulence in the genome assemblies of Pseudonectria foliicola,Dactylonectria macro-
didyma and Fusarium graminearum.

Name Pseudonectria
foliicola

RF% Dactylonectria
macrodidyma

RF% Fusarium
graminearum

RF%

Chemistry target 7 0.08 8 0.05 9 0.07
Effector 15 0.16 22 0.13 19 0.14
Enhanced antagonism 2 0.02 2 0.01 2 0.02
Increased virulence 7 0.08 7 0.04 7 0.05
Increased virulence (Hypervirulence) 13 0.14 20 0.12 18 0.14
Lethal 65 0.70 80 0.47 87 0.65
Loss of pathogenicity 103 1.11 116 0.68 99 0.74
Mixed outcome 112 1.21 124 0.73 114 0.86
Reduced virulence 459 4.95 510 3.01 490 3.68
Unaffected pathogenicity 558 6.02 712 4.2 782 5.87
Other 2 0.02 2 0.01 2 0.02
Total 1,343 14.5% 1,603 9.45% 1,629 12.24%

Virulence associated genes
The genomes of P. foliicola, D. macrodidyma and F. graminearum were screened against
PHI-base, a curated database that contains pathogenicity, virulence and effector genes
from fungi, oomycete and bacterial pathogens (Winnenburg et al., 2008). Relative to the
total proteome, the frequency of virulence-associated genes was highest in P. foliicola
(14.5%) compared to F. graminearum (12.2%) and D. macrodidyma (9.5%) (Table 3).
Genes associated with the loss of pathogenicity, reduced virulence and those with mixed
outcomes were identified in higher frequencies in the P. foliicola proteome than in the
D. macrodidyma and F. graminearum proteomes (Table 3). Genes associated with loss of
pathogenicity and with reduced virulence have been identified by PHI-base from transgenic
strains of fungal, oomycete and bacterial pathogens that either fail to cause disease or that
cause quantitatively lower degrees of disease than the wild-type strains (Winnenburg et al.,
2008; Urban et al., 2015).

DISCUSSION
Pseudonectria species, P. foliicola and P. buxi, are economically important fungal pathogens
responsible for increased costs in foliar disease management of boxwood plants worldwide.
Here, we present a draft genome sequence for P. foliicola, including a comparative analysis
of this genome against two other plant pathogens in theNectriaceae. The 28.7Mb P. foliicola
draft genome assembly is smaller than the reported size of other fungi in the Ascomycota
(average genome size 36.9 Mb; Mohanta & Bae, 2015). This assembly represents the
smallest genome known from the Nectriaceae, in which genomes range from 36.1 to 58.1
Mb: D. macrodidyma (58.0 Mb; Malapi-Wight et al., 2015), Neonectria ditissima (44.9 Mb;
Gomez-Cortecero, Harrison & Armitage, 2015) and F. graminearum (36.1 Mb; Cuomo et
al., 2007). Consistent with genome size, the number of predicted gene models from the
P. foliicola assembly is reduced but comparable to the number of gene models predicted
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in other Ascomycota fungi with similar genome size (e.g., Patellaria atrata, 28.7 Mb,
7,794 gene models (JGI); Mohanta & Bae, 2015). Pseudonectria foliicola also contains one
of the smallest cohorts of TEs reported for filamentous fungi, similar to the genomes of
Trichoderma atroviridae, T. reesei, and T. virens (ranging from 0.48 to 0.57%; Kubicek et
al., 2011; Martinez et al., 2008) as well as F. graminearum (<1% of repetitive DNA; Cuomo
et al., 2007). A strong correlation between genome size and repeat content was reported
in a study of 18 Dothidiomycete genomes (Ohm et al., 2012) however, based on the low
percentage of TEs found in F. graminearum and D. macrodidyma, this correlation may not
be sustained within the Nectriaceae.

The uniquely small genome size of P. foliicola is similar to the genome assembly recently
reported from Escovopsis weberi (29.5 Mb), a highly specialized mycoparasitic fungus that
also belongs to the order Hypocreales (De Man et al., 2016). Specialized pathogens or those
with a narrow host range are predicted to maintain only the essential cohort of genes, and
lose those no longer needed in their particular niche (e.g., De Man et al., 2016; Lee & Marx,
2012) and while there are exceptions (e.g., Spanu et al., 2010), the comparative genome
analysis of the three Nectriaceae genomes in this study follows that prediction. From the
three fungal species analyzed in this study, only P. foliicola has a narrow host range (only
known from Buxus spp.) while F. graminearum (reported frequently in a large number of
hosts in Poaceae) and D. macrodidyma (reported on grapevine, avocado and olive trees)
have increasingly broader host ranges and larger genomes and proteomes. Divergence time
estimates indicated that P. foliicola, D. macrodidyma and F. graminearum diverged from
their common ancestral organism ca. 132 Mya. This relatively distant split may account
for the differences observed in pathogenicity and host range between these species, and
indicate that ongoing gene loss resulting in a reduced genome size is a major contributor
to the genome evolution of P. foliicola.

