More of the same: Allopatric humpback whale populations share acoustic repertoire (#28037)

First submission

Editor guidance

Please submit by 18 May 2018 for the benefit of the authors (and your \$200 publishing discount).

Structure and Criteria

Please read the 'Structure and Criteria' page for general guidance.

Custom checks

Make sure you include the custom checks shown below, in your review.

Raw data check

Review the raw data. Download from the materials page.

Image check

Check that figures and images have not been inappropriately manipulated.

Privacy reminder: If uploading an annotated PDF, remove identifiable information to remain anonymous.

Files

Download and review all files from the <u>materials page</u>.

- 4 Figure file(s)
- 4 Table file(s)
- 1 Raw data file(s)
- 1 Other file(s)

Q Custom checks

Vertebrate animal usage checks

- Have you checked the authors <u>ethical approval statement?</u>
- Were the experiments necessary and ethical?
- Have you checked our <u>animal research policies</u>?

Structure your review

The review form is divided into 5 sections.

Please consider these when composing your review:

- 1. BASIC REPORTING
- 2. EXPERIMENTAL DESIGN
- 3. VALIDITY OF THE FINDINGS
- 4. General comments
- 5. Confidential notes to the editor
- You can also annotate this PDF and upload it as part of your review

When ready submit online.

Editorial Criteria

Use these criteria points to structure your review. The full detailed editorial criteria is on your guidance page.

BASIC REPORTING

- Clear, unambiguous, professional English language used throughout.
- Intro & background to show context.
 Literature well referenced & relevant.
- Structure conforms to <u>PeerJ standards</u>, discipline norm, or improved for clarity.
- Figures are relevant, high quality, well labelled & described.
- Raw data supplied (see <u>PeerJ policy</u>).

EXPERIMENTAL DESIGN

- Original primary research within Scope of the journal.
- Research question well defined, relevant & meaningful. It is stated how the research fills an identified knowledge gap.
- Rigorous investigation performed to a high technical & ethical standard.
- Methods described with sufficient detail & information to replicate.

VALIDITY OF THE FINDINGS

- Impact and novelty not assessed.
 Negative/inconclusive results accepted.
 Meaningful replication encouraged where rationale & benefit to literature is clearly stated.
- Data is robust, statistically sound, & controlled.
- Conclusions are well stated, linked to original research question & limited to supporting results.
- Speculation is welcome, but should be identified as such.

Standout reviewing tips

The best reviewers use these techniques

	p

Support criticisms with evidence from the text or from other sources

Give specific suggestions on how to improve the manuscript

Comment on language and grammar issues

Organize by importance of the issues, and number your points

Please provide constructive criticism, and avoid personal opinions

Comment on strengths (as well as weaknesses) of the manuscript

Example

Smith et al (J of Methodology, 2005, V3, pp 123) have shown that the analysis you use in Lines 241-250 is not the most appropriate for this situation. Please explain why you used this method.

Your introduction needs more detail. I suggest that you improve the description at lines 57-86 to provide more justification for your study (specifically, you should expand upon the knowledge gap being filled).

The English language should be improved to ensure that an international audience can clearly understand your text. Some examples where the language could be improved include lines 23, 77, 121, 128 - the current phrasing makes comprehension difficult.

- 1. Your most important issue
- 2. The next most important item
- 3. ...
- 4. The least important points

I thank you for providing the raw data, however your supplemental files need more descriptive metadata identifiers to be useful to future readers. Although your results are compelling, the data analysis should be improved in the following ways: AA, BB, CC

I commend the authors for their extensive data set, compiled over many years of detailed fieldwork. In addition, the manuscript is clearly written in professional, unambiguous language. If there is a weakness, it is in the statistical analysis (as I have noted above) which should be improved upon before Acceptance.

More of the same: Allopatric humpback whale populations share acoustic repertoire

Corresponding Author: Michelle EH Fournet Email address: michelle.fournet@oregonstate.edu

Background. Humpback whales (*Megaptera novaeangliae*) are a widespread, vocal baleen whale best known for producing song: a complex, repetitive, geographically discrete acoustic signal sung by males, predominantly in a breeding context. Humpback whales worldwide also produce non-song vocalizations ("calls") throughout their migratory range, some of which are stable across generations.

Methods. We looked for evidence that temporally stable call types are shared by two allopatric humpback whale populations while on their northern hemisphere foraging grounds in order to test the hypothesis that some calls, in strong contrast to song, are fixed within the humpback whale acoustic repertoire.

Results. Despite being geographically and genetically discrete populations, humpback whales in Southeast Alaska (North Pacific Ocean) share at least five call types with humpback whales in Massachusetts Bay (North Atlantic Ocean).

Discussion. This study is the first to identify call types shared by allopatric populations, and provides evidence that some call types may be innate to the humpback whale repertoire.

¹ Department of Fisheries and Wildlife, Oregon State University, Corvallis, Oregon, United States

² Cooperative Institute for Marine Resources Studies, Oregon State University, Newport, Oregon, United States

³ Bioacoustics Research Program, Cornell Lab of Ornithology, Cornell University, Ithaca, New York, United States

⁴ Humpback Whale Monitoring Program, Glacier Bay National Park and Preserve, Gustavus, Alaska, United States

⁵ Pacific Marine Environmental Laboratory, NOAA, Newport, Oregon, United States

1	More of the same: allopatric humpback whale populations share acoustic repertoire
2	Michelle E. H. Fournet 1,2, Lauren Jacobsen ³ , Christine M. Gabriele ⁴ , David K. Mellinger ^{2,5}
3	Holger Klinck ³
4 5	
	¹ Department of Fisheries and Wildlife, Oregon State University, Corvallis, OR 97331
6	² Cooperative Institute for Marine Resources Studies, Oregon State University, Newport OR 97365
7	³ Bioacoustics Research Program, Cornell Lab of Ornithology, Cornell University, Ithaca, NY, 14850
8	⁴ Humpback Whale Monitoring Program, Glacier Bay National Park and Preserve, Gustavus, AK 99826
9	⁵ NOAA Pacific Marine Environmental Laboratory, Newport, OR, 97365
10	
11	
12	Corresponding author:
13	Michelle E. H. Fournet ^{1,2}
14	
15	
16	Email Address:
17	michelle fournet@gmail.com

18	Abstract
19	Background. Humpback whales (Megaptera novaeangliae) are a widespread, vocal baleen
20	whale best known for producing song: a complex, repetitive, geographically discrete acoustic
21	signal sung by males, predominantly in a breeding context. Humpback whales worldwide also
22	produce non-song vocalizations ("calls") throughout their migratory range, some of which are
23	stable across generations. Methods. We looked for evidence that temporally stable call types are
24	shared by two allopatric humpback whale populations while on their northern hemisphere
25	foraging grounds in order to test the hypothesis that some calls, in strong contrast to song, are
26	fixed within the humpback whale acoustic repertoire. Results. Despite being geographically and
27	genetically discrete populations, humpback whales in Southeast Alaska (North Pacific Ocean)
28	share at least five call types with humpback whales in Massachusetts Bay (North Atlantic
29	Ocean). Discussion. This study is the first to identify call types shared by allopatric populations,
30	and provides evidence that some call types may be innate to the humpback whale repertoire.
31	
32	Introduction
33	The study of acoustic signaling is a valuable tool for investigating animal behavior across a
34	broad range of taxa (Brockelman & Schilling 1984, Gannon 2008, Pijanowski et al. 2011, Clink
35	et al. 2018). Sounds produced by animals can be systematically measured and compared, as can
36	patterns of vocal behavior made in association with critical activities such as breeding, foraging,
37	or socializing. Acoustic monitoring allows for broad-scale observations of animals across space
38	and time and between populations (Mann & Lobel 1998, Cerchio et al. 2001, Risch et al. 2007,
39	Potvin et al. 2011). When coupled with what is known about genetics, population structure, and
40	behavior, acoustic analyses become powerful tools for investigating drivers of communication.
41	
42	Drivers of acoustic repertoires vary between taxa and species. While anatomy is a restricting
43	force driving sound production, genetic, neurological, and environmental drivers also influence
44	acoustic repertoires and vocal plasticity. For acoustic communication to be effective a sound
45	must be detectable within its acoustic habitat and sufficiently convey information to a receiver.
46	As such, acoustic communicators have evolved adaptations to couple the acoustic properties of
47	sounds to the environment in which they are produced in order to meet their signaling needs and
48	maximize fitness (Slater 1983, Boncoraglio & Saino 2006). As a result, within the repertoire of

