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ABSTRACT
Genetic selection programs have driven development of most lactation models, to
estimate the magnitude of animals’ productive capacity from sampled milk produc-
tion data. There has been less attention to management and research applications,
where it may also be important to quantify the shape of lactation curves, and pre-
dict future daily milk production for incomplete lactations since residuals between
predicted and actual daily production can be used to quantify the response to an
intervention. A model may decrease the confounding effects of lactation stage, parity,
breed, and possibly other factors depending on how the model is constructed and
used, thus increasing the power of statistical analyses. Models with a mechanistic
derivation may allow direct inference about biology from fitted production data.
The MilkBot® lactation model is derived from abstract suppositions about growth
of udder capacity. This permits inference about shape of the lactation curve directly
from parameter values, but not direct conclusions about physiology. Individual
parameters relate to the overall scale of the lactation, the ramp, or rate of growth
around parturition, decay describing the senescence of productive capacity (inversely
related to persistence), and the relatively insignificant time offset between calving
and the physiological start of milk secretion. A proprietary algorithm was used to fit
monthly test data from two parity groups in 21 randomly selected herds, and results
displayed in box-and-whisker charts and Z-test tables. Fitted curves are constrained
by the MilkBot® equation to a single peak that blends into an exponential decline
in late lactation. This is seen as an abstraction of productive capacity, with actual
daily production higher or lower due to random error plus short-term environmental
effects. The four MilkBot® parameters, and metrics calculated directly from them
including fitting error, peak milk and cumulative production, can be used to describe
and compare individual lactations or groups of lactations. There is considerable
intra-herd and inter-herd variability in scale, ramp, decay, RMSE, peak milk, and cu-
mulative production, suggesting that management and environment have significant
influence on both shape and magnitude of normal lactation curves.

Subjects Agricultural Science, Bioinformatics, Veterinary Medicine
Keywords Lactation curve, Persistency, MilkBot, Dairy management, Lactation

BACKGROUND
Lactation models typically predict milk production, or a milk component, as a function

of DIM (days in-milk). They may be classified by several criteria that have important
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implications for their usefulness in applications. First, models may be classified as

mechanistic or empirical based on their derivation and objectives. For example Dijkstra

et al. (1997) and Pollott (2000) each describe a mechanistic model developed from data

and assumptions about cell populations in mammary tissue, from which inferences can

be made about milk production. Because of this derivation, data about milk production

can also lead back to inferences about physiology through the construct of the model.

In contrast, empirical models such as Best Prediction (Cole & VanRaden, 2006) and

many other systems developed for estimating genetic value of bulls from the records of

their daughters are content with predicting milk production without any hypothetical

linkage to the biology of lactation. The seminal Wood model (Wood, 1967) was introduced

without a mechanistic derivation, though the portion of the model controlling senescence

(identical to the corresponding part of the MilkBot® model and several other models) can

be interpreted mechanistically.

For both mechanistic and empirical models it is often desirable to fit production data

to the model generating a set of fitted parameter values describing a lactation curve. For

linear models, or models like Best Prediction, which fits a linear adjustment to a nonlinear

base, linear regression yields a simple and reliable fitting method. Some widely used

polynomial models also are easily fitted (Schaeffer et al., 2000), but may present other

difficulties. Fitting methods are less straightforward for most other nonlinear functions.

For models that may be transformed mathematically to a linearized form, like the Wood

model, linear regression can still be used, but the solution is not very satisfactory because

the transformation of raw data means the result is no longer a true least-squares fit. Many

techniques exist for true least-squares optimization of nonlinear models, but matching a

model and fitting method in a way that generates consistently reliable results is complicated

by characteristics of both model and data. Despite this difficulty, increased computing

power, and improvements in nonlinear fitting methods, have made nonlinear models

a practical alternative for fitting both individual and aggregated lactations. Fitting of

nonlinear models often involves iterative algorithms for which it cannot be guaranteed

that solutions are unique, optimal, or even findable. This means that extensive and varied

testing is required to evaluate the robustness of a nonlinear model-and-fitting-method

pair when applied to data sets of various kinds. A model which accurately reflects the

mechanism behind the data is often more robust because the mathematics of the model

naturally constrains solutions to those which are biologically probable.

