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The Los Menucos locality in Patagonia, Argentina, bears a well-known ichnofauna mostly

documented by small therapsid footprints. Within this ichnofauna, large pentadactyl

footprints are also represented but to date were relatively underinvestigated. These

footprints are here analyzed and discussed based on palaeobiological indications (i.e.

trackmaker identification). High resolution digital photogrammetry method was performed

to achieve a more objective representation of footprint three-dimensional morphologies.

The footprints under study are compared with Pentasauropus from the Upper Triassic

lower Elliot Formation (Stormberg Group) of the Karoo Basin (Lesotho, southern Africa).

Some track features suggest a therapsid-grade synapsid as the potential trackmaker, to be

sought among anomodont dicynodonts (probably Kannemeyeriiformes). While the

interpretation of limb posture in the producer of Pentasauropus tracks from the Los

Menucos locality agrees with those described from the dicynodont body fossil record, the

autopodial posture does not completely. The relative distance between the impression of

the digital (ungual) bases and the distal edge of the pad trace characterizing the studied

tracks likely indicates a subunguligrade foot posture in static stance, but plantiportal

during the dynamics of locomotion. The reconstructed posture might have implied an

arched configuration of the articulated metapodials and at least of the proximal phalanges,

as well as little movement capabilities of the metapodials. Usually, a subunguligrade-

plantiportal autopod has been described for huge animals to obtain an efficient

management of body weight. Nevertheless, this kind of autopod is described here for large

but not gigantic animals, as the putative trackmakers of Pentasauropus were. This

attribution implies that such an autopodial structure was promoted independently from the

body size in the putative trackmakers. By an evolutionary point of view, subunguligrade-

plantiportal autopods not necessarily must be related with by an increase in body size, but
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rather the increase in body size requires a subunguligrade or unguligrade, plantiportal

foot. Chronostratigraphically, Pentasauropus was reported from Upper Triassic deposits of

South Africa and United States, and from late Middle Triassic and Upper Triassic deposits

of Argentina. A Late Triassic age is here proposed for the Pentasauropus-bearing levels of

the Los Menucos Group.
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25 Abstract

26 The Los Menucos locality in Patagonia, Argentina, bears a well-known ichnofauna mostly 

27 documented by small therapsid footprints. Within this ichnofauna, large pentadactyl footprints 

28 are also represented but to date were relatively underinvestigated. These footprints are here 

29 analyzed and discussed based on palaeobiological indications (i.e. trackmaker identification). 

30 High resolution digital photogrammetry method was performed to achieve a more objective 

31 representation of footprint three-dimensional morphologies. The footprints under study are 

32 compared with Pentasauropus from the Upper Triassic lower Elliot Formation (Stormberg 

33 Group) of the Karoo Basin (Lesotho, southern Africa). Some track features suggest a therapsid-

34 grade synapsid as the potential trackmaker, to be sought among anomodont dicynodonts 

35 (probably Kannemeyeriiformes). While the interpretation of limb posture in the producer of 

36 Pentasauropus tracks from the Los Menucos locality agrees with those described from the 

37 dicynodont body fossil record, the autopodial posture does not completely. The relative distance 

38 between the impression of the digital (ungual) bases and the distal edge of the pad trace 

39 characterizing the studied tracks likely indicates a subunguligrade foot posture in static stance, 

40 but plantiportal during the dynamics of locomotion. The reconstructed posture might have 

41 implied an arched configuration of the articulated metapodials and at least of the proximal 

42 phalanges, as well as little movement capabilities of the metapodials. Usually, a subunguligrade-

43 plantiportal autopod has been described for huge animals to obtain an efficient management of 

44 body weight. Nevertheless, this kind of autopod is described here for large but not gigantic 

45 animals, as the putative trackmakers of Pentasauropus were. This attribution implies that such an 

46 autopodial structure was promoted independently from the body size in the putative trackmakers. 
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47 By an evolutionary point of view, subunguligrade-plantiportal autopods not necessarily must be 

