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ABSTRACT
Bias in underwater visual census has always been elusive. In fact, the choice of sampling
method and the behavioural traits of fish are two of the most important factors
affecting bias, but they are still treated separately, which leads to arbitrarily chosen
sampling methods. FishCensus, a two-dimensional agent-based model with realistic
fish movement, was used to simulate problematic behavioural traits in SCUBA diving
visual censusmethods and understand how samplingmethodology affects the precision
and bias of counts. Using a fixed true density of 0.3 fish/m2 and a fixed visibility of 6 m,
10 counts were simulated for several combinations of parameters for transects (length,
width, speed) and point counts (radius, rotation speed, time), generating trait-specific
heatmaps for bias and precision. In general, point counts had higher bias and were
less precise than transects. Fish attracted to divers led to the highest bias, while cryptic
fish had the most accurate counts. For point counts, increasing survey time increased
bias and variability, increasing radius reduced bias for most traits but increased bias
in the case of fish that avoid divers. Rotation speed did not have a significant effect in
general, but it increased bias for fish that avoid divers. Wider and longer transects and a
faster swim speed are beneficial when sampling mobile species, but a narrower, shorter
transect with a slow swim is beneficial for cryptic fish.

Subjects Animal Behavior, Aquaculture, Fisheries and Fish Science, Ecology, Marine Biology,
Computational Science
Keywords Sampling, Individual-based model, Fish behaviour, Reef fish, Underwater visual
census, Agent-based model, Fishcensus, Computer simulation

INTRODUCTION
Underwater visual census (UVC) methods are used worldwide to survey shallow aquatic
habitats and are particularly known for supporting conservation and fisheries management
decisions on temperate and coral reefs (Caldwell et al., 2016).

UVC methods can be generically classified into stationary point counts, transects and
timed swims. In a stationary point, a diver stays in the same spot and surveys a fixed radius
for a given time (Bohnsack & Bannerot, 1986). In the transect, the diver swims in a straight
line at a constant speed for a given distance (or time) and counts organisms within a pre-
determined transect width (Brock, 1954), or while estimating the distances to each organism
(Thomas et al., 2010). On the timed swim, a diver swims along a random path, or changes
direction at fixed intervals, counting organisms along the way (Jones & Thompson, 1978;
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Kimmel, 1985). Each of these techniques has advantages and disadvantages, and some
might be more suited for a particular purpose or species (Lincoln Smith, 1989; Kulbicki
et al., 2010). In addition, UVC methods have different configurations, such as different
transect lengths andwidths, observation ranges or survey times. This results in a vast amount
of combinations that may not be directly comparable, making this choice a very important
one for future re-use of survey data (Sale & Sharp, 1983; Cheal & Thompson, 1997; Kulbicki
et al., 2010). However, criteria for choosing a UVC method are often independent of the
research question, purpose or species of interest, and are deeply rooted in local tradition
or institutional adoptions for long-term studies (Caldwell et al., 2016). This contrasts with
the fact that UVC performance is deeply linked to species behavioural traits (Sale & Sharp,
1983; Kulbicki, 1998; MacNeil et al., 2008b; Bozec et al., 2011; Pais & Cabral, 2017). For a
sampling method, performance results from the combination of precision (dispersion of
estimates) and bias (inaccuracy of estimates). A method that has great precision should be
favoured for hypothesis testing, while a method that leads to lower bias should be used in
biomass estimates for fisheries management or conservation (Trebilco et al., 2011; Jones et
al., 2015).