49 most, if not all, sound-producing vertebrates are a collection of innate (i.e. unlearned) calls that 50 are exercised independently of vocal learning and persist across generations (e.g., Domestic 51 Fowl Gallus gallus and other species in the order Galliformes (Konishi 1963, Matsunaga & 52 Okanoya 2009), white-handed gibbons *Hylobates lar* (Brockelman & Schilling 1984), New 53 Zealand fur seals Arctocephalus forsteri (Page et al. 2001)). A smaller subset of taxa – most 54 notably passerine songbirds – exhibit a combination of learned and unlearned vocal signals, 55 which persist over time within a population (Baker & Jenkins 1987, Vicario 2004, Matsunaga & 56 Okanoya 2009, Zann 2010). Some mammals including mouse, niped, and cetacean species 57 are also capable of vocal learning as indicated by vocal imitation or improvisation (Tyack & 58 Savigh 1997, Poole et al. 2005, Petkov & Jarvis 2012, Arriaga & Jarvis 2013). What is less 59 common among mammalian vocal learners, however, is the coupling of stable sound types, 60 which may be innate, with a dynamically changing repertoire of sound types whose variation 61 appears to be culturally driven. Cetaceans, and specifically humpback whales (Megaptera 62 novaeangliae), may be the best example of a taxon which exhibits this coupling of highly stable 63 calls types and dynamically shifting vocal behaviors (Payne & Payne 1985, Tyack & Sayigh 1997, Rekdahl et al. 2013, Fournet et al. 2015a, Fournet 2018). 64 65 66 Humpback whales are a migratory baleen whale with a cosmopolitan distribution. Generally, 67 humpback whales migrate between low-latitude breeding and calving grounds and high-latitude 68 foraging grounds (Clapham et al. 1999). Their vocal behaviors are geographically and seasonally 69 stratified. Primarily on breeding grounds and migratory corridors, but also to a lesser extent on 70 foraging grounds, male humpback whales produce a long elaborate, and repetitive vocal display 71 known as 'song', (Payne & McVay, 1971; Gabriele & Frankel, 2002; Stimpert et al., 2012; 72 Dunlop & Noad, 2016; Herman, 2017). Songs are highly structured and acoustically complex, 73 and are culturally transmitted between males within a single breeding region (Cerchio et al. 74 2001, Mercado et al. 2005, Herman et al. 2013, Herman 2017). Song structure changes rapidly 75 over time (1-2 years) (Payne & Payne 1985, Noad et al. 2000, Parsonset al. 2008), and Further, 76 geographic variation in song between regions is typical (Winn et al. 1981, Cerchio et al. 2001, 77 Parsons et al. 2008), with song sharing only occurring between regions that share individuals 78 (Cerchio et al. 2001, Mercado et al. 2005, Garland et al. 2015, Herman 2017). 79

80	Humpback whales of both sexes and across the migratory range also produce a series of
81	vocalizations ("calls") independently of song (Silber 1986, Dunlop et al. 2008, Stimpert et al.
82	2011). Calls occur in isolation or in short bouts and occasionally appear as song units (Rekdahl
83	et al. 2013, 2015). Call use varies based on social and behavioral context; some calls facilitate
84	intra-group interactions, while other calls are specific to foraging contexts (Stimpert et al. 2007,
85	Dunlop et al. 2008, Wild & Gabriele 2014, Fournet et al. 2018). Unlike song, many calls are
86	stable over time. The most commonly produced call types in the east Australian migratory
87	corridor, making up 64% of the call detected in one study, are stable over 7-11 year time periods
88	(Rekdahl et al. 2013), while in Southeast Alaska, at least 16 call types, including all described
89	call types to date, persist in the call repertoire for decades and across generations (Fournet et al.
90	2015a, Fournet 2018).
91	
92	Call longevity across generations is an indication that some call types may be fixed within the
93	humpback whale repertoire. Identifying the same stable call types in other, unrelated populations
94	would provide further evidence that humpback whales may be anatomically or behaviorally
95	predisposed toward the production of certain sounds. Qualitative comparisons have been made of
96	calls produced in the North Pacific (Southeast Alaska), South Pacific (East Australia), North
97	Atlantic (Massachusetts Bay) and South Atlantic (Coastal Angola, Africa) with the general
98	agreement that global humpback whale populations produce some similar call types (Dunlop et
99	al. 2007, Stimpert et al. 2011, Fournet, et al. 2015, Rekdahl et al. 2016), but no formal
100	comparison of call types between populations has been thus far attempted.
101	
102	To test the hypothesis that some calls types are inherent to humpback whales, we looked for
103	evidence of shared call types in the calling repertoire of two allopatric humpback whale
104	populations on their northern latitude foraging grounds, one in the North Atlantic and one in the
105	North Pacific. Based on genetic analyses it is estimated that global humpback whale populations
106	last shared a maternal ancestor in the Miocene, approximately 5 Mya, and that discrete lineages
107	split 2-3 Mya (Baker et al. 1993). In the northern hemisphere, humpback whales in the Atlantic
108	and Pacific Ocean are geographically separated by the North American continent and are
109	genetically isolated from one another (Valsecchi et al. 1997, McComb et al. 2003). Cultural
110	exchange of acoustic signals between the two populations is extremely unlikely based on this