48 related with by an increase in body size, but rather the increase in body size requires a 

49 subunguligrade or unguligrade, plantiportal foot. Chronostratigraphically, Pentasauropus was 

50 reported from Upper Triassic deposits of South Africa and United States, and from late Middle 

51 Triassic and Upper Triassic deposits of Argentina. A Late Triassic age is here proposed for the 

52 Pentasauropus-bearing levels of the Los Menucos Group.
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76 INTRODUCTION

77 Tetrapod tracks are valuable fossils informing about anatomy (e.g. Carpenter, 1992), functional 

78 adaptations (e.g. Baird, 1980), motion (e.g. Avanzini, Piñuela & García-Ramos, 2011) and 

79 ethology (e.g. Lockley et al., 2016) of extinct animals, greatly expanding the potential of 

80 information that is often precluded from the body-fossil record. The detailed analysis of tetrapod 

81 footprints is therefore significant for integrating and revising data derived from the tetrapod 

82 body-fossil record.

83 The scientific study of tetrapod footprints in Argentina is relatively recent compared to 

84 that of Europe (Duncan, 1831; Kaup, 1835a, b) and North America (Hitchcock, 1836), dating 

85 back to the first half of the twentieth century (von Huene, 1931). One of the most important 

86 contribution to tetrapod ichnology in Argentina is that of Casamiquela (1964), who devoted 

87 himself to the study of Triassic and Jurassic tetrapod tracks from Patagonia. Later, other 

88 contributions focused on important Triassic ichnofaunas from other regions of Argentina have 

89 been published (Romer, 1966, Bonaparte, 1966; Leonardi, 1994; Melchor & de Valais, 2006). 

90 Among the Triassic vertebrate ichnofaunas, the Los Menucos one, which is dominated by small 

91 therapsid footprints, was largely studied (Casamiquela, 1964, 1975, 1987; Leonardi & de 

92 Oliveira, 1990; Leonardi, 1994; Domnanovich & Marsicano, 2006; Melchor & de Valais, 2006; 

93 de Valais, 2008; Domnanovich et al., 2008; Díaz-Martínez & de Valais, 2014). The bulk of this 

94 ichnofauna was originally attributed to different ichnotaxa by Casamiquela (1964, 1975), but 

95 after the revision made by Melchor & de Valais (2006), most of the ichnogenera erected by 
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96 Casamiquela have been considered as synonyms of Dicynodontipus. Moreover, an indetermined 

97 chirotheroid track (de Valais, 2008), a single track referred to as Rhynchosauroides, and large 

98 pentadactyl footprints mentioned as Pentasauropus sp. (Domnanovich et al., 2008) have been 

99 reported from the Los Menucos area. From the same locality, several slabs with pentadactyl 

100 tracks comparable to those described by Domnanovich et al. (2008) were collected many years 

101 ago but remained unpublished until now.

102 An ichnological analysis based on this material is here proposed and discussed in terms 

103 of the palaeobiology, identity and autopodial anatomy of the trackmaker. Besides, a brief 

104 discussion of the chronostratigraphy of this record is provided.

105

106 INSTITUTIONAL ABBREVIATIONS

107 LES - Laboratoire de Paléontologie, Institut de Sciences de l’Evolution of the University of 

108 Montpellier II collection, Montpellier, France; MPCA - Museo Provincial Carlos Ameghino, 

109 Cipolletti, Río Negro province, Argentina; MMLM - Museo Municipal de Los Menucos, Los 

110 Menucos, Río Negro province, Argentina; MMLM (ex MRPV) - Museo Provincial María Inés 

111 Kopp, Valcheta, Río Negro province, Argentina.

112

113 MATERIAL AND METHODS

114 The present study is based on the direct examination of track-bearing slabs MPCA 27029-1 with 

115 three pes-manus couples, two of which incomplete (concave epireliefs), MPCA 27029-2 with a 