The question of what constitutes an optimal fit deserves more attention than it

sometimes receives. The usual assumption is that the best fit minimizes the sum of squares

of residuals, often referred to as mean square error (MSE), or its square root, RMSE (root

mean square error). It can be argued that this solution is most likely to be correct if error

is normally distributed and there is no prior information about the population being

measured. In reality, we have a great deal of information on what normal lactations look

like, and how they vary with factors such as breed, parity, region, and so on. Maximum

likelihood methods incorporate some of this prior information on expected frequency of

solutions along with the test data during optimization, to arrive at solutions that are more
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likely to reflect reality, despite MSE that is normally higher than obtainable by minimizing

MSE strictly, especially if there are few data points.

Data to be fitted may be from a single lactation, or aggregated data from some grouping

of multiple lactations in which case the curve should be called an aggregate lactation

curve. Aggregated data is influenced by population effects in addition to individual

lactation effects so that studies on aggregated data are not completely comparable to

studies based on fitting of individual lactations. For example management policies for

culling usually depend on relative production of individuals, so that higher merit individ-

uals may be over-represented in late lactation. This could cause an upward deflection of

aggregate data in late lactation, as is sometimes seen (Ehrlich, 2011; Dematawewa, Pearson

& VanRaden, 2007), without a matching deflection in individual lactations. Many such

hidden population effects are possible, so it should not be assumed that the model that best

fits aggregated data also fits individual lactations best. Aggregation of data also may either

decrease or increase MSE, depending on whether aggregation is done before or after fitting.

For example, Dematawewa, Pearson & VanRaden (2007) fitted single curves to data points

from multiple lactations, which would be expected to increase MSE relative to individual

lactations because of added variability between lactations. Ehrlich (2011) fitted a large data

set aggregated by DIM before fitting, which decreased MSE to very low levels. Either of

these approaches can be supported, but the meaning of MSE values is altered radically.

Applications of lactation models vary widely. Much work has been done with the

objective of obtaining an estimate of the genetic value of milking animals and their sires,

notably at the USDA Animal Improvement Programs Laboratory (USDA-AIPL) (Animal

Improvement Programs: Home, 2012) in Beltsville, MD and by other members of the

International Bull Evaluation Service, “Interbull” (2012). For this application, models may

adjust for effects of lactation stage, breed, parity, season, and region on production, and

environmental effects are seen as confounding variables, while the main point of interest is

an individual animal’s productive capacity. For management purposes, though, it is often

the environmental effects that are the variables of interest. For example a dairyman may

want to know the effect of a change in transition management or a researcher the effect

of a feed additive. Changes in the distribution of milk within lactations, i.e. the shape of

the curve, may be more sensitive and specific in measuring effects of short-term changes

such as illness, feeding, or housing, but these can only be quantified if model parameters

relate to curve shape in a consistent way. This was demonstrated by Hostens et al. (2012) in

a study of relations between metabolic diseases and milk production. Looking at raw milk

production data or M305 (cumulative milk production for the first 305 days of a lactation),

no statistically significant relations were found, but there were multiple significant or

highly significant relations between diseases and parameter values for individual lactations

fitted to the MilkBot® model. Transition period diseases tended to hurt the ramp of the

lactation, but there was a compensatory increase in persistency leading to little net change

in M305. Through the model, these effects on the distribution of production within the

lactation could be quantified as changes to fitted parameter values of individual lactations.
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A model fitted to individual lactations sometimes can be used to predict daily milk

production, and study the effect of management and environment on milk production

through analysis of residuals. Residuals, that is the difference between expected and

observed daily milk production, can be attributed to factors outside the model domain

such as feeding, illness, the environment, or some management intervention. Model

residuals minimize the confounding effect of DIM on production, without the smoothing

effect of choosing a cumulative metric like M305.

The MilkBot® model has been used with the Levenburg-Marquardt fitting algorithm to

fit aggregate lactation curves for major breeds and parities (Ehrlich, 2011). The proprietary

DairySight genetic algorithm is also available online (Ehrlich, 2012) to fit individual

lactations to the MilkBot® model. This uses a maximum likelihood algorithm to return

a solution even with no data points, in which case population mean parameter values will

be returned. As more data points become available, they are combined with the a priori

information, and individual solutions will diverge from population means. This means

that sensitivity and specificity of the fit to real differences between lactations will increase

as more data points are used. While the process obviously cannot detect differences in parts

of the curve where there are no data points, a stable solution is achieved in nearly all cases,

and solutions are usually insensitive to small changes to data points. Cole, Ehrlich & Null

(2012), Hostens et al. (2012) and Charlier et al. (2012) used the DairySight fitting engine

successfully in fitting individual lactations from monthly test data.