There is a long history of efforts to understand how sampling performance is affected
by different species and methods in the field. Cryptic and biomimetic species tend to
have low detectability and thus lead to underestimation (Willis, 2001; Bozec et al., 2011),
while schooling species can be difficult to count accurately and can also lead to great
variability in estimates depending on whether or not a school is found on a particular
sample (Christensen & Winterbottom, 1981; MacNeil et al., 2008b; Kulbicki et al., 2010).
Shyness and boldness towards observers is also a behavioural trait known to affect counts.
The probability of recounting bold fish is increased, while shy fish are more likely to be
missed, as they are often found farther away from the observer and therefore less detectable
(Samoilys & Carlos, 2000; Bozec et al., 2011; Prato et al., 2017). This decay of detectability
with distance is the foundation of the distance sampling method applied in visual census
of many organisms (Thomas et al., 2010; Katsanevakis et al., 2012), but its application in
UVC of fish is still uncommon (Caldwell et al., 2016). Reasons for this include the difficulty
of estimating distances underwater, the proximity of the observer to the organisms being
counted and visibility constraints, which sometimes lead to the need to establish a hard limit
on the observation area that is so close to the centre that a constant detection function can
be assumed (Bozec et al., 2011). While focusing on detectability, studies often ignore that
UVC methods are usually non-instantaneous, which can lead to overestimated abundance
of moving fish, as new fish enter the sample area after the observation started. This source
of bias is known and acknowledged, but very difficult to measure in the field and has been
mostly identified on computer simulations (Watson, Carlos & Samoilys, 1995;Ward-Paige,
Flemming & Lotze, 2010; Glennie, Buckland & Thomas, 2015; Pais & Cabral, 2017). This
effect has been shown to exceed the effects of behavioural traits in simulated transects and
stationary points, except in the case of sedentary or cryptic species, which are slow moving
or stationary (Pais & Cabral, 2017).

It has been repeatedly suggested that different species, or at least different behavioural
traits, should be approached with different methods, and this has been applied in some
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cases (De Girolamo & Mazzoldi, 2001; Henriques et al., 2013a; Henriques et al., 2013b; Pais
et al., 2013; Pais et al., 2014; Prato et al., 2017). However, choosing amethod thatminimises
bias is not an easy task, particularly in the field, where the true density of a species is very
hard or impossible to quantify. Often field studies that compare methods tend to assume
one of them is at least more accurate (Sale & Sharp, 1983; Kimmel, 1985; St. John, Russ &
Gladstone, 1990; Edgar, Barrett & Morton, 2004; Bennett et al., 2009), but it is difficult to
ensure it is objectively accurate, since UVC methods are known to be biased and other
techniques used as ‘‘controls’’ (capture-resight, fishing gears, poisoning, baited video, etc.)
are also prone to errors (Caughley, 1974; Katsanevakis et al., 2012).

To identify a suitable method for a species, it is important to use a tool that can address
bias due to behaviour, but also due to non-instantaneous sampling, and this is where
simulation tools can be useful. In this study, the agent-based simulation model FishCensus
(Pais & Cabral, 2017) is used to analyse the effect of various UVC sampling parameters
(e.g., sampling unit dimensions, observer speed) on bias and precision, both for strip
transects and stationary point counts, and identify the best solutions for fish with different
behavioural traits.

MATERIALS AND METHODS
Model overview
The FishCensus model simulates how different fish behaviours affect density estimates
in common underwater visual census methods. A flexible vector-based fish movement
algorithm can be adjusted to match behavioural patterns of species or groups.

This study used version 2.0 of the FishCensus model, programmed in NetLogo 6
(Wilensky, 1999). A full description following the ODD (Overview, Design concepts,
Details) protocol for describing individual-based models (Grimm et al., 2010) is available
in Pais & Cabral (2017), as supplemental material to this paper (Article S1) and in the
COMSES repository (https://www.comses.net/codebases/5305/), where the latest version
of the model, all source code and documentation are available.

The model is spatial, two-dimensional and has two types of moving agents, divers and
fish. The model landscape is represented by a grid of squares with 1 m sides that have no
variables directly affecting agents. Depth is ignored (assumed constant) and maximum
underwater visibility was set to 6 metres and remained constant. This is a common, albeit
low-end visibility for UVC, but it is still adequate for surveys and limits sampling unit sizes
to a region where constant detectability with distance can be assumed (Bozec et al., 2011).
The landscape size was set to 20 × 80 squares (1,600 m2) to allow for enough buffer space
outside the sample area. Fish wrap around when they reach the edges to avoid artificial
gathering near walls. There are two levels on the time scale. Fish and diver movements use
a time step representing 1/10 of a second and all other procedures in the model are based
on a time step of one second.