116 single left pes-manus couple (convex hyporeliefs), MPCA 27029-3 with two pes-manus couples 

117 and an incomplete pes (convex hyporeliefs), MPCA 27029-4 with a single pes-manus couple 

118 (convex hyporeliefs), MPCA 27029-5 with a single track (convex hyporeliefs), MPCA 27029-9 
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119 with five pes-manus couples, three of which incomplete (convex hyporeliefs), MPCA 27029-16 

120 with three pes-manus couples, one of which incomplete, and five incomplete tracks (convex 

121 hyporeliefs), MPCA 27029-21 with two pes-manus couples and four tracks (convex hyporeliefs), 

122 MPCA 27029-33 with two pes-manus couples (convex hyporeliefs), MMLM 1 with two pes-

123 manus couples(convex hyporeliefs), MMLM 2 with two incomplete pes-manus couples (convex 

124 hyporeliefs), and MMLM 075-1 (ex MRPV 1987P.V.06 in Domnanovich et al., 2008, hereafter 

125 MMLM 075-1) with two incomplete pes-manus couples (concave epireliefs). Except for the 

126 specimen MMLM 075-1, the material under study was to date unpublished. A few other slabs, 

127 both with and without label, are stored at the MPCA but were not considered in this study due to 

128 poor preservation of the tracks. In total, about 60 footprints were analyzed. For each slab, tracks 

129 were numbered using Arabic numerals and, when referring to single tracks in the text, they are 

130 indicated as /number following the slab label (e.g. MPCA 27029-1/4 where MPCA 27029-1 and 

131 number 4 indicate slab and single track, respectively). The studied material mainly consists of 

132 isolated sets or incomplete trackways.

133 The provenance of the track-bearing slabs can be traced back to the Felipe Curuil ex 

134 quarry, Yancaqueo farm, east of the town of Los Menucos (Domnanovich et al., 2008), but the 

135 exact stratigraphic repositioning of the material is currently prevented and inherent data are 

136 lacking in the literature.

137 In order to characterize the microfacies of the trampled layers, two thin sections were 

138 obtained from the slab MPCA 27029-19 (its footprints are poorly preserved and not included in 

139 this study), both parallel and perpendicular to the trampled surface. For the description of the 

140 thin sections, Mackenzie, Donaldson & Guilford (1982), and Scasso & Limarino (1997) were 

141 taken as a reference. Thin sections are presently stored at the MPCA and labelled as MPCA 
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142 27029/19.1 (parallel to the trampled surface) and MPCA 27029/19.2 (perpendicular to the 

143 trampled surface).

144 Measurements related to trackmaker body dimension were obtained from slabs MPCA 

145 27029-1, MPCA 27029-9, MPCA 27029-16 and MPCA 27029-21. From single tracks, which are 

146 mainly represented by digit traces, measurements of footprint width were taken. Also, track 

147 features and differential depth of impressions in some cases allowed to recognize the footprint 

148 identity, the side of the trackway when incompletely preserved, or tracks belonging to different 

149 trackways (e.g. MMLM 075-1), and element orientations. Track measurements were performed 

150 according to guidelines introduced by Leonardi (1987).

151 Track outlines were represented through interpretive drawings. High resolution digital 

152 photogrammetry was undertaken to achieve a more objective representation of track three-

153 dimensional morphology, according to a recently described standard protocol for ichnological 

154 studies (Falkingham et al., 2018). To model the studied specimens, the software package Agisoft 

155 PhotoScan Pro (Educational License), which enables creating 3D textured meshes by means of 

156 semi-automatic processing of images (Mallison & Wings, 2014), was used.

157 The images selected for the photogrammetric process were acquired using a Nikon 

158 Coolpix P520 camera with 4.3-7.6 focal length, resolution 4896x3672 and pixel size ranging 

159 from 1.25x1.25 μm and 1.27x1.27 μm. Main processing parameters are reported in Table 1. In 

160 order to correctly scale the calculated model, a metric reference marker was applied on the 

161 surface. Three-dimensional models were converted to colour topographic profiles using the 

162 software Paraview (version 5.4.1).