No model is perfect, nor is testing ever complete. Relative performance of models may

depend on details of the population studied and what data is used. Normal production

curves may vary by breed, parity, and other groupings, and may change over time, so

testing should be continuous and in multiple forms. One basic test is to make appropriately

blinded predictions based on the model and tabulate statistics on prediction error. Cole,

Ehrlich & Null (2012) showed that MilkBot® predications were usually more accurate and

precise than three other lactation models by calculating mean and standard deviation of

error in predicting next-test milk as a function of DIM. A more general test is simply to

see whether application of a model leads to useful results. In this way, hundreds of papers

on genetic selection of cattle using lactation models, and the dramatic improvements in

milk production of dairy cattle they facilitated testify to the utility of AIPL and Interbull

models. Similarly, recent papers by Hostens et al. (2012) and Charlier et al. (2012) testify to

the utility of the MilkBot® model in measuring management effects.

That management, breed, and parity influence magnitude of production is obvious,

and can be measured by M305, peak milk, or similar metrics, but little is known about

variability in lactation curve shape, except that first-parity animals typically show greater

persistency and lower peak milk than older cows. It is often assumed that curve shape is

biologically fixed, and that management influences magnitude only, but this assumption

may be a consequence the difficulty of quantifying shape. Quantification of lactation

curve shape, or the distribution of production within a lactation, is hampered by lack of

a standard methodology and terminology. For example there is no standard quantitative
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definition of “persistency” in general usage, and no generally accepted quantitative metric

of the rate of rise in early lactation that within the MilkBot® model is called ramp.

Development of the MilkBot® lactation model was driven by the belief that manage-

ment of dairy herds influences the shape of lactation curves, and that those differences can

be measured statistically as a means of studying effects of management and environment

on milk production. The null hypothesis, in that context, is that lactation curve shape

does not vary significantly between dairy herds and parity groups, or that if such

variability exists the MilkBot® model provides no benefit in detecting and quantifying that

variability. An important secondary objective is to provide background information for

experimental design and the building of specific hypotheses about effects of management

and environment on lactation curve shape. Because no data was available on management

of individual groups and herds, such causal relationships are entirely speculative in this

study.

METHODS
Development of the MilkBot R© model
Rook, France & Dhanoa (1993) describe a general lactation model consisting of a

growth process multiplied by a death process and a scalar. They stipulate that both

growth and death processes should be monotonic, with the growth function rising from

zero to approach one, and the death function decreasing from one to approach zero.

These constraints have the important effect of making the scalar largely responsible for

magnitude of the curve with the growth function dominating shape of the rising portion of

a normal lactation curve, and the death function dominating the decline in late lactation,

or decay portion of the curve. Note that the growth function returns the cumulative growth

as a function of time, not the rate of growth. This may be inferred from the constraints. The

multiplicative variant of the Pollot mechanistic model (Pollott, 2000) follows this general

model, but the frequently cited Wood (1967) lactation model, while otherwise similar to the

general model, has no upper limit to the growth function, which results in the scaling of the

lactation curve being shared between the scalar and the growth process.

In developing the MilkBot® model, we accept the constraints of the Rook general model

and begin by extending it backwards, defining a Growthrate Function, C(t) which models

the rate of creation of lactational capacity. This means the Growth function will be the

integral of the Growthrate function, and Growthrate will be the derivative of Growth.

Equation (1) states the general model as defined, and extended, where Y(t) represents

milk production on day t of a lactation with scalar a and G(t),D(t), and C(t) representing

growth, death, and Growthrate functions.

Y(t)= aG(t) D(t)= a
∫ t

−∞

C(t)dt D(t). (1)

To maintain conformity with standard practices, the model’s independent variable, t,
represents DIM, with t = 1 at parturition, but in a further extension of the general

model, and contrary to current standard practice, we note that parturition and the
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start of lactation are separate events, though related. We define the start of lactation as

the midpoint of growth in production capacity, and an offset variable, c, which is the

time between parturition and that growth midpoint (the start of lactation). Therefore

G(t)= 1/2 when t = c by definition.

Though C(t) is not strictly a probability distribution, it is similarly constrained, with

the full-range integral equal to 1. The most prominent probability distribution, the normal

distribution, is an obvious candidate for C(t), which would require the rate of creation of

udder capacity to rise in a bell curve to a peak near parturition, and then fall again. This

has the advantage of being at least moderately credible in relation to observable growth

of udder tissue, and easily described by two familiar parameters corresponding to the

standard deviation of the Normal curve and the offset location parameter.