Fish movement is based on the sum of vectors that define ‘‘urges’’ (avoid diver, align
with schoolmates, centre position in school, schoolmate spacing, wander, rest, cruise).
The magnitude of the urge vectors can be weighted to rank them in terms of importance,
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and these weights are stored as fish attributes. Another important fish attribute for the
movement model is a constant used to estimate friction drag that is calculated from fish
size and creates a deceleration vector. A weighted sum of all the urge vectors at every time
step determines the velocity vector on the next time step (Wilensky, 2005). A description
of all vectors is available in the full description (Article S1). A set of weights for all vectors
defines a behavioural state, and fish can have up to four states stored in a list, each with
an associated probability (e.g., a ‘‘searching’’ state would give more weight to the urge
to wander randomly). If the fish has more than one behavioural state on its repertoire,
a new one is picked every 10 model seconds based on a weighted random pick with
replacement, so a very frequent behaviour can be picked multiple times sequentially. A
detectability parameter can also be set, establishing the probability of being visible to the
diver. Whether a fish is hidden from the diver is decided after a behaviour change, for every
fish independently, as a Bernoulli trial based on detectability.

At the start of the simulation, fish are randomly placed on the environment, with a
random heading. Every fish picks the first behaviour on the repertoire and the movement
submodel is run for 200 cycles (20 model seconds) before the diver is placed to stabilise
initial fish locations and form schools when applicable. A diver performing a transect
moves forward at a pre-determined speed, while during stationary point counts the diver
rotates clockwise on a fixed point with a pre-defined angular speed, also every 1/10 of
a second. Every second, the diver counts fish within the area delimited by view angle,
sample limits and maximum visibility. The diver prioritises closest fish and counts with a
saturation limit of 3 fish per second. Counted fish are memorised and are not recounted
while they remain visible (can be recounted if they leave and re-enter the field of view).
Once the diver has finished the sample, the model run is over, and density is calculated
by dividing the count by the sample area (width × distance for transects, π × radius2 for
point counts). At each replicate count, species locations are shuffled, and the outcome of
their behaviours is different, ensuring not only stochasticity in model outputs, but also the
independence of replicates.

Parameterisation of behavioural traits
To understand the effect of sampling method parameters on inaccuracy, four generic types
of fish were created, representing behavioural traits that are known to affect accuracy
on visual census methods, namely a ‘‘schooling’’ type, a ‘‘cryptic’’ type, a fish that is
attracted to divers and a fish that evades divers (‘‘bold’’ and ‘‘shy’’ types, respectively).
For consistency we will use the same fish types from Pais & Cabral (2017), where a more
detailed description can be found, along with videos and a detailed analysis of the isolated
effect of behaviour on bias and precision.

Because urge vectors are an abstraction, and not something that can be directlymeasured,
parameterisation must be pattern-oriented (Grimm & Railsback, 2012), based on the
observable behavioural patterns that emerge from a combination of parameters. This is
made easy by the NetLogo interface tools used to build FishCensus, where urge vector
weights can be altered while the model is running. All four fish types were parameterised
based on real species or families that are familiar to the authors, so that observation
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Table 1 Fixed attributes for the four types of fish used in the experiments. See text for details.

Schooling Cryptic Shy Bold

Size (m) 0.2 0.1 0.3 0.3
ID distance (m) 4 1 6 6
Approach distance (m) 1.0 0.7 3.0 3.0
Perception distance (m) 0.35 – – –
Perception angle (degrees) 320 360 320 320
Max. acceleration (m/s2) 0.2 0.1 0.1 0.1
Max. sustained speed (m/s) 0.5 0.3 0.4 0.4
Burst speed (m/s) 2.6 1.1 2.2 2.2

experience could aid in model parameterisation. Perception angle for cryptic fish was
assumed to be 360◦, due to the position of the eyes on top of the head and the predominantly
sedentary behaviour. For all other fish types, a value of 320◦ was adopted, since it
encompasses both visual and lateral line perception, in accordance with observations
by Partridge & Pitcher (1980). ID distance, approach distance, schooling distance and
some behaviour frequencies and patterns were parameterised by qualitatively matching
behavioural patterns based on the authors’ experience from more than 250 UVC dives in
temperate reefs, complemented by underwater video.

The schooling type is based on sparids from the genus Diplodus. These species usually
form small schools and can be found shoaling on rock patches (Gonçalves et al., 2014). The
cryptic type is based on blenniids from the genus Parablennius. These are small benthic fish
that hide in crevices and males can have territorial behaviour in the reproductive season.
Behaviours and frequencies were based on a study by Almada, Garcia & Santos (1987) and
detectability values were based onMacNeil et al. (2008b). Both the shy and bold types share
parameters from labrids from the genus Labrus. These species are solitary and reaction to
divers varies with species and life stage.