111	geographic barrier and known migratory patterns. Thus, a shared acoustic repertoire would
112	indicate that individual signals may be fixed within the species and conserved with time, rather
113	than socially learned. We hypothesized that call types that are stable across multiple generations
114	on a North Pacific foraging ground would also be present in the humpback whale calling
115	repertoire on a North Atlantic foraging ground.
116	
117	Methods
118	Data collection
119	We compiled acoustic datasets from two humpback whale foraging grounds in the North Pacific
	and North Atlantic. Acoustic data were collected using passive acoustic recording devices during
121	summer months (June-August) in Southeast Alaska (SEAK; North Pacific) in 1976, 2007, and
122	2008, and Massachusetts Bay (MB; North Atlantic) in 2008 (Figure 1, Table 1). Acoustic
123	recordings from Frederick Sound, SEAK were opportunistically collected with a dip hydrophone
124	from a drifting vessel and were of variable duration (32-94 minutes). Acoustic recordings from
125	Glacier Bay National Park and Preserve (GBNPP) made in 2007 and 2008 were collected from a
126	cabled hydrophone in Bartlett Cove (Figure 4) with a 30-seconds-per-hour recording cycle (Wild
127	& Gabriele 2014). Data from GBNPP were reviewed by U.S. Navy acousticians to characterize
14/	& Gabilete 2014). Data from GDIVIT were reviewed by O.S. Ivavy acousticians to characterize
128	the content of each sound sample. Data from MB were collected as part of a long-term
128	the content of each sound sample. Data from MB were collected as part of a long-term
128 129	the content of each sound sample. Data from MB were collected as part of a long-term monitoring project in that region (see also Hatch et al. 2012). Recordings were made using an
128 129 130	the content of each sound sample. Data from MB were collected as part of a long-term monitoring project in that region (see also Hatch et al. 2012). Recordings were made using an array of marine autonomous recording units (MARUs (Calupca, et al.,2000), Table 1).
128 129 130 131	the content of each sound sample. Data from MB were collected as part of a long-term monitoring project in that region (see also Hatch et al. 2012). Recordings were made using an array of marine autonomous recording units (MARUs (Calupca, et al.,2000), Table 1). Technicians from the Cornell Lab of Ornithology reviewed array recordings and noted the
128 129 130 131 132	the content of each sound sample. Data from MB were collected as part of a long-term monitoring project in that region (see also Hatch et al. 2012). Recordings were made using an array of marine autonomous recording units (MARUs (Calupca, et al.,2000), Table 1). Technicians from the Cornell Lab of Ornithology reviewed array recordings and noted the presence or absence of humpback whale calls on each element. We randomly subset 60 hours of
128 129 130 131 132 133	the content of each sound sample. Data from MB were collected as part of a long-term monitoring project in that region (see also Hatch et al. 2012). Recordings were made using an array of marine autonomous recording units (MARUs (Calupca, et al.,2000), Table 1). Technicians from the Cornell Lab of Ornithology reviewed array recordings and noted the presence or absence of humpback whale calls on each element. We randomly subset 60 hours of two channel acoustic data from the array for analysis (Figure 1). Sound samples from both
128 129 130 131 132 133	the content of each sound sample. Data from MB were collected as part of a long-term monitoring project in that region (see also Hatch et al. 2012). Recordings were made using an array of marine autonomous recording units (MARUs (Calupca, et al.,2000), Table 1). Technicians from the Cornell Lab of Ornithology reviewed array recordings and noted the presence or absence of humpback whale calls on each element. We randomly subset 60 hours of two channel acoustic data from the array for analysis (Figure 1). Sound samples from both
128 129 130 131 132 133 134 135	the content of each sound sample. Data from MB were collected as part of a long-term monitoring project in that region (see also Hatch et al. 2012). Recordings were made using an array of marine autonomous recording units (MARUs (Calupca, et al.,2000), Table 1). Technicians from the Cornell Lab of Ornithology reviewed array recordings and noted the presence or absence of humpback whale calls on each element. We randomly subset 60 hours of two channel acoustic data from the array for analysis (Figure 1). Sound samples from both regions were analyzed only if they were known to contain humpback whale calls.
128 129 130 131 132 133 134 135	the content of each sound sample. Data from MB were collected as part of a long-term monitoring project in that region (see also Hatch et al. 2012). Recordings were made using an array of marine autonomous recording units (MARUs (Calupca, et al.,2000), Table 1). Technicians from the Cornell Lab of Ornithology reviewed array recordings and noted the presence or absence of humpback whale calls on each element. We randomly subset 60 hours of two channel acoustic data from the array for analysis (Figure 1). Sound samples from both regions were analyzed only if they were known to contain humpback whale calls. Data Processing and Analysis
128 129 130 131 132 133 134 135 136 137	the content of each sound sample. Data from MB were collected as part of a long-term monitoring project in that region (see also Hatch et al. 2012). Recordings were made using an array of marine autonomous recording units (MARUs (Calupca, et al.,2000), Table 1). Technicians from the Cornell Lab of Ornithology reviewed array recordings and noted the presence or absence of humpback whale calls on each element. We randomly subset 60 hours of two channel acoustic data from the array for analysis (Figure 1). Sound samples from both regions were analyzed only if they were known to contain humpback whale calls. Data Processing and Analysis Recordings from SEAK were originally sampled at 44.1 kHz and were resampled at a rate of 2
128 129 130 131 132 133 134 135 136 137	the content of each sound sample. Data from MB were collected as part of a long-term monitoring project in that region (see also Hatch et al. 2012). Recordings were made using an array of marine autonomous recording units (MARUs (Calupca, et al.,2000), Table 1). Technicians from the Cornell Lab of Ornithology reviewed array recordings and noted the presence or absence of humpback whale calls on each element. We randomly subset 60 hours of two channel acoustic data from the array for analysis (Figure 1). Sound samples from both regions were analyzed only if they were known to contain humpback whale calls. Data Processing and Analysis Recordings from SEAK were originally sampled at 44.1 kHz and were resampled at a rate of 2 kHz for consistency with data from MB (Table 1). Spectrograms of acoustic recordings were

142	observers familiar with the humpback whale calling repertoire. All calls were annotated in the
143	time and frequency domain and salient acoustic features were extracted for quantitative
144	classification in Raven Pro (Table 1). Start and end frequency measurements were made on the
145	fundamental frequency for learning a point sounds. For amplitude-modulated sounds containing a
146	broadband component, measurements were made on the lowest-frequency component of the call
147	(Dunlop et al. 2007, Rekdahl et al. 2013). Frequency parameters were log-transformed to
148	account for the mammalian perception of pitch, which is approximately logarithmic rather than
149	linear (Table 2) (Richardson et al., 1995; Dunlop et al., 2007; Fournet et al., 2015b). Time-
150	frequency parameters were input into a Principal Component Analysis (PCA) in order to
151	aggregate variables for classification and comparative analyses (R, psych package). A varimax
152	rotation was applied to maximize loading and facilitate variable interpretation (Table 2) (Cerchio
153	& Dahlheim 2001, Dunlop et al. 2007).
154	
155	Signal-to-noise ratios (SNR) were calculated for each acoustic sample by measuring the in-band
156	power contained in a one second sound sample directly preceding each call; this value was then
157	subtracted from the in-band power measured of the call of interest to get a SNR value. Calls in
158	this study were only included if they had a SNR of 10 dB or higher (Dunlop et al. 2007, Rekdahl
159	et al. 2016).
160	
161	Using the existing SEAK call catalogue as a base reference, each acoustic sample was assigned
162	an a priori call type based on aural and visual call features. Because the goal of this study was to
163	investigate the potential for calls to be fixed within this species, only calls that persist across
164	generational timescales that could be detected given a 2 kHz sampling rate were included in this
165	study; this included plet, growl, feed, swop, teepee, and whup calls (Fournet et al. 2015a,
166	Fournet 2018). Calls that were qualitatively different than previously described call types were
167	classified as 'unknown' and no further attempts for classification were made.
168	
169	Quantitative classification methods were identical to those used by Fournet 18), with the
170	exception that all predictor variables were extracted in RavenPro. Calls were classified through
171	the use of a Classification and Regression Tree (CART) llysis and a random forest analysis.
172	The Gini index was used to assess the "goodness-of-split" for each node in the tree (Rekdahl et