The integral of the Normal distribution, the Cumulative Normal function, can

only be calculated as an improper integral, which adds considerable mathematical

complication. Therefore, simply as a concession to ease of computation, MilkBot® uses

an approximation, the Laplace distribution, for C(t), because it is easily integrated, while

yielding a curve of similar shape. The Laplace distribution takes different mathematical

forms for left and right sides of the curve, but since the peak is expected to be at or

near parturition, and we are unconcerned with the shape of growth before milking

commences, the left side of the function can safely be dropped (Eq. (2)). This is equivalent

mathematically to postulating that growth rate of udder capacity decreases exponentially

from a peak that defines the start of lactation, and with enough high quality data it might

be possible to discern whether an exponential or Gaussian growth rate function is closer to

reality, but differences between the two are very small after the two weeks of lactation. The

resulting growth function (Eq. (3)) ends up mathematically equivalent to the Mitscherlich

function described by Rook, France & Dhanoa (1993), but with a different parameterization

which emphasizes similarity with the initial Gaussian model.

C(t)=
1

2 b
exp

(
c− t

b

)
where t > c (Laplace distribution) (2)

G(t)=
∫ t

−∞

C(t) dt = 1−
exp

( c−t
b

)
2

. (3)

For a Death Function, D(t), we choose the same exponential decay function used by

Wood, Rook, and others. Dematawewa, Pearson & VanRaden (2007) examined models for

extended lactations and found that models featuring an exponential decline of this form

outperformed other candidates for lactations exceeding 305 days in length.

D(t)= exp(−dt). (4)

Substitution of Eqs. (3) and (4) in Eq. (1) yields the MilkBot® Model.

Y (t)= a

(
1−

exp
( c−t

b

)
2

)
exp(−d t) (MilkBot® model). (5)
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Experimental data
Groups of 50 lactations each were drawn from 21 randomly selected dairy herds, and

then compared to see whether herd effects influence lactation curve shape. Herds were

selected from a large DHIA database of herds predominantly in the eastern half of the

USA and containing monthly milk weights from more than six million lactations in over

17,000 herds. This is the same database used earlier for developing standard breed-parity

aggregate curves (Ehrlich, 2011). Initial selection chose 1,056 herds with at least 1,000

recorded lactations between January 2005 and June 2008. From these, 21 herds were

selected randomly. All data points after 305 DIM were dropped, then all lactations with

fewer than 7 recorded monthly test days rejected. Lactations were divided in two parity

groups, with all lactations after the first in a single group. Each group was then ordered by

calving date and one lactation chosen randomly as a starting point. Lactations were then

selected forward and backwards in time until 50 lactations had been collected. If a herd

could not provide sufficient qualified lactations in either group, that herd was replaced

by another randomly selected herd. This resulted in a set of 21 herds, each with 2 parity

groups of 50 complete lactations having sequential calving dates. Lactations were all fitted

using the DairySight fitting engine (Ehrlich, 2012), and parameter values recorded. Data

for each herd-parity group was recorded as comma-delimited data in a single text file, then

imported into Mathematica,1 which was used to generate tables and figures. The number
1 Mathematica version 8.0.1.0 from

Wolfram Research.
of herds chosen was set to 21 because using the cutoff p < .05 in statistical testing leads to a

1/20 chance of falsely rejecting the null hypothesis. Therefore each herd could be compared

to 20 others, with the expectation that on the average there would be one false-positive at

p < .05 for each parameter compared. Greater differences suggest greater-than-random

variability between herds.

RESULTS AND DISCUSSION
The conceptual derivation described under Methods leads to the MilkBot® model, giving

daily milk yield, Y(t) as a function of DIM (t) as shown in Eq. (1).

Y(t)= a

(
1−

exp
( c−t

b

)
2

)
exp(−dt).

Model parameters a,b,c, and d control shape and magnitude of the lactation curve. These

parameters are given descriptive names based on the functions from which they were

derived and their effect on the general model.

Interpretation of parameters
Parameter “a” is the scale parameter. It can be expressed as kilograms/day, pounds/day,

or similarly. Scale can be seen as the theoretical maximum daily yield, which approaches

actual peak production as ramp approaches zero. It must be a positive number. Changing

the model to a different unit of measure for milk output only requires applying the

appropriate conversion to the scale parameter, while all other parameter values remain
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unchanged. Scale can be seen as describing the magnitude of a lactation, while the other

three parameters describe the curve’s shape.

Parameter “b” is the ramp parameter, controlling the width of the Growthrate function,

and so the rate of rise in milk production in early lactation. Ramp values are time, normally

days, and must be a positive number. A simple thumb rule is that when t = ramp, growth in

production capacity is about 82% complete.