163

164 GEOLOGICAL SETTING
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165 Continental deposits of Triassic age in Argentina accumulated in different basins in western and 

166 northwestern regions (Mendoza, San Juan, San Luis and La Rioja provinces) as well as in 

167 Patagonia (northern sector of the Santa Cruz province and Río Negro provinces). These 

168 elongated, narrow rift basins with prevalent NW-SE and NNW-SSE trends were developed 

169 during Permian and Triassic periods and witness the breakup of the western margin of south-

170 west Gondwana (Kokogian et al., 1999; Franzese & Spalletti, 2001; Barredo et al., 2012).

171 The Triassic tetrapod track record of southern South America is exclusive to three basins, 

172 namely the Ischigualasto-Villa Unión Basin (San Juan and La Rioja provinces), the Cuyo Basin 

173 (Mendoza and San Juan provinces) and the Los Menucos basin (Río Negro province) (e.g. 

174 Melchor, Genise & Poiré, 2001; Melchor & de Valais, 2006; de Valais, 2008 and references 

175 therein). According to Spalletti (1999), in the northern basins (i.e. Ischigualasto-Villa Unión and 

176 Cuyo) the sedimentation encompasses the Lower to Upper Triassic, while in the Los Menucos 

177 Basin the sedimentation took place in the Late Triassic.

178 After the first works of Stipanicic (1967), Stipanicic et al. (1968) and Stipanicic & 

179 Methol (1972, 1980), the Los Menucos Group (also as ‘Complejo Los Menucos’ - Los Menucos 

180 Complex sensu Cucchi, Busteros & Lema, 2001) was established by Labudía & Bjerg (2001) to 

181 indicate dacitic to rhyolitic ignimbrites, mesosilicic lavas and subordinate Triassic sedimentary 

182 rocks exposed around Los Menucos town, in the north-western sector of the North Patagonian 

183 Massif (Río Negro province, Argentina; Fig. 1A).

184 Within the Los Menucos Group, two lithostratigraphic units were defined, namely the 

185 Vera Formation at the base and the Sierra Colorada Formation on top (Labudía & Bjerg, 2001, 

186 2005, and references therein; Fig. 1B). The Vera Formation is mainly composed of volcanic and 

187 continental deposits laid down inside small basins bordered by regional and local faults with 
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188 attitudes NE-SW, E-W and NW-SE (Labudía & Bjerg, 2001, 2005). The Vera Formation is 

189 mainly represented by brownish to yellowish conglomerates, white to greenish sandstones and 

190 reddish brown to red pelites, with which volcanic ashes, tuffs and tuffites, dacitic pyroclastic 

191 flow products and volcanic breccias are intercalated (Labudía & Bjerg, 2001, 2005). 

192 Sedimentation took place mainly in alluvial plain, floodplain, ephemeral river and small 

193 lacustrine palaeoenvironments (Labudía & Bjerg, 2005), under seasonal climate condition with 

194 alternating periods of dry and wet conditions (Gallego, 2010). Sedimentary and volcaniclastic 

195 levels within the Vera Formation are characterized by a very rich palaeoflora, the so-called 

196 “Dicroidium type flora” (Stipanicic, 1967; Stipanicic & Methol, 1972; Artabe, 1985a, b; Labudía 

197 et al., 1995; Labudía & Bjerg, 2001, 2005) and by an abundant tetrapod ichnofauna, preserved on 

198 sandstones with poorly sorted grains and with a variable content of tuffaceous breccias (Melchor 

199 & de Valais, 2006). Finds of skeletal fauna are scarce and are so only represented by remains of 

200 an amiiform fish (Bogan, Taverne & Agnolin, 2013).

201 The Sierra Colorada Formation is essentially made of ignimbritic volcanic rocks (Labudía 

202 & Bjerg, 2001, 2005), dated at 222 ± 2 Ma with the Rb/Sr isochron method (Norian, Late 

203 Triassic; Rapela et al., 1996) and at 206.9 ± 1.2 Ma with the Ar/Ar method (Rhaetian, Late 

204 Triassic; Lema et al., 2008). Unfortunately, these datations do not radiometrically constrain the 

205 Vera Formation, for which a Late Triassic age was historically proposed on the basis of the 

206 “Dicroidium flora” and the tetrapod ichnofauna.

207 More recent results indicated an age of 257 ± 2 Ma (Wuchiapingian, Late Permian) for a 

208 rhyolitic ignimbrite, 252 ± 2 Ma (Changhsingian, Late Permian) for an andesite, and 248 ± 2 Ma 

209 (Olenekian, Early Triassic) for a dacitic ignimbrite (Luppo et al., 2017) of the Los Menucos 

210 Group. These new data predate the main volcanic activity to an about a 10 Ma period between 
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211 the Late Permian and the Early Triassic, making the Los Menucos Group coeval with the La 

212 Esperanza Plutono-Volcanic Complex (Gonzalez et al., 2017; Luppo et al., 2017).

213 Sedimentological observations

214 Track-bearing slabs consist of yellowish to greenish, medium to mainly coarse grained and 

215 poorly sorted volcaniclastic sandstone lacking of sedimentary structures in hand samples, neither 

216 on the surface or cross-section.

217 The observed texture ranges from inequigranular/equigranular (Figs. 2A, 2B) to 

218 predominantly equigranular (Fig. 2C). Phenocrysts, mainly subhedral and anhedral, range in 

219 dimension from 0,5 mm to 1,5 mm and show in one case incipient orientation. Phenocrysts are 

220 represented mainly by plagioclase, quartz, alkaline feldspar, biotite, amphibole (hornblende), 

221 orthopyroxene (enstatite) and calcite floating in a mafic, glassy matrix.

222 The dominant epiclastic texture observed at the base of the trampled surface (thin section 

223 MPCA 27029/19.2), mainly represented by fragments of quartz and some lithics displaying 

224 attrition and rounded to sub-angular shape, suggesting sedimentary reworking of an original tuff 

225 of probable dacitic composition. The texture observed in the thin section MPCA 27029/19.1 

226 instead indicates a scarce sedimentary reworking (Fig. 2D). In section, a faint normal gradation 

227 can be observed most likely indicating short sedimentation events; on the whole, the track-

228 bearing slabs can be related to a proximal fluvial environment

229

230 TRACK RECORD

231 Track preservation

232 Specimen MMLM 075-1 is composed of four slabs, two as casts -with negative epichnial tracks, 

233 labeled as MMLM 075-1/1a, /2 and /3a- and two as their moulds -with positive hypichnial 
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234 tracks, labeled as MMLM 075-1/1b and 3/b. There are no evidences of any layer between the 

235 casts and the moulds and the shape of both concave epireliefs and convex hyporeliefs are exactly 

236 complementary (Fig. 3). Therefore, and taking into account that the tracks preserved similarly 

237 (i.e. sub-circular/sub-ovoidal to pointed digit impressions; roughly sub-circular to elliptical pad 

238 tracks; very thin displacement rims in the pad and well-marked in the digit impressions; Figs. 4-

239 9), in our opinion the concave epireliefs are true tracks (sensu Marty, Falkingham & Richter, 

240 2016) and the convex hyporeliefs are their natural casts (sensu Marty, Falkingham & Richter, 

241 2016).

242 In general, the tracks studied here are moderately well preserved (grade 1 sensu 

243 Belvedere & Farlow, 2016), and the true tracks are not elite tracks (sensu Lockley, 1991). In 

244 addition, they are not modified true tracks (sensu Marty, Falkingham & Richter, 2016) because 

245 they lack evidence of physiochemical (e.g. weathering) and/or biological influences after they 

246 were made. Thereby, the shape of these tracks is mainly conditioned by the substrate consistency 

247 (grain size and water content). Recently, Falk et al. (2017) performed neoichnological 

248 experiments that compared the shape of tracks impressed in three different sediments (fine, 

249 medium and coarse sand) with different moisture contents (wet, moist and dry). They concluded 

250 that wet and dry coarse sediments preserve tracks without fine details, but moisture coarse 

251 sediment might preserve the overall track shape and details as claw impessions. As has been 

252 previously commented, the tracking surface is a medium to coarse sandstone, and tracks have 

253 depth digit impressions with extruded rims.

254 Therefore, and according to Falk et al. (2017) experiments, the trackmakers most likely 

255 walked on humid, not waterlogged nor dry, coarse sediments with a moderately plastic 

256 behaviour, able to record the main anatomical features of the autopods.
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257 Track description

258 The material are manus and pes tracks with very low dimensional heteropody, mainly preserved 

259 as tetradactyl impressions, although pentadactyl tracks are also present (MPCA 27029-1/4/6, 

260 MPCA 27029-2/2, MPCA 27029-4/2, MPCA 27029-16/10, MPCA 27029-33/2, MMLM 075-1) 

261 (Figs. 4, 5E-5H, 7A-7D, 8), as well as tridactyl ones displaying only the central digits (MPCA 

262 27029-9/2, MPCA 27029-16/8, MPCA 27029-21/3, MMLM 1/1, MMLM 2/3) (Figs. 6G-6H, 7, 

263 9). Morphologically, manus and pes tracks are strongly symmetrical. Digit traces are commonly 

264 arranged to shape an arcuate pattern that is convex anteriorly, according to which the digit III 

265 trace (the central one) or digit III and IV traces are the most projecting. Variability affecting the 

266 number of digits can occur on the same slab (e.g. MPCA 27029-21, MMLM 2; Figs. 7E-7H, 9E-

267 9H). In the material under study the degree of curvature of the arcuate pattern is variable and 

268 appears more pronounced in some smaller tracks (e.g. MPCA 27029-16/7/9/10; Figs. 7A-7D) 

269 than in larger ones (e.g. MPCA 27029-1/4, MMLM 075-1, MMLM 2/2; Figs. 4, 8E-8H, 9E-9H). 

270 In the smaller tracks (e.g. MPCA27029-16), the morphology of digit traces, their relative spacing 

271 and orientation, as well as the position of pes and manus impression is comparable with that of 

272 the larger tracks. When present, also the sole pad trace resembles that observed in the footprints 

273 of larger dimension. Thus, apart from the degree of curvature, the general morphology remains 

274 consistent despite dimensional differences (see Figs. 4A-4D and 7A-7D).

275 Digit traces can be characterized by a sub-circular/sub-ovoidal morphology (e.g. MPCA 

276 27029-9, MPCA 27029-16, MPCA 27029-21; Figs. 6E-6H, 7), while in other cases they are 

277 markedly pointed (e.g. MPCA 27029-2, MPCA 27029-4, MPCA 27029-5, MPCA 27029-33; 

278 Figs. 4E-4H, 5E-5H, 6A-6D, 8A-8D). These two morphologies can co-exist on the same slab and 

279 within the same set or trackway, thus pertaining to the spectrum of internal variability of the 
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280 material under study. When pointed, the most medial digit traces (i.e. digit I or II imprints and, to 

281 a lesser extent, digit III and IV imprints), both of manus and pes tracks, can be affected by drag 

282 marks. These extramorphological features (see Peabody, 1948) qualitatively range from weakly 

283 hinted and short (e.g. MPCA 27029-1/6, MPCA 27029-2/1, MPCA 27029-3/1/2, MPCA 27029-

284 4/2, MPCA 27029-5, MPCA 27029-9/4/6; Figs. 4, 5, 6) to