173	al. 2013, 2016). A total of 1,000 trees were grown for the random forest analysis. Predictor
174	variables included salient acoustic features as well as two rotated principal components (PC) that
175	aggregated correlated acoustic variables (Dunlop et al. 2007); a detailed description of predictor
176	variables can be found in Table 2. Quantitative classification assignments were compared to a
177	priori call type assignments to validate observer classification. Major discrepancies in call type
178	assignment were re-reviewed by at least two observers. Calls were excluded if observers were
179	not in agreement. If observers were in agreement about call type assignment than the <i>a priori</i>
180	classification was deemed 'correct'.
181	
182	To assess differences in acoustic parameters between calls from MB and SEAK populations, we
183	compared PC values for all call types that exhibited stability between regions. Comparative
184	analyses were made based on <i>a priori</i> classification. A Bartlett's test with a significance level (α)
185	of 0.05 indicated that the assumption of equal variance between locations was not met. To
186	account for this and for non-normally distributed data, we used a non-parametric Kruskal-Wallis
187	test to test for significant differences in median PC values between locations (α =0.05). All
188	analyses were conducted in R version 3.3.3 2013).
189	
190	Results
191	In SEAK there are six call types that are stable over generational time (Fournet 2015b) that have
192	with average bandwidths between 10 - 1000 Hz: droplet, growl, feeding call, swop, teepee, and
193	whups. A total of 411 sounds fitting the inclusion criteria were classified to one of these known
194	call types; 191 calls were collected across 10 recording days from MB, and 220 calls were
195	collected across 76 sample days from SEAK (Table 1, Table 3). Drops, growls, swops, teepees,
196	and whups were found in both populations (Figure 2, Table 3); feeding calls were detected only
197	in SEAK. PCA output indicated that the use of two principal components was adequate to
198	encompass the variability of the data (χ^2 = 683.29, p < 0.00001). The first rotated component
199	(PC1) corresponded most closely to entropy, bandwidth, and upper frequency, meaning that as
200	PC1 increases, the calls grow more complex, grow broader-band, and extend to higher
201	frequencies. The second rotated component (PC2) corresponded most closely to lower
202	frequency, start frequency, and peak frequency, meaning that as PC2 increases, calls grow higher
203	in pitch overall, but not necessarily more broadband or complex. Neither component was

204	strongly affiliated with duration or bout in this analysis, meaning that the PC variables in this
205	analysis do not represent temporal variability.
206	
207	CART call type assignment and a priori call type assignment were in agreement 82% of the time
208	(n=335/411, Table 4). Bandwidth, bout, center frequency, duration, end frequency, entropy,
209	lower frequency, and PC1 were all important splitting variables. The random forest analysis
210	correctly classified most of the calls (out-of-bag error rate = 23%). The variables most important
211	for splitting decisions in the random forest analysis were bout, end frequency, duration, entropy,
212	lower frequency, PC1, PC2, and frequency trend. Whups were the most commonly misclassified
213	calls (Table 4); in the CART analysis whups were mistaken for growls 38% of the time (n=22).
214	Observers validated call type assignment for most whup calls (95%, n=57); three calls were
215	omitted due to classification incongruity.
216	
217	PC1 values were significantly higher in SEAK than MB for all call types except for growls,
218	indicating that calls from SEAK were generally broader band and exhibited higher levels of
219	complexity (Table 3, Figure 3). PC2 values were significantly higher in SEAK than MB for
220	droplet and teepee calls (Table 3, Figure 4), indicating that calls from SEAK were generally
221	higher pitch than calls from MB.
222	
223	Discussion
224	This is the first study to describe call types shared by allopatric humpback whale populations.
225	Evidence that temporally stable call types are shared between SEAK and MB humpback whale
226	populations supports the hypothesis that a portion of the calling repertoire may be fixed in this
227	species.
228	
229	Misclassification was low for all call types, except for whups, which were commonly classified
230	as growls. Misclassification of these call types is unsurprising, as the only distinguishing
231	acoustic feature between growls and whups is a terminal upsweep, which attenuates with
232	distance and is not adequately encompassed by traditional acoustic parameters (Figure 2)
233	(Fournet et al., 2015b). The humpback whale calling repertoire has been described as an acoustic
234	continuum, where graded signals are common (Rekdahl et al. 2013, Fournet et al. 2015b). The

235	delineation between growls and whups is not discrete, and it is currently unknown whether
236	whups and growls are functionally interchangeable. Graded signals within the humpback whale
237	calling repertoire deserve dedicated study, and methods for either classifying graded signals or
238	more broadly aggregating them according to their functional roles merits future investigation.
239	
240	Despite otherwise high classification agreement, there were some significant differences in call
241	type parameters between populations. The increased PC1 values found in SEAK versus MB may
242	be recording artifacts. The ambient sound conditions in SEAK are significantly different than
243	MB (Kipple & Gabriel 2003, Hatch et al. 2008, Haver et al. 2018). Recordings from Frederick
244	Sound were made in the absence of vessel noise, and recordings made in GBNPP were made in
245	the presence of limited vessel traffic. By contrast the hydrophones in MB were located within a
246	shipping lane that services Boston Harbor, which is among the busiest harbors on the North
247	American east coast. For this reason, vessel noise was recorded simultaneously with almost all
248	calls recorded in MB (Figure 2). Overlapping ambient sounds – including vessel noise, which is
249	common throughout the $10-1000~\mathrm{Hz}$ range (Wenz 1962) – may have masked fine scale acoustic
250	features, resulting in decreased entropy measurements in MB calls. Similarly, vessel noise in MB
251	may have masked upper frequency portions of calls, which contain less energy, attenuate faster,
252	and are thus more easily obscured by overlapping ambient sound.
253	
254	Droplet and teepee calls appear to be generally higher frequency in SEAK than in MB, although
255	calls from both populations fall within previously described parameters for these call types
256	(Fournet et al. 2015b). There are many factors that drive changes in pitch in cetacean
257	vocalizations (e.g., motivational state (Rehn et al. 2011, Dunlop 2017), caller body size (May-
258	Collado et al. 2007), bient noise (Parks et al. 2007)). With an unknown number of individuals
259	in our samples, and in the absence of body size or motivational state observations to accompany
260	acoustic recordings any inferences made to describe the differences observed here are
261	speculative. However, it seems plausible that the comparatively noisy environment in MB may
262	have shaped the use of particular frequency bands of these stereotyped calls, as documented in
263	right whales and blue whales. (Parks et al. 2007, DiOrio & Clark 2010). Dedicated future effort
264	may confirm fine-scale differences in call types between regions as well as potential drivers of
265	geographic variation between population repertoires.

266	
267	With one exception, call types of interest from SEAK were also found in MB. The notable
268	exception was the SEAK feeding call. Feeding calls are highly stereotyped, tonal calls, with a
269	fundamental frequency of ~500 Hz that occur when humpback whales in Southeast Alaska
270	forage on Pacific herring (Clupea palisii) (D'Vincent et al. 1985, Sharpe 2001, Fournet et al.
271	2018). Herring are a primary food source for humpback whales in Southeast Alaska (Krieger &
272	Wing 1984, D'Vincent et al. 1985, Dolphin 1988), whereas in MB humpback whales feed
273	primarily on sand lance (Ammodytes spp), a calorie-dense prey species that burrows in the sandy
274	substrate (Overholtz & Nicolas 1979, Hain et al. 1995, Friedlaender et al. 2009). The absence of
275	feeding calls in MB may be attributed to their focus on forage species other than herring.
276	
277	Droplets, growls, swops, teepees, and whups were present in the call repertoire of both
278	humpback whale populations. Evidence of the same calls in allopatric populations supports the
279	hypothesis that a portion of the humpback whale calling repertoire is innate in this species. Non-
280	passerine bird species, like doves (Streptopelia sp.), produce highly stereotyped calls
281	instinctively (Lade & Thorpe 1964), and as a result allopatric dove populations of the same
282	species, even those separated by great distances, show no significant difference in call types (de
283	Kort et al. 2002). Ornate chorus frogs (Microhyla fissipes) produce advertisement calls
284	independently of vocal learning that are aurally indistinguishable between geographic regions,
285	and that vary only minutely with genetic distance (Lee et al. 2016). Genetic predetermination of
286	calls is common across taxa, including zebra finches (Taeniopygia guttata; Forstmeier et al.
287	2009), fur seals (Antarctic, Arctocephalus gazella, subantarctic, A. tropicalis, and New Zealand,
288	A. forsteri; Page et al. 2001), and Spheniscus penguins (Thumser & Ficken 1998). Call type
289	longevity in these species is generally multi-generational and geographically widespread. In
290	humpback whales, similarly identifying call types that are multi-generational, and persist in
291	geographically and genetically discrete populations provides strong evidence that these call types
292	are innate.
293	
294	For calls to be conserved within the calling repertoire of genetically and geographically discrete
295	populations is an indication that they play an important role in humpback whale life history by
296	increasing individual fitness in some capacity. It has been proposed that in Southeast Alaska the