Parameter “c” is the offset parameter describing the offset in time between parturition

and the start of lactation. Offset values are time (days), and may be positive, negative, or

zero. The effect of offset is slight, except in the first few days of the lactation curve, so it is

generally not possible to detect variation in the offset parameter in fitted lactations unless

there are daily milk weights covering the first weeks of lactation. With a monthly interval

between test points, values for the offset parameter have little value, and the model may

be simplified by setting offset equal to zero or a constant near zero. Fixing offset to zero is

equivalent to the common assumption that lactation begins at parturition.

Parameter “d” is the decay parameter, controlling the rate of senescence of production

capacity. Decay is inverse-time (days−1). It should be constrained to positive values under

normal circumstances. An equivalent alternative expression for a first-order decay constant

like the decay parameter is as a half-life, which suggests a definition of lactation persistency,

which, rather than being tied to an arbitrary stage of lactation, is an attribute of the

lactation as a whole.

Persistence=
0.693
decay

. (6)

By this definition decay is the time it would take for production to drop by half, if we were

to ignore the growth side of the model. Since the Growth function approaches one in late

lactation, decay, by this definition, is close to the actual half-life for milk production in late

lactation. Fitted decay values are likely to be more normally distributed than persistence,

therefore decay should be preferred for most statistical calculations, but may be converted

to persistence afterwards.

Mathematical manipulation of Eq. (1) allows calculation of some useful results. By

setting the derivative equal to zero we can calculate peak day, tpeak, and from that peak

milk, ypeak. Note that like persistence, tpeak and ypeak are attributes of the lactation as

a whole, and less sensitive to any single data point than metrics based on comparing

individual test days.

tpeak = c− b log[(2 b d)/(1 + b d)] (7)

ypeak = Y
(
tpeak

)
= a exp(−d(c− b Log[2])[a,b,c,d])

×(1− 1/2exp((c− (c− b Log[2])[a,b,c,d])/b)).

(8)
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Cumulative production between two days can be calculated by integration, including

M305.

M305= (a− a exp(−305 d))/d+ (abexp(c/b)

×(−1+ exp(−305(1/b+ d))))/(2+ 2bd). (9)

Comparison of herd-parity groups

Herd-parity groups were compared to establish whether MilkBot® parameters or derived

metrics (RMSE, M305, peak day, peak milk) could be used to detect statistical differences

in lactation curves between groups. It can be inferred that if such differences exist between

herds, they probably are caused by differences in management or environment, and this

suggests that statistical analysis of fitted parameter values or derived metrics may be a

means of monitoring herd performance and detecting abnormalities. Existing literature

firmly establishes that decay should be lower in first-parity groups (higher persistence

in heifers), and that there are likely to be differences in measures of magnitude such as

scale, peak milk, and M305 between herds and parities. It is much less certain whether

management and environment influence persistency (decay), ramp, offset, RMSE, and time

of peak milk, or whether these might be fixed biologically, and insensitive to management.

Table 1 gives herd mean M305, predominant breed, and links to files containing data

on 50 individual lactations for each of the 42 groups. Table 2 summarizes data for all

herd-parity groups for each parameter or derived metric. These are overall means of the

group mean and group standard deviation, and mean divergence score. A “divergence

score” was calculated for each group by tabulating how many of the 20 other groups of

matching parity had significantly different mean parameter value by Z-test at P < .05,

so that 1.0 would be the expected divergence score if there are not differences among

groups, and higher scores suggest divergence is more common than would be expected

from random variation.

Figures 1–8 show box-and-whiskers plots for M305, scale, ramp, offset, decay, RMSE,

peak day, and peak milk. In each plot, herds are ordered by herd-average M305, with

the lowest-production herd (Herd A) at the bottom. Parity groups are differentiated by

color. For each group, a gray diamond gives the Z-test 95% confidence interval around

the mean. Colored bars show quartiles above and below the mean, and whiskers show the

full range for the group. This means that groups with diamonds that overlap vertically are

not significantly different by Z-test with 95% confidence. If diamonds do not overlap, the

sample means differ at p < .05. Groups as small as 50 lactations with monthly test data

are clearly sufficient to identify significant variability among herds, with the exception of

offset and possibly peak day. Scale, M305, and peak milk seem to follow similar patterns,

suggesting the correlation that is to be expected, as all are primarily measures of lactation

magnitude.