Enzymes that degrade plant cell wall carbohydrates can be essential during the infection
and decomposition of host plant tissue, particularly for necrotrophic and hemibiotrophic
fungi (Gibson et al., 2011; Zhao et al., 2013). Consequently, CAZyme profiles can be used
as indicators of the fungal lifestyle. In previous studies, necrotrophic and hemibiotrophic
fungal plant pathogens have been reported to produce a large repertoire of these enzymes
(Gibson et al., 2011; Knogge, 1996), and typically exhibit expanded arsenals of CAZymes in
their genomes, relative to biotrophic and obligate fungi that typically exhibit the lowest
numbers (Zhao et al., 2013). Similarly, the fungal secretome and secondary metabolites,
both involved in the host-pathogen interaction process (Van den Burg et al., 2006; Yu
& Keller, 2005), can correlate with the lifestyle of a fungal pathogen (Lowe & Howlett,
2012; Ohm et al., 2012). Consistent with its small genome and proteome size, P. foliicola
has the smallest cohort of CAZymes, SM clusters and secreted proteins relative to
D. macrodidyma and F. graminearum. Despite the reduced number of total CAZyme
clusters in P. foliicola, all clusters are well represented and comparable to those found in
the genomes of fungi with different lifestyles (comparison among the 91 fungal CAZyme
profiles by Zhao et al., 2013). Within the Nectriaceae, comparisons among P. foliicola,
D. macrodidyma and F. graminearum show increased numbers of CAZymes in several
clusters for D. macrodidyma relative to the other two fungi, although not significant. The
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glycosyl hydrolases (GH), enzymes with an important role in the complete breakdown of
the plant cell wall for successful infection (Cantarel et al., 2009), were the most abundant
type of secreted protein and CAZymes found across all three species compared.

The pathogenicity profile of P. foliicola as predicted by comparisons against the PHI-base
database shows a higher relative frequency of genes associated with loss of pathogenicity and
reduced virulence, when compared to D. macrodidyma and F. graminearum. The genome
characteristics of P. foliicola described in our analyses may help explain the apparent
inability of this fungus to penetrate host plant tissue and its dependence on wounding or
winter damage for successful infections. Shi & Hsiang (2014) reported primary infection
by P. buxi on leaves and stems of various Buxus species through wounded tissue resulting
in general plant decline. A similar strategy may be employed by the closely related species
P. foliicola; however, due to its recent taxonomic placement, it remains uncertain whether
previous disease reports and epidemiology studies correspond to either Pseudonectria
species.

CONCLUSIONS
Despite the economic importance of fungi in the Nectriaceae family, only a small number
of genome resources are currently available. A survey of public databases shows that
less than 5% of the estimated 900 fungal species in this family have been sequenced on
the whole genome scale (NCBI-GenBank, the Joint Genome Institute Mycocosm and
Ensembl databanks). To our knowledge, the P. foliicola genome is the smallest known
genome in the Nectriaceae. Currently, it is unknown if the genome characteristics of other
fungal pathogens in the Nectriaceae are similar to those of P. foliicola, D. macrodidyma
or F. graminearum, or if these genomes represent the extremes. With the advent and
accessibility of next generation sequencing technologies we expect that more in depth
comparative genomics studies will characterize fungal groups of great economic and
ecological importance. The quality of microbial draft genomes and consequently the
predicted size of the associated proteome can also be influenced by the next generation
sequencing platform and assembly software (Mavromatis et al., 2012). Even though
improvements on sequencing chemistry and better assembly algorithms have reduced
the chance of errors, further sampling of genomes of fungi in the Nectriaceae and other
families, ideally with a wide range of life styles, would help determine if the differences
observed in annotation rates for some protein classes in our study is due to real biological
differences or if they might be an artifact of the technology used to generate these draft
genomes. Furthermore, the availability of fungal genomes will aid in the resolution of
important fungal lineages and explore beyond the commonly used standard molecular
markers for taxonomic classification.
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