297	whup call serves a contact function (Wild & Gabriele 2014), and the analogous "wop" call of
298	east Australia may facilitate communication between cows and calves (Dunlop et al. 2008).
299	There is also evidence that droplets, swops, and teepees are used for close range communication
300	on foraging grounds (Fournet 2014), and similar pulsed calls may facilitate affiliation or
301	disaffiliation in groups during migration (Dunlop et al, 2008). These contextual descriptions,
302	while broad, indicate that these calls serve a vital function or functions. The fixed nature of calls
303	stands in marked contrast to humpback whale song, which is geographically discrete, changes
304	rapidly, and is culturally transmitted rather than innate (Payne & Payne 1985, Noad et al. 2000,
305	Cerchio et al. 2001). Thus, it seems that the humpback whale vocal repertoire is composed of
306	both fixed and adaptable calls, which likely serve different roles. Dedicated research pairing the
307	call types described in this study with behaviors and social context will be important for
308	understanding role of calls in the acoustic ecology of humpback whales and what drives their
309	persistence.
310	
311	Lastly, humpback whales are notoriously difficult to monitor acoustically due to their broad and
312	changeable repertoire. It has been suggested that calls rather than song, which is not prevalent
313	throughout the entire migratory range, may play an important role in passive acoustic monitoring
314	of this species (Stimpert et al. 2011). The ability to confidently credit particular vocalizations to
315	humpback whales in the absence of visual confirmation allows for broader spatial and temporal
316	monitoring with significantly lower effort and cost. If the call types described in this study are
317	innate as we hypothesize, then theoretically it would be possible to build an automated acoustic
318	detector that could be run on datasets from across ocean basins and years to confirm the presence
319	of humpback whales at previously unknown regions or times.
320	
321	Conclusions
322	This study demonstrates that temporally stable humpback whale call types on northern latitude
323	foraging grounds are not geographically distinct. These two features, geographic and temporal
324	stability, lend strong support to the hypothesis that some calls, in strong contrast to song, are not
325	culturally transmitted, and may be innate. Natural next steps include a global comparison of call
326	repertoires between allopatric populations and across the migratory range, with particular
327	attention paid to change or stability at various temporal and geographic scales.

328	
329	Acknowledgements
330	The authors wish to acknowledge Dr. Roger Payne for the use of the recordings from Southeast
331	Alaska in 1976. We thank David Culp for data processing support, and Katherine Indeck for
332	statistical support. We also wish to thank the National Park Service for it's long term
333	commitment to acoustic monitoring in Glacier Bay National Park, and to the Cornell
334	Bioacoustics Program for use of the data from Massachusetts Bay. This work is funded by the
335	National Parks Foundation Alaska Coastal Marine Grant program, the Hatfield Marine Science
336	Center, Oregon Sea Grant, and the Oregon Chapter of the Wildlife Society. This is PMEL
337	contribution number 4784.
338	
339	
340	

341	Works Cited
342	
343	Arriaga G, Jarvis ED (2013) Mouse vocal communication system: Are ultrasounds learned or
344	innate? Brain Lang 124:96-116
345	Baker AJ, Jenkins PF (1987) Founder effect and cultural evolution of songs in an isolated
346	population of chaffinches, Fringilla coelebs, in the Chatham Islands. Anim Behav 35:1793-
347	1803
348	Baker CS, Perry a, Bannister JL, Weinrich MT, Abernethy RB, Calambokidis J, Lien J,
349	Lambertsen RH, Ramírez JU, Vasquez O (1993) Abundant mitochondrial DNA variation
350	and world-wide population structure in humpback whales. Proc Natl Acad Sci U S A
351	90:8239–8243
352	Boncoraglio G, Saino N. (2007) Habitat structure and the evolution of bird song: a meta-analysis
353	of the evidence for the acoustic adaptation hypothesis. Func Ecol 21:134-42.
354	Brockelman WY, Schilling D (1984) Inheritance of stereotyped gibbon calls. Nature 312:634-
355	636
356	Calupca TA, Fristrup KM, Clark CW (2000) A compact digital recording system for autonomous
357	bioacoustic monitoring. J Acoust Soc Am 108:2582–2582
358	Cerchio S, Dahlheim M (2001) Variation in feeding vocalizations of humpback whales
359	Megaptera novaeangliae from Southeast Alaska. Bioacoustics 11:277-295
360	Cerchio S, Jacobsen JK, Norris TF (2001) Temporal and geographical variation in songs of
361	humpback whales, Megaptera novaeangliae: synchronous change in Hawaiian and Mexican
362	breeding assemblages. Anim Behav 62:313-329
363	Clapham BPJ, Mead JG, Gray M (1999) Megaptera novaeangliae. Mamm Species: 1-9
364	Clink DJ, Crofoot MC, Marshall AJ (2018) Application of a semi-automated vocal fingerprinting
365	approach to monitor Bornean gibbon females in an experimentally fragmented landscape in
366	Sabah, Malaysia. Bioacoustics 1:1–17
367	D'Vincent CG, Nilson RN, Hanna RE (1985) Vocalization and coordinated feeding behavior of
368	the humpback whale in Southeastern Alaska. Sci Reports Whales Res Inst 36:41-47
369	Di' Orio L Clark CW (2010) Exposure to seismic survey alters blue whale acoustic
370	communication. Biol Lett 6:334–335
371	Dolphin WF (1988) Foraging dive patterns of humpback whales, Megaptera novaeangliae, in

372	southeast Alaska: a cost-benefit analysis. Can J Zool 66:2432-2441
373	Doyle LR, McCowan B, Hanser SF, Chyba C, Bucci T, Blue JE (2008) Applicability of
374	Information Theory to the Quantification of Responses to Anthropogenic Noise by
375	Southeast Alaskan Humpback Whales. Entropy 10:33-46
376	Dunlop RA (2016) The effect of vessel noise on humpback whale, Megaptera novaeangliae,
377	communication behaviour. Anim Behav 111:13-21
378	Dunlop RA (2017) Potential motivational information encoded within humpback whale non-
379	song vocal sounds. J Acoust Soc Am 141:2204-2213
380	Dunlop RA, Cato DH, Noad MJ (2008) Non-song acoustic communication in migrating
381	humpback whales (Megaptera novaeangliae). Mar Mammal Sci 24:613-629
382	Dunlop RA, Noad MJ (2016) The "risky" business of singing: tactical use of song during joining
383	by male humpback whales. Behav Ecol Sociobiol 70:2149-2160
384	Dunlop RA, Noad MJ, Cato DH, Stokes D (2007) The social vocalization repertoire of east
385	Australian migrating humpback whales (Megaptera novaeangliae). J Acoust Soc Am
386	122:2893–2905
387	Forstmeier W, Burger C, Temnow K, Derégnaucourt S (2009) The genetic basis of zebra finch
388	vocalizations. Evolution 63:2114–2130
389	Fournet M (2014) Social calling behavior of Southeast Alaskan humpback whales (Megaptera
390	novaeangliae): Classification and Context. Master's Thesis, Oregon State University
391	Fournet MEH (2018) Investigating the impact of vessel noise on humpback whale (Megaptera
392	novaeangliae) calling behavior in Southeast Alaska: a study in acoustic ecology. PhD
393	Dissertation, Oregon State University
394	Fournet MEH, Culp D, Gabriele CM, Sharpe FA, Payne RS, Mellinger DK, Klinck H (2015a)
395	Temporal stability of non-song vocalizations in North Pacific humpback whales (Megaptera
396	novaeangliae) at the decadal scale. In: Society of Marine Mammalogy- Biennial
397	Conference. San Francisco, CA
398	Fournet MEH, Gabriele CM, Sharpe F, Straley JM, Szabo A (2018) Feeding calls produced by
399	solitary humpback whales. Mar Mammal Sci 1-15
400	Fournet MEH, Szabo A, Mellinger DK (2015b) Repertoire and classification of non-song calls in
401	Southeast Alaskan humpback whales (Megaptera novaeangliae). J Acoust Soc Am 137:1-
402	10