In the absence of available data on fine-scale behavioural states and frequencies for the
schooling, bold and shy types, these had to be roughly estimated from field experience
which, in this case, is not a big concern if the general characteristics of the behavioural
traits are present (e.g., Diplodus spp. are found stationary or shoaling more frequently than
Labrus spp.).

The maximum cruise and burst speed values were calculated using the equations from
Sambilay Jr (1990) from the caudal fin aspect ratio of representative fish species extracted
from FishBase online database (Froese & Pauly, 2017). These were Parablennius pilicornis
(Cuvier, 1829) for the cryptic type, Diplodus vulgaris (Geoffroy Saint-Hilaire, 1817) for the
schooling type and Labrus bergylta Ascanius, 1767 for the shy and bold types.

Fixed attribute values for these types are specified in Table 1 and behavioural states
and parameters for each type are summarised in Table 2. Fish types are available as
online supplements in csv format and can be directly used as input files for the model
(Datas S1–S4).
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Table 2 Behavioural states, frequencies and attributes for the four fish types used in the experiments. (See text for details.)

Schooling Cryptic Shy Bold

Behavioural state Wandering Feeding Stationary Guarding Feeding Nested Patrolling Wandering Stationary Wandering Stationary

Frequency 0.5 0.2 0.3 0.25 0.2 0.1 0.45 0.6 0.4 0.6 0.4

Detectability 1 1 1 0.3 0.6 0.1 0.5 1 1 1 1

Schooling? TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

Schooling distance (BL) 1 1 1 – – – – – – – –

Patch distance (m) – 1 – 0.5 3 0.5 2 – – – –

Align 5 1 5 – – – – – – – –

Centre 6 2 6 – – – – – – – –

Spacing 15 5 15 – – – – – – – –

Wander 3 1 1 3 3 0 3 7 7 7 7

Rest 0 1 7 2 1 15 2 0 6 0 6

Cruise 0 0 0 0 0 0 0 10 0 10 0

Patch gathering 0 10 0 6 6 15 6 0 0 0 0

Urge weights

Diver avoidance 10 10 10 4 10 0 10 10 10 −1 0

Notes.
BL, body lengths.
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Table 3 Range of parameter values used to test methodology effects on bias and precision.

Transect Values Stationary Values

Length (m) 10, 20, 30, 40, 50 Radius (m) 2, 3, 4, 5
Width (m) 1, 2, 3, 4, 5 Time (min.) 3, 5, 7, 9, 11
Swim speed (m/min.) 2, 4, 6, 8, 10 Turning angle (o/s) 2, 4, 6, 8, 10

Experiment
To understand the direction and strength of the effect of sampling method parameters on
bias and precision, five values were picked for each of the 3 parameters in transects and
five values for time and rotation speed for stationary point counts, while radius only varied
in integers between 2 and 5, since a radius of 1 metre would be dominated by the effect of
diver presence, and a radius of 6 would match the visibility limit, which is unrealistic for
field studies (Table 3).

Given that true density is unknown, Pais & Cabral (2017) used different densities
based on the orders of magnitude found on previous field studies (e.g., Pais et al., 2014) ,
concluding that 0.3 fish/m2 ensured satisfactory computing performance while avoiding
low baseline precision due to rarity. Therefore, true density (Dt ) was fixed at 0.3 fish/m2

and 10 replicate runs were made for each combination of parameters to calculate the
average estimated density (De) from the simulated diver counts. Bias was calculated as the
absolute difference from true density and expressed as a proportion of true density:

δ= |De−Dt |/Dt .

Precision was calculated as the coefficient of variation of the estimated density from the
10 replicate counts and expressed as a percentage of true density.

The combined effects of all parameters on bias and precision were represented
graphically using heatmaps. The significance of effects on bias was tested using multiple
linear regression models including all main effects (three parameters per method) and
interactions, after appropriate transformations to achieve linearity, normality of residuals
and homoscedasticity on the full model. Mild deviations from assumptions were tolerated.
Residual variance was extracted from the 10 replicate counts, and therefore the effects on
precision were not tested for significance, as a single coefficient of variation results from
all replicates. All analyses were made using R version 3.4.3 and the core stats package.

RESULTS
For this study we addressed bias as an absolute deviation from true density, however, data
and summary figures that maintain negative bias values are available as supplemental files
(Data S5, Fig. S1), where it is shown that most of the values were positive (overestimations),
particularly for mobile fish.