Ramp is higher for heifers, indicating a slower rise in production after calving. It

can be speculated that inter-herd variability in ramp might be influenced by transition

management. Some herds (C, I, L, N, R, T) show little difference in ramp between parity

Ehrlich (2013), PeerJ, DOI 10.7717/peerj.54 9/18

https://peerj.com
http://dx.doi.org/10.7717/peerj.54


Table 1 Herd data. Mean M305, predominate breed, and data files for 21 randomly selected dairy herds (Supplemental Data files are available at:
http://dx.doi.org/10.7717/peerj.54).

Mean M305 (kg) Breed 50 parity 1 lactations 50 parity 2 + lactations

Herd A 6284 JERSEY Supplemental Data (file 1.csv) Supplemental Data (file 2.csv)

Herd B 7822 CROSSBRED Supplemental Data (file 3.csv) Supplemental Data (file 4.csv)

Herd C 8005 HOLSTEIN Supplemental Data (file 5.csv) Supplemental Data (file 6.csv)

Herd D 8741 HOLSTEIN Supplemental Data (file 7.csv) Supplemental Data (file 8.csv)

Herd E 9621 HOLSTEIN Supplemental Data (file 9.csv) Supplemental Data (file 10.csv)

Herd F 9730 HOLSTEIN Supplemental Data (file 11.csv) Supplemental Data (file 12.csv)

Herd G 9796 HOLSTEIN Supplemental Data (file 13.csv) Supplemental Data (file 14.csv)

Herd H 10037 HOLSTEIN Supplemental Data (file 15.csv) Supplemental Data (file 16.csv)

Herd I 10338 HOLSTEIN Supplemental Data (file 17.csv) Supplemental Data (file 18.csv)

Herd J 10345 HOLSTEIN Supplemental Data (file 19.csv) Supplemental Data (file 20.csv)

Herd K 10481 JERSEY Supplemental Data (file 21.csv) Supplemental Data (file 22.csv)

Herd L 10580 HOLSTEIN Supplemental Data (file 23.csv) Supplemental Data (file 24.csv)

Herd M 10909 HOLSTEIN Supplemental Data (file 25.csv) Supplemental Data (file 26.csv)

Herd N 11118 HOLSTEIN Supplemental Data (file 27.csv) Supplemental Data (file 28.csv)

Herd O 11189 HOLSTEIN Supplemental Data (file 29.csv) Supplemental Data (file 30.csv)

Herd P 11285 HOLSTEIN Supplemental Data (file 31.csv) Supplemental Data (file 32.csv)

Herd Q 11332 HOLSTEIN Supplemental Data (file 33.csv) Supplemental Data (file 34.csv)

Herd R 11521 HOLSTEIN Supplemental Data (file 35.csv) Supplemental Data (file 36.csv)

Herd S 11715 HOLSTEIN Supplemental Data (file 37.csv) Supplemental Data (file 38.csv)

Herd T 11987 HOLSTEIN Supplemental Data (file 39.csv) Supplemental Data (file 40.csv)

Herd U 12370 HOLSTEIN Supplemental Data (file 41.csv) Supplemental Data (file 42.csv)

groups, and since transition heifers are often managed differently from cows, it is easy to

develop hypotheses on possible causes. For example, the differences could relate to whether

fresh heifers are group-housed with older animals since competition with older animals

might limit feed consumption in heifers, and slow growth in production capacity. That the

same herds tend to show a wide range in ramp values among mature cows adds another

angle for speculation and research.

There is little difference in offset within or between herds, which is not surprising since

only monthly milk weights were available and biologically significant differences in offset

would have little effect past the first few days of lactation. Even so, in mature cows there

are statistically significant differences in mean offset of as much as 0.3 days (8 h). It is

very unlikely that this reflects biologically or economically significant differences in offset.

Rather, with only monthly data points the fitting engine has difficulty differentiating offset

from ramp, so makes the appropriate choice of attributing most but not all variability to

ramp. This leads to correlation between offset and ramp as an artifact of the fitting process.

One simple solution is to ignore offset when monthly test data is used. The untested

possibility remains that true differences in offset would be found with daily milk weights.

Heifers have markedly lower decay (greater persistency) than mature cows, but there

is also considerable variation between herds. For example, persistency of mature cows in
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Table 2 Mean MilkBot® parameter statistics for 2 parity groups in 21 randomly selected dairy herds. Means for all herds of group-mean
parameter values and group standard deviation, and divergence score. Divergence score is mean number of matching parity groups (of 20 possible)
with which individual groups differ by Z-test at P < .05 (Supplemental Data files are available at: http://dx.doi.org/10.7717/peerj.54).