103	Friedlaender AS, Hazen EL, Nowacek DP, Halpin PN, Ware C, Weinrich MT, Hurst T, Wiley D
104	(2009) Diel changes in humpback whale Megaptera novaeangliae feeding behavior in
105	response to sand lance Ammodytes spp. behavior and distribution. Mar Ecol Prog Ser
106	395:91–100
107	Gabriele C, Frankel A (2002) The Occurrence and Significance of Humpback Whale Songs in
804	Glacier Bay, Southeastern Alaska. Arct Res United States 16:42-47
109	Gannon DP (2008) Passive Acoustic Techniques in Fisheries Science: A Review and Prospectus.
10	Trans Am Fish Soc 137:638–656
11	Garland EC, Goldizen AW, Lilley MS, Rekdahl ML, Garrigue C, Constantine R, Hauser ND,
12	Poole MM, Robbins J, Noad MJ (2015) Population structure of humpback whales in the
13	western and central South Pacific Ocean as determined by vocal exchange among
14	populations. Conserv Biol 29:1198–1207
15	Hain JHW, Ellis SL, Kenney RD, Clapham PJ, Gray BK, Weinrich MT, Babb IG (1995)
16	Apparent Bottom Feeding by Humpback-Whales on Stellwagen Bank. Mar Mammal Sci
17	11:464–479
18	Hatch LT, Clark, CW, Van Parijs SM, Frankel AS, Ponirakis D (2012) Quantifying loss of
19	acoustic communication space for right whales in and around a U. S. National Marine
120	Sanctuary. Conserv Biol 26:983-994
121	Hatch L, Clark C, Merrick R, Parijs S Van, Ponirakis D, Schwehr K, Thompson M, Wiley D
122	(2008) Characterizing the Relative Contributions of Large Vessels to Total Ocean Noise
123	Fields: A Case Study Using the Gerry E. Studds Stellwagen Bank National Marine
124	Sanctuary. Environ Manage 42:735–752
125	Haver SM, Gedamke J, Hatch LT, Dziak RP, Parijs S Van, McKenna MF, Barlow J, Berchok C,
126	DiDonato E, Hanson B, Haxel J, Holt M, Lipski D, Matsumoto H, Meinig C, Mellinger
127	DK, Moore SE, Oleson EM, Soldevilla MS, Klinck H (2018) Monitoring long-term
128	soundscape trends in U.S. Waters: The NOAA/NPS Ocean Noise Reference Station
129	Network. Mar Policy 90:6–13
130	Herman LM (2017) The multiple functions of male song within the humpback whale (Megaptera
131	novaeangliae) mating system: review, evaluation, and synthesis. Biol Rev 92:1795–1818
132	Herman LM, Pack AA, Spitz SS, Herman EYK, Rose K, Hakala S, Deakos MH (2013)
133	Humpback whale song: Who sings? Behav Ecol Sociobiol 67:1653-1663

134	Konishi M (1963) The Role of Auditory Feedback in the Vocal Behavior of the Domestic Fowl.
435	Ethology 20:349–367
436	Kipple B, Gabriele C (2003) Glacier Bay underwater noise–2000 through 2002: Report to
437	Glacier Bay National Park Tech Rep NSWCCD-71-TR-2004/521, Naval Surface Warfare
438	Center, Bremerton, WA
139	Kort SR de, Hartog PM den, Cate C ten (2002) Diverge or merge? The effect of sympatric
140	occurrence on the territorial vocalizations of the vinaceous dove Streptopelia vinacea and
441	the ring-necked dove S. capicola. J Avian Biol 33:150-158
142	Krieger KJ, Wing BL (1984) Hydroacoustic surveys and identification of humpback whale
443	forage in Glacier Bay, Stephens Passage, and Frederick Sound, southeastern Alaska,
144	summer 1983. NOAA Tech Memo NMFS-F/NWC-66 60p 1984:66
145	Lade BI, Thorpe WH (1964) Dove songs as innately coded patterns of specific behaviour. Nature
146	202:366–368
147	Lee KH, Shaner PJL, Lin YP, Lin SM (2016) Geographic variation in advertisement calls of a
148	Microhylid frog - testing the role of drift and ecology. Ecol Evol 6:3289–3298
149	Mann DA, Lobel PS (1998) Acoustic behavior of the damselfish Dascyllus albisella: Behavioral
450	and geographic variation. Environ Biol Fishes 51:421-428
451	Mann DA, Popper AN, Wilson B (2005) Pacific herring hearing does not include ultrasound.
452	Biol Lett 1:158–161
453	Matsunaga E, Okanoya K (2009) Evolution and diversity in avian vocal system: An Evo-Devo
154	model from the morphological and behavioral perspectives. Dev Growth Differ 51:355–367
455	May-Collado LJ, Agnarsson I, Wartzok D (2007) Reexamining the relationship between body
456	size and tonal signals frequency in whales: A comparative approach using a novel
457	phylogeny. Mar Mammal Sci 23:524–552
458	McComb K, Reby D, Baker L, Moss C, Sayialel S (2003) Long-distance communication of
459	acoustic cues to social identity in African elephants. Anim Behav 65:317-329
460	Mercado E, Herman LM, Pack AA (2005) Song copying by humpback whales: Themes and
461	variations. Anim Cogn 8:93–102
162	Noad MJ, Cato DH, Bryden MM, Jenner M-N, Jenner KCS (2000) Cultural revolution in whale
463	songs. Nature 408:537–537
164	Overholtz WJ, Nicolas JR (1979) Apparent feeding by the fin whale, Balaenoptera physalus, and