Stationary point counts had a larger bias and less precision on average across all
behavioural traits and parameters. For both methods, the bold trait led to larger bias and
cryptic behaviour corresponded to the smallest bias values. Schooling behaviour led to low
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Table 4 Average and range of bias and precision values per behavioural trait across all sampling pa-
rameter combinations. Bias and coefficient of variation (CV) are in percentage of true density (0.3 fish/
m2).

Stationary Transect

Bias (%) CV (%) Bias (%) CV (%)

1,182.3 317.7 215.2 71.3Schooling
(130.8–2,892.1) (41.8–1,014.1) (41.0–871.3) (14.7–244.6)

83.0 62.5 49.2 14.2Cryptic
(25.6–307.3) (9.0–370.1) (14.3–79.7) (4.0–67.2)

758 89.7 387.3 52.6Shy
(23.6–2170.2) (33.5–202.9) (32.7–1,730.0) (14.7–198.2)

2,940.2 282.5 857.7 90.3Bold
(478.5–9,181.4) (60.0–1,082.8) (102.7–4,200.7) (17.5–305.1)

precision in estimates for both methods, although the bold trait had the highest average
coefficient of variation in transects (Table 4).

Figure 1 shows heatmaps of observed (not modelled) bias and precision for every
combination of method parameters on transects and stationary point counts. Regression
models had a good fit in general (multiple R2> 0.6), except for the cryptic trait where R2

was approximately 0.4 for transects and 0.2 for point counts. However, since the effects
observed in Fig. 1 for cryptic fish are generallymonotonic, the significance tests are analysed.
For detailed results of the linear regressionmodels see Table S1, and for raw response curves
of bias and precision see Fig. S1. On stationary points (Fig. 1A), increasing survey time
significantly increased bias for all behavioural traits, while increasing observation radius
attenuates this effect for schooling, cryptic and bold fish. Shy fish count bias was not
significantly affected by radius. High rotation speeds seem to slightly increase bias when a
small radius is used, but overall the effect was not significant for schooling, cryptic and bold
fish. On the other hand, bias increased with rotation speed for shy fish and was aggravated
by long survey times and a large radius. While the patterns observed for precision are less
pronounced (Fig. 1C), it seems like many of the parameters that tend to increase bias will
also lead to higher variability. A long survey time will in general lead to more imprecise
estimates, particularly for a small radius. Increasing radius tends to reduce variability,
except for shy fish. Rotation speed does not seem to significantly affect precision unless
radius is small.

On transect surveys (Fig. 1B), a faster swim speed reduces bias for schooling, shy and
bold fish. Cryptic fish surveys benefit from slower swim speeds, particularly on narrower
transects. On the other hand, a narrower transect generates more bias for schooling, shy
and bold fish. Transect length does not seem to impact bias for schooling species, but it has
a very slight but significant effect in increasing bias for bold and shy species, particularly
with slow speeds and narrow transects. In the case of cryptic fish, the opposite pattern
occurs, with length reducing bias for slow and narrow transects. It is, however, evident
in Fig. 1D that narrower, shorter transects will generally lead to less precise estimates
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Figure 1 Heatmaps of observed bias (% difference from true density) and precision (coefficient of
variation) for all combinations of parameters and behavioural traits.Darker shades represent more bias
and variation. Each square represents average bias extracted from 10 replicate runs and the coefficient
of variation of the same 10 runs is used to represent precision. Shading is scaled to the range of each be-
havioural trait (Table 4).

Full-size DOI: 10.7717/peerj.5378/fig-1

irrespective of behavioural traits. Nevertheless, fast swim speeds usually increase precision
and can attenuate this effect, particularly on mobile species.

DISCUSSION
This study has provided an insightful overview of the combined effects of different
methodological approaches in UVC, and how they differ for typically problematic
behavioural traits. In fact, this exercise seems to confirm that the system is more complex
than what is expected from an encounter probability model of randomly distributed
moving objects, such as the Gerritsen-Strickler model (Gerritsen & Strickler, 1977). This
was also observed byWatson, Carlos & Samoilys (1995)with the Reefexmodel, even though
they mostly focused on the effect of speed and direction of fish. The present study helps
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establish a link between sampling method and accuracy using more realistic behavioural
traits, and it is clear from our results that accuracy and encounter probability are not
necessarily surrogates. In fact, Gerritsen and Strickler demonstrated that a predator could
either increase the search radius or the speed to increase encounter probability; however,
encountering more fish does not always mean being more accurate, and this is where
behaviour seems to have different effects. In case of a shy species, increasing speed seems
to be beneficial, but increasing radius in point counts increases bias. With cryptic fish, a
faster transect will lead to more bias, while a wider radius is beneficial in point counts. This
ultimately means that a stationary point is not always a special case of a transect with zero
speed.