Metric and parity Mean group mean Mean group sd Mean divergence score

Scale P1 (kg) 38.66 5.87 13.9

Scale P2+ (kg) 53.65 9.3 14.7

Ramp P1 (days) 31.43 2.67 10.8

Ramp P2+ (days) 26.13 7.66 8.8

Offset P1 (days) −0.5 0 0

Offset P2+ (days) −0.37 0.39 4.6

Decay P1 (day−1) 0.000974 0.000605 11.3

Decay P2+ (day−1) 0.002213 0.000858 12.5

RMSE P1 (kg) 3.73 1.51 12.5

RMSE P2+ (kg) 4.65 2.04 11.1

M305 P1 (kg) 9637 1460 14.6

M305 P2+ (kg) 11255 1811 16

PeakDay P1 89.83 32 7.2

PeakDay P2+ 59.18 15.87 12.8

PeakMilk P1 (kg) 33.87 6.18 13

PeakMilk P2+ (kg) 44.86 7.06 15.5

Data file P1 Supplemental Data (file 43.csv) Supplemental Data (file 44.csv) Supplemental Data (file 45.csv)

Data file P2+ Supplemental Data (file 46.csv) Supplemental Data (file 47.csv) Supplemental Data (file 48.csv)

Herd K is slightly better than heifers in Herd C. The difference between cows and heifers

also varies widely among herds. Factors that might influence persistency include use of

rBST (recombinant bovine somatotropin), nutrition, mastitis control, and many other

variables in management, environment, and genetics. These could have considerable

economic importance through the effect on overall production.

Distribution of RMSE is interesting because greater consistency either in the testing

protocol generating production data or in actual production should lower RMSE. Mastitis,

lameness, poor feed management, and many other problems would likely increase RMSE

so that it may be useful as a general, if imperfect, measure of management quality

and cow welfare. These are extremely difficult to measure by objective criteria, so even

imperfect methodology may be useful. For example, Herd T has high production but also

relatively high RMSE, which might reflect management problems, or just lower quality

data collection. There are a few outliers, such as individual lactations in herds N and

T with very high RMSE. For example herd N includes a single lactation with RMSE of

24.8 kg and milk weights recorded as (47.7, 83.1 84.4, 32.2, 8.2, 55.4, 77.2, 64.5, 34, 24.1)

kg at approximately monthly intervals. This is obviously a highly abnormal lactation, and

probably a cow with health problems. Some portion of RMSE should be attributed to

bias inherent in the model design and fitting process, since no model or fitting process

is perfect. This systemic error should be randomly distributed among herds, so the

inter-herd variability in RMSE suggests at least that systemic error is not overwhelming.
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Figure 1 Distribution of cumulative 305-day milk production (M305) for herd-parity groups of 50
consecutive lactations in 21 randomly selected herds. Herds are ordered by herd average M305 with
highest at the top. Diamonds show 95% confidence around mean by Z-test. Colored bars show quartiles.
Whiskers show full range.

Figure 2 Distribution of fitted MilkBot®scale parameter for herd-parity groups of 50 consecutive
lactations in 21 randomly selected herds. Herds are ordered by herd average M305 with highest at the
top. Diamonds show 95% confidence around mean by Z-test. Colored bars show quartiles. Whiskers
show full range.
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Figure 3 Distribution of fitted MilkBot®ramp parameter for herd-parity groups of 50 consecutive
lactations in 21 randomly selected herds. Herds are ordered by herd average M305 with highest at the
top. Diamonds show 95% confidence around mean by Z-test. Colored bars show quartiles. Whiskers
show full range.

Figure 4 Distribution of fitted MilkBot®offset parameter for herd-parity groups of 50 consecutive
lactations in 21 randomly selected herds. Herds are ordered by herd average M305 with highest at the
top. Diamonds show 95% confidence around mean by Z-test. Colored bars show quartiles. Whiskers
show full range.
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Figure 5 Distribution of fitted MilkBot®decay parameter for herd-parity groups of 50 consecutive
lactations in 21 randomly selected herds. Herds are ordered by herd average M305 with highest at the
top. Diamonds show 95% confidence around mean by Z-test. Colored bars show quartiles. Whiskers
show full range.

Figure 6 Distribution of root-mean-square fitting error (RMSE) for herd-parity groups of 50 consec-
utive lactations in 21 randomly selected herds. Herds are ordered by herd average M305 with highest at
the top. Diamonds show 95% confidence around mean by Z-test. Colored bars show quartiles. Whiskers
show full range.
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Figure 7 Distribution of day of peak milk production (peak day) for herd-parity groups of 50 consec-
utive lactations in 21 randomly selected herds. Herds are ordered by herd average M305 with highest at
the top. Diamonds show 95% confidence around mean by Z-test. Colored bars show quartiles. Whiskers
show full range.