465	humpback whale, Megaptera novaeangliae, on the American sand lance, Ammodytes
166	americanus, in the northwest Atlantic. Fish Bull 77:285-287
167	Page B, Goldsworthy SD, Hindell MA (2001) Vocal traits of hybrid fur seals: intermediate to
168	their parental species. Anim Behav 61:959–967
169	Parks SE, Clark CW, Tyack PL (2007) Short- and long-term changes in right whale calling
470	behavior: The potential effects of noise on acoustic communication. J Acoust Soc Am
471	122:3725–3731
172	Parsons ECM, Wright AJ, Gore MA (2008) The nature of humpback whale (Megaptera
173	novaeangliae) song. J Mar Anim Their Ecol 1:22-31
174	Payne RS, McVay S (1971) Songs of humpback whales. Science 173:585-97
175	Payne K, Payne R (1985) Large Scale Changes over 19 Years in Songs of Humpback Whales in
176	Bermuda. Ethology 68:89–114
177	Petkov CI, Jarvis ED (2012) Birds, primates, and spoken language origins: behavioral
478	phenotypes and neurobiological substrates. Front Evol Neurosci 4:12
179	Pijanowski BC, Villanueva-Rivera LJ, Dumyahn SL, Farina A, Krause BL, Napoletano BM,
480	Gage SH, Pieretti N (2011) Soundscape Ecology: The Science of Sound in the Landscape.
481	Bioscience 61:203–216
182	Poole JH, Tyack PL, Stoeger-Horwath AS, Watwood S (2005) Animal behaviour: Elephants are
183	capable of vocal learning. Nature 434:455–456
484	Potvin DA, Parris KM, Mulder RA (2011) Geographically pervasive effects of urban noise on
485	frequency and syllable rate of songs and calls in silvereyes (Zosterops lateralis). Proc Biol
486	Sci 278:2464–9
187	R (2013) R Development Core Team. R A Lang Environ Stat Comput 55:275–286
488	Rehn N, Filatova O, Durban J, Foote A (2011) Cross-cultural and cross-ecotype production of a
189	killer whale "excitement" call suggests universality. Naturwissenschaften 98:1-6
190	Rekdahl ML, Dunlop RA, Goldizen AW, Garland EC, Biassoni N, Miller P, Noad MJ (2015)
491	Non-song social call bouts of migrating humpback whales. J Acoust Soc Am 137:3042-
192	3053
193	Rekdahl ML, Dunlop RA, Noad MJ, Goldizen AW (2013) Temporal stability and change in the
194	social call repertoire of migrating humpback whales. J Acoust Soc Am 133:1785-95
195	Rekdahl M, Tisch C, Cerchio S, Rosenbaum H (2016) Common nonsong social calls of

196	humpback whales (Megaptera novaeangliae) recorded off northern Angola, southern
197	Africa. Mar Mammal Sci 33:365–375
198	Richardson WJ, Greene CRJ, Malme CI, Thompson DH (1995) Marine Mammals and Noise.
199	Academic Press, New York
00	Risch D, Clark CW, Corkeron PJ, Elepfandt A, Kovacs KM, Lydersen C, Stirling I, Parijs SM
501	Van (2007) Vocalizations of male bearded seals, Erignathus barbatus: classification and
502	geographical variation. Anim Behav 73:747–762
503	Sharpe FA (2001) Social foraging of the southeast Alaskan humpback whale, Megaptera
504	novaeangliae, PhD dissertation Simon Fraser University
505	Silber GK (1986) The relationship of social vocalizations to surface behavior and aggression in
506	the Hawaiian humpback whale (Megaptera novaeangliae). Can J Zool 64:2075–2080
507	Slater PJB. (1983) The study of communication. In: Animal Behaviour, Vol. 2. Blackwell
808	Scientific, Oxford 9-43
509	Stimpert AK, Au WW, Parks SE, Hurst T, Wiley DN (2011) Common humpback whale
510	(Megaptera novaeangliae) sound types for passive acoustic monitoring. J Acoust Soc Am
511	129:476–482
512	Stimpert AK, Peavey LE, Friedlaender AS, Nowacek DP (2012) Humpback Whale Song and
513	Foraging Behavior on an Antarctic Feeding Ground. PLoS One 7:e51214
514	Stimpert AK, Wiley DN, Au WWL, Johnson MP, Arsenault R (2007) "Megapclicks": acoustic
515	click trains and buzzes produced during night-time foraging of humpback whales
516	(Megaptera novaeangliae). Biol Lett 3:467–470
517	Thumser NN, Ficken MS (1998) A comparison of the vocal repertoires of captive Spheniscus
518	penguins. Mar Ornithol 26:40–48
519	Tyack P, Sayigh L (1997) Vocal learning in cetaceans. In: Social influences on vocal
520	development. Elsevier, New York
521	Valsecchi E, Palsboll P, Hale P, Glockner-Ferrari D, Ferrari M, Clapham P, Larsen F, Mattila D,
522	Sears R, Sigurjonsson J, Brown M, Corkeron P, Amos B (1997) Microsattelite genetic
523	disrances between oceanic populations of the humpback whale (Megaptera novaeangliae).
524	14:355–362
525	Vicario DS (2004) Using learned calls to study sensory-motor integration in songbirds. Ann N Y
526	Acad Sci 1016:246–262

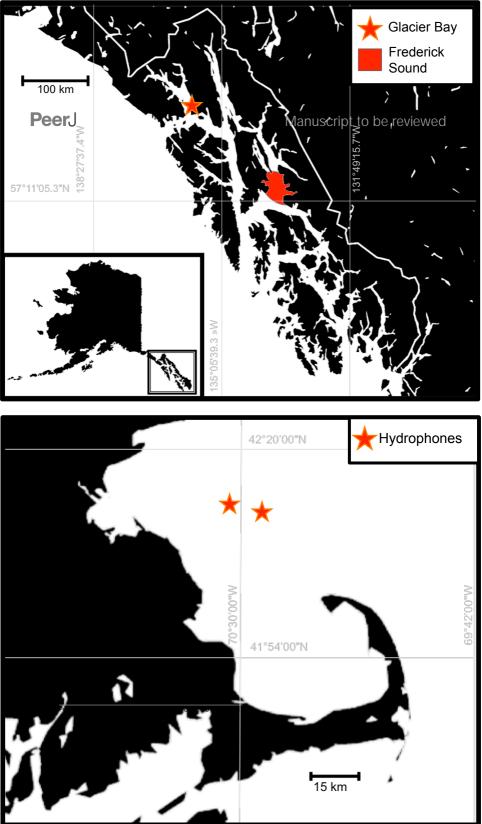
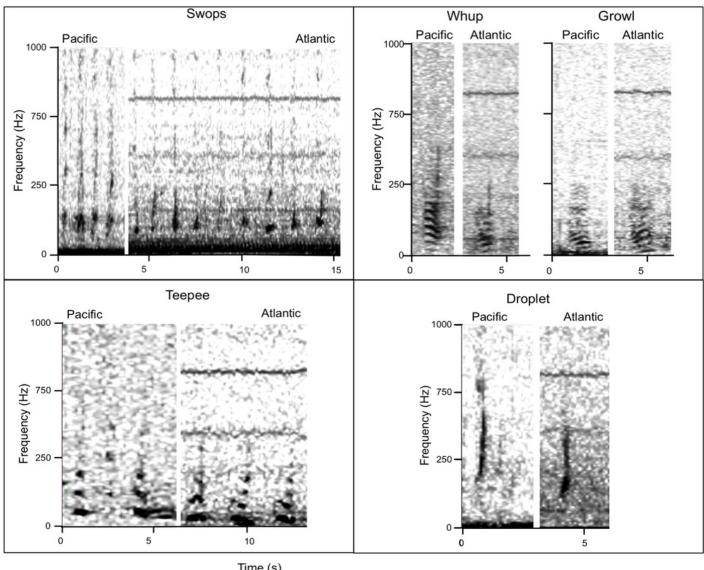

527	Wenz GM (1962) Acoustic Ambient Noise in the Ocean: Spectra and Sources. J Acoust Soc Am
528	34:1936
529	Wild LA, Gabriele CM (2014) Putative contact calls made by humpback whales (Megaptera
530	novaeangliae) in southeastern Alaska. Can Acoust 42:23-31
531	Winn HE, Thompson TJ, Cummings WC, Hain J, Hudnall J, Hays H, Steiner WW, (1981) Song
532	of the Humpback Whale: Population Comparisons Behavioral Ecology and Sociobiology
533	Behav Ecol Sociobiol 8:41–46
534	Zann R (2010) Ontogeny of the Zebra Finch Distance Call: I. Effects of Cross-fostering to
535	Bengalese Finches. Z Tierpsychol 68:1–23
536	