Dealing with the effect of behavioural traits is complex because they tend to affect
different components of bias in UVC. The choice of traits for this study covers probably
the most problematic cases for underwater surveys: fast movement can generate bias due
to non-instantaneous sampling (Watson, Carlos & Samoilys, 1995; Ward-Paige, Flemming
& Lotze, 2010; Pierucci & Cózar, 2015), cryptic behaviours or mimicry can lead to biased
counts due to low detectability (Willis, 2001; MacNeil et al., 2008a; MacNeil et al., 2008b),
and shyness or boldness can lead to bias due to observer influence (Kulbicki, 1998; Dickens
et al., 2011). All these sources combined are very difficult to tackle and correct, and field
methods usually tackle one or two components, most of the times having to compare
estimated abundances with estimated ‘‘true’’ abundances (Sale & Sharp, 1983; St. John,
Russ & Gladstone, 1990;Willis, Millar & Babcock, 2000; Bennett et al., 2009).

The fact that bias was mostly positive seems to go against the common assumption that
UVC methods always underestimate (Willis, 2001; Colvocoresses & Acosta, 2007; Minte-
Vera, De Moura & Francini-Filho, 2008). In fact, it seems obvious to assume that if some
fish avoid divers and others are hidden or missed, we must be underestimating counts.
However, since fish are coming into the sample area that were not there at the start, it
is easy to get overestimations simply because of the non-instantaneous nature of UVC
methods. This has been repeatedly shown by simulations and it is known to be linked
not only to the direction of fish crossing the sample area (Watson, Carlos & Samoilys,
1995), but mostly to fish speed relative to the observer (Ward-Paige, Flemming & Lotze,
2010; Pierucci & Cózar, 2015; Pais & Cabral, 2017). In fact, Ward-Paige, Flemming & Lotze
(2010) estimated positive biases of 672 to 1,100% in transect surveys for fish swimming
at 0.4 to 0.6 m/s with an observer speed of 1 m/min., which falls within the orders of
magnitude found in this study. This is the reason why we found that a faster speed in
transects reduces bias for all mobile fish, by shifting observer speed towards fish speed.
In the case of nearly-stationary cryptic fish, however, a fast swim will simply reduce the
probability of detection and result in a slight underestimation (De Girolamo & Mazzoldi,
2001). This confirms the field observations by Lincoln Smith (1988), who seems to have
correctly hypothesised that higher values due to fish speed could be overestimations. For
this reason, it is very important to accurately parameterise fish speed on any simulation
approach. In the case of FishCensus, fish speeds are a highly sensitive parameter (Pais &
Cabral, 2017), and therefore they should be taken from real measurements, or at least be
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calculated from the caudal fin aspect ratio of the species using the equations from Sambilay
Jr (1990), which can be done automatically in the model.

For the tested traits and across all combinations of sampling parameters, point counts had
larger bias and more variability in estimates than transects. This confirms the observation
made with FishCensus by Pais & Cabral (2017) using fixed dimensions with equal visibility
and sample area for the same traits, but apparently contradicts the observations byWatson
& Quinn II (1997) with the Reefex model, where point counts tended to have lower bias
than transects with moving fish. However, the method simulated on the Reefex model
was a top-down observation of a circle (instead of rotation in a cylinder), and fish were
simulated with head-on movement, which is known to significantly increase bias on
transects (Watson, Carlos & Samoilys, 1995).

In field studies comparing both methods, the general pattern is that point counts lead
to higher estimated densities. However, different interpretations exist for this observation,
from considering that higher is more accurate (Colvocoresses & Acosta, 2007) to recognising
the possibility of overestimation (Kulbicki et al., 2010). Minte-Vera, De Moura & Francini-
Filho (2008) found no differences with the shape of the sampling unit, but opted for point
counts due to higher cost-effectiveness, also assuming that higher densities were better.
In some cases, it is difficult to find differences between methods simply because of high
residual variability that results in low statistical power (Samoilys & Carlos, 2000). In our
simulations, a sample size of 10 was adopted as a compromise between feasibility in a field
context and attained precision, an important aspect to consider given the cost of each
sampling unit.

The observation that bold traits lead to higher bias is generally understood in the
literature and is mainly due to an artificial gathering of a higher density of fish near
the observer that leads to overestimation. This is known to contribute to overvalued
reserve effects where the same species is more approachable and curious inside marine
protected areas (Kulbicki, 1998; Willis, Millar & Babcock, 2000). An interesting pattern,
which confirms previous simulations by Pais & Cabral (2017) and Ward-Paige, Flemming
& Lotze (2010), is that stationary territorial fish, even with probabilities of detection as low
as 10%, led to the lowest amount of bias when compared to mobile species, since they
did not suffer from the effect of non-instantaneity. However, most field studies attempt
to quantify UVC bias for cryptic fish, and one of the main reasons is that it is achievable.
Their site-attachment and approachability make them ideal to estimate bias in the field, be
it through poisoning (Willis, 2001), baited census (Stewart & Beukers, 2000), or by using
a known number of golf balls as a proxy (Sayer & Poonian, 2007). These studies are very
useful, but are focused on a single component of bias.

With a fixed sample size, increasing the area of the sampling unit will generally increase
precision (Minte-Vera, De Moura & Francini-Filho, 2008), which was also confirmed by
our results. However, precision is also significantly affected by behavioural traits (Pais &
Cabral, 2017). Across all methodologies, schooling behaviour led to the lowest precision, as
the difference between counting or missing a school is usually of at least tens of individuals.
In transects, however, swimming across a larger area with a chance of attracting bold fish
along the way leads to a greater effect of this trait in reducing precision, as more encounters
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will lead to much higher counts (Colvocoresses & Acosta, 2007). This is particularly relevant
when establishing sample sizes for monitoring programs. Pais et al. (2014) and Jones et al.
(2015) observed how sites with flat or patchy habitat led to low precision in fish counts and
thus required a higher sample size to achieve the same power to detect changes. The fact
that schooling is a known strategy of many species occupying these habitats is another point
in favour of being precautious with sample sizes if resources allow. This means conducting
a priori power analysis with schooling and/or bold species in flat or patchy sites and then
establishing the sample size for all sites based on this reference.

This study illustrated the difficulty of objectively establishing methodologies based on
field data alone, as sample dimensions and observation times interacted with each other
and with species behaviour. In point counts, increasing survey time increased not only bias
but also variability. This results from having a stationary observer counting mobile fish that
enter the sampling unit. As time passes, the estimated abundance will only tend to increase,
eventually leading to overestimation (St. John, Russ & Gladstone, 1990; Watson & Quinn
II, 1997). This is similar to the ‘‘first phase’’ and ‘‘edge effect’’ identified by Kulbicki et al.
(2010) at the beginning and end of transects, where the surveyor stays on the same spot for
a longer period and counts fish that gathered around during the setup phase, or new fish
that keep coming into view and being counted when the diver has already reached the end
of the transect. This effect is not incorporated into the current version of the FishCensus
model, since the diver starts and finishes the transect immediately, but it would certainly
result in larger overestimations of mobile fish with transects, particularly with bold traits.

Bias in point counts was reduced for most species by using a larger radius, and the same
was observed when increasing width in transects. In fact, several field studies have observed
that density estimates are lower when the sample unit area increases (Sale & Sharp, 1983;
Colvocoresses & Acosta, 2007; Minte-Vera, De Moura & Francini-Filho, 2008; Prato et al.,
2017). This tends to occur not only because there may be a reduction of detectability with
distance for some species (Bozec et al., 2011; Katsanevakis et al., 2012), but also because the
increase in area may not be proportionately met by an increase in fish numbers within that
area, and a slightly higher count is divided by a much larger area (Colvocoresses & Acosta,
2007). Our results show that lower density estimates reduce bias for most species, since
smaller units were already overestimating counts. However, this is not the case for cryptic
fish in transects, where counting less fish results in an even larger underestimation, thus
increasing absolute bias (Lincoln Smith, 1989; Willis, 2001). For shy fish in point counts,
the pattern is inverted. Since the diver is stationary and shy fish are keeping their distance
(approximately 3 m in our case), increasing the radius will result in a higher count, which
increases overestimation as the diver rotates and more fish enter the area.

In strip transects, besides the effect of observer speed, which we already discussed,
transect dimensions can also affect bias and precision. In general, the effect of transect
length on bias was not very strong, except in the case of slow swimming surveyors. In
this case, a long transect increased bias of mobile species by worsening the effects of
non-instantaneity (Lincoln Smith, 1988; St. John, Russ & Gladstone, 1990; De Girolamo &
Mazzoldi, 2001). On the other hand, cryptic fish counts were slightly more accurate with
long, slow transects, as the probability of a fish becoming visible while the observer is still
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looking increases. Very short transects, on the other hand, led to low precision. This is the
result of a sample unit area that is too small to capture the heterogeneity of fish distribution
(Minte-Vera, De Moura & Francini-Filho, 2008).

It is widely accepted that there is no universal method for all possible conditions and
species. However, even authors applying in-depth optimisation approaches with empirical
data recognise limitations due to the complexity of the system (Jones et al., 2015). In the
end, a single value for the estimated density of a species is the result of the relative position of
several fishes and one surveyor in space and time, bounded by a combination of parameters
that define a sample unit. Where other analytical or field methods struggle to capture this
complexity, agent-based spatial simulations thrive, making them potential candidates as
decision-support tools.

Simulations, however, are not a replacement of the real system, and this approach should
be complementary to field experiments. This does not necessarily mean fitting or validating
the model with field data, given that it was created because of a real value that is unknown,
but rather using the model to help interpret real observed patterns, as we did repeatedly
in this discussion. While modelling facilitates understanding by simplifying the system, it
requires certain assumptions. In the case of FishCensus, the lack of individual variability in
terms of size and behavioural repertoire, absence of habitat complexity, two-dimensional
representation and a rather unforgiving implementation of diver memory can be pointed
out as the main simplifying assumptions (Pais & Cabral, 2017).

It should also be noted that we used a single species approach. While single species
assessments are common in fisheries management surveys (Gardner & Struthers, 2013),
often whole community assessments are important, which include even more sources
of bias (Lincoln Smith, 1989; De Girolamo & Mazzoldi, 2001; Babcock, Egli & Attwood,
2012; Henriques et al., 2013a; Henriques et al., 2013b; Pais et al., 2014). Besides the surveyor
having to focus on a larger number of fish, which will likely favour the most conspicuous
(Willis, 2001), there is also species, age and gender-specific distribution and behavioural
traits (MacNeil et al., 2008a; MacNeil et al., 2008b; Kulbicki et al., 2010). The FishCensus
model supports multiple ‘‘fish types’’ simultaneously, but a single species assessment was
deemed more adequate and advantageous, not only because this reduces computing time,
but also because it isolates the particularities of each behavioural trait, so they can then be
sampled together if similarly affected by the choice of method.

CONCLUSIONS
To minimise bias in underwater visual surveys, our results suggest that a relatively large
radius and short time should be favoured in point counts, keeping in mind that rotation
speed will not have a marked effect in these conditions. A large radius will increase bias for
shy fish, but if survey time is short, it should not be significant. In the case of strip transects,
swimming fast along a wide transect favours smaller bias for mobile species. For cryptic
species, a slow swim along a narrow transect should be favoured. It should be noted that
very narrow and very short transects will lead to less precision due to the small size of the
sampling unit.
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Our results support an objective approach to sampling design in UVC, not only in
terms of the amount of replication required (Pais et al., 2014; Jones et al., 2015), but also
starting on the sampling methodology itself. Abandoning traditional methods can disrupt
long time series, but probably in most cases we can afford a change that will benefit
future surveys (Caldwell et al., 2016). The recognition of this problem is evident as new
approaches are proposed to address the shortcomings of established methods (Minte-Vera,
De Moura & Francini-Filho, 2008; Kruschel & Schultz, 2010; Prato et al., 2017). Using at
least two different methods for multispecies assessments (Lincoln Smith, 1989;De Girolamo
& Mazzoldi, 2001) is supported by our findings. In this case a survey should start with a
faster scan of a larger area for mobile species, and then move on to a more focused, slower
approach on a smaller area for sedentary, smaller species. This makes the reasonable
assumption that the diver presence on the first observation period does not significantly
affect subsequent counts of site-attached species (Sayer & Poonian, 2007).

It must be stressed that the results obtained apply to the particularities of the species
that inspired each behavioural trait. Ideally, one should attempt to replicate the behaviour
of the exact species of interest as realistically as possible within the model, and then use it
to optimise, plan and interpret field surveys.
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