Figure 8 Distribution of peak milk production (peak milk) for herd-parity groups of 50 consecutive
lactations in 21 randomly selected herds. Herds are ordered by herd average M305 with highest at the
top. Diamonds show 95% confidence around mean by Z-test. Colored bars show quartiles. Whiskers
show full range.
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The remaining portion is sometimes called random error, reflecting the high variability

that is expected even between consecutive milkings. This probably is a misnomer, since

most of the variability probably has a cause, whether it is inconsistency in milking times,

variability in feeds, meter error, weather, disease, or any of thousands of other possible

causes. Clearly some of these are controllable, and some are not, but RMSE allows them to

be measured, at least collectively.

Peak milk and peak day will correlate with the parameters from which they are

calculated. It is possible that they may turn out to correlate better with certain variables

of interest than individual parameters, but that remains to be seen. Peak milk shows a

pattern similar to scale, but with more difference between cows and heifers because of

the lower decay which is characteristic of heifers. Peak day is not greatly influenced by

production level, and shows relatively little variation among herds, suggesting that it is

more fixed biologically, and mostly insensitive to management and environment.

Peak milk is sometimes used with the thumb rule that each unit of peak milk translates

to 250 units in M305, or some similar formula. This presupposes that lactation curve shape

is the same in all herds, and is not influenced by whatever management changes might

improve peak milk. We can get a feel for the practical effect of herd variability in curve

shape by looking at its effect on this thumb rule. A rather complicated formula2 can be
2 PeakToM305Multiplier= (2− 2

Eˆ(−305 decay) + 2 decay ramp
− 2 decay Eˆ(−305 decay) ramp +
decay Eˆ(−305 decay− 305/ramp + off-
set/ramp) ramp− decay Eˆ(offset/ramp)
ramp)/(2 (decay + decayˆ2 ramp)).

derived to calculate how much change there would be in M305 if scale were increased

enough to increase peak milk by one unit. This depends on values for the other three

parameters, especially decay. For Herd C, for example, a unit of peak translates to 230

units of M305 for heifers, and 188 for cows while in Herd Q these are 267 and 221 units

respectively.

CONCLUSIONS
The semi-mechanistic derivation of the MilkBot® model assigns clear meanings to the

parameter scale, as a measure of magnitude and ramp, offset, and decay parameters as

measures of lactation curve shape. The decay parameter also suggests a definition of

persistency expressed as a half-life called persistence that is an attribute of the lactation

as a whole rather than any particular portion. Parameters may easily be used to calculate

M305, peak milk, peak day, expected production at any day in the curve, or cumulative

production for a portion of a lactation.

The null hypothesis is rejected. Lactation curve shape does vary between herd-parity

groups, in multiple ways. Those differences can be quantified statistically by fitting

individual lactations to the MilkBot® model and summarizing fitted parameter values.

At least some of these differences may be supposed due to management differences between

groups, but little is known about possible causes.

The semi-mechanistic derivation of the MilkBot® model may also suggest hypotheses

that particular interventions might influence particular parameters, or metrics calculated

from them such as M305, peak milk, or peak day. Fitting field or experimental data to

the model allows such hypotheses to be tested. This methodology appears to be capable

of quantifying effects that would be difficult or impossible to detect using only raw milk
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weights or M305. Similarly, parameters can be used to predict future milk in incomplete

lactations. Then residuals can be summarized as a measure of the effect of short-term

changes in management or environment.

Nonlinear models are in many ways more difficult to work with than linear models,

but may represent biology better than is possible when models are limited to linear or

polynomial functions. Techniques for fitting observed data to nonlinear models vary

greatly, and performance of a fitting engine often depends on characteristics of the data set

being fitted as well as the model. Despite the difficulties, nonlinear models can facilitate

insight into complex processes of biology, and the MilkBot® model has been shown both

to predict future milk production in individual lactations with good accuracy and to

be capable of quantifying what appear to be biologically and economically significant

differences in lactation curve shape between groups of animals.

Milk production is a very sensitive indicator of cow health, as well as being the most

important economic driver for dairy farms. The DairySight fitting engine (Ehrlich, 2012)

can successfully fit individual lactations from monthly test data, though significant RMSE

is to be expected, returning a set of parameter values that describe the lactation as a whole.

RMSE of fitted lactations can be used as a measure of consistency. By quantifying shape,

magnitude, and consistency of lactations in a repeatable manner it is hoped that much

future work will be enabled.
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