Figure 1(on next page)

Map of (top) Southeast Alaska, North Pacific recording locations and (bottom) Massachusetts Bay, North Atlantic recording locations. Red area indicates sampling region for hydrophone recordings made in 1976. Stars in both maps indicate moored hydrophone I

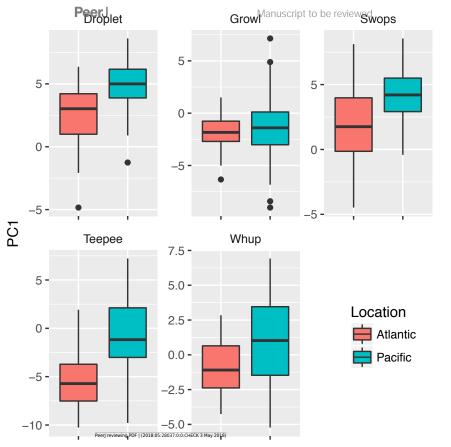
Red area indicates sampling region for hydrophone recordings made in 1976. Stars in both maps indicate moored hydrophone locations.



Figure

Spectrograms of call types by ocean basin (FFT 256, Hann window, 90% overlap).

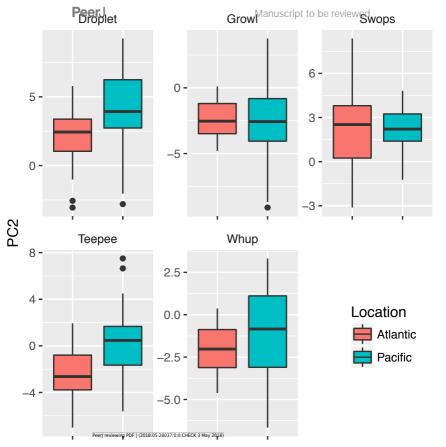
Call types: (top left) swops, (top right) whups and growls, (bottom left) teepees, (bottom right) droplets. The horizontal lines at ~500 and 800 Hz in spectrograms from the Atlantic indicate vessel noise.



gure 3(on next page)

Boxplots of PC1 values (indicative of entropy, bandwidth, and upper frequency components) between call types and ocean basins.

Calls recorded in the Atlantic Ocean are indicated by coral, and the Pacific ocean by teal.



gure 4(on next page)

Boxplot of PC2 values (indicative of lower frequency, start frequency, and peak frequency components) between call types and ocean basins.

Calls from the Atlantic are indicated by coral, calls from the Pacific are indicated by teal.

Table 1(on next page)

Recordings specifications for data collection protocols from North Pacific and North Atlantic foraging grounds.

1 Table 1-Recordings specifications for data collection protocols from North Pacific and North Atlantic foraging grounds.

o ar	1976	2007 & 2008	2008	
Hydrophone model	unknown	ITC 8215A	HTI-94-SSQ	
Sampling rate	44.1 kHz	44.1 kHz	2 kHz	
System sensitivity	unavailable	-174 dB \pm 2 dB re 1 V/ μ Pa	-168 dB \pm 1 dB re 1 V/ μ Pa	
Deployment method	Dipping (20 m)	Bottom-mounted (52 m)	Bottom-mounted (~60 m)	
Location	Frederick Sound	Glacier Bay	Stellwagen Bank National Marine Sanctuary	
Recording cycle	Non- standardized	30 seconds from every hour	Continuous	
Data format	Continuous	30-second recordings	5-minute recordings	
Recording Days	4	72	10	

2

3

4

Table 2(on next page)

Acoustic parameters used in Classification and Regression Tree (CART) analysis. Log transformed parameters are indicated with an asterisk (*).

Table \P Acoustic parameters used in Classification and Regression Tree (CART) analysis. Log transformed parameters are indicated with an asterisk (*).

Duration (90%) (s)	90% of the duration of the annotated call
Bout	Number of repetitions of the same call type
Low Frequency (Hz)*	Lowest frequency component of the call
High Frequency (Hz)*	Highest frequency component of the call
Bandwidth (90%) (Hz)	90% of the difference in frequency between high and low frequency
Start Frequency (Hz)*	Starting frequency of fundamental
End Frequency (Hz)*	Ending frequency of fundamental
Peak Frequency (Hz)*	Frequency of the spectral peak
Center Frequency (Hz)*	The frequency that divides the sound equally into
	two intervals of equal energy
Frequency Trend*	Start F ₀ / End F ₀
Aggregate Entropy (bits)	A measure of total disorder in the call (RavenPro, 1.5)
PC1	Rotated principal component most closely associated with entropy bandwidth, and upper frequency; as PC1 increases calls grow broader band, extend into higher frequencies and grow more complex
PC2	Rotate principal component most closely associated with lower frequency, start frequency, and peak frequency; as PC2 increases calls grow generally higher in pitch, but not necessarily more broadband

Table 3(on next page)

Summary statistics (mean in bold, standard deviation) for call parameters by call type and location. Test results for a Kruskal-Wallis test for median rank differences in rotated principal component (PC) scores. PC descriptions can be found in Table 2.

Table 3- Summary statistics (mean in bold, standard deviation) for call parameters by call type and location. Test results for a Kruskal-Wallis test for median rank differences in rotated principal component (PC) scores. PC descriptions can be found in Table 2.

			PC1		PC2					
Type		Variable	Atlantic		Pacific		χ^2	P	χ^2	P
		N	4	1	78		1	0.3	0.15	0.69
	Growl	Low Freq (Hz)	41.5	12.2	35.8	21.8				
el c	Gre	Peak Freq (Hz)	87.4	15.1	116	62.6				
Low Freque		Duration (s)	0.8	0.24	0.7	0.3				
F <mark>re</mark> arn		N	2	1	3	6	4.2	0.04	1.9	0.15
M ₀	Whup	Low Freq (Hz)	49.9	15.8	47.4	25.1				
	W	Peak Freq (Hz)	94.9	26.2	128	70.3				
	,	Duration (s)	0.6	0.18	0.7	0.2				
	Droplet	N	4	4	2	9	16.9	>0.001	11.4	>0.001
		Low Freq (Hz)	99.4	49	148	99.8				
)ro	Peak Freq (Hz)	187	62.6	252	120				
		Duration (s)	0.4	0.2	0.3	0.16				
		N	4	5	16		8.9	0.002	0.007	0.93
Pulsed	Swop	Low Freq (Hz)	76.5	31.4	70	30				
Pul	Sw	Peak Freq (Hz)	159	54.3	214	85.6				
		Duration (s)	3.9	4.2	0.3	0.2				
	a	N	4	0	5	1	33.05	>0.001	23.2	>0.001
	Teepee	Low Freq (Hz)	40	17	214	25.1				
	Геє	Peak Freq (Hz)	79.2	28.8	154	70.3				
		Duration (s)	1.1	1.77	0.4	0.23				

Table 4(on next page)

Confusion matrix indicating agreement between (vertical) Classification and regression tree call type assignment versus (horizontal) human call type assignment.

Table 4- Confusion matrix indicating agreement between (vertical) Classification and regression tree call type assignment versus (horizontal) human call type assignment.

	Droplet	Feed	Growl	S	Teepee	Whup	Agreement
Droplet	58	0	3	5	4	3	79%
Feed	0	10	0	0	0	0	100%
Growl	0	0	111	1	3	4	93%
Swops	5	0	1	44	9	2	72%
Teepee	3	0	3	4	81	0	89%
Whup	2	0	22	2	0	31	54%

Total Agreement 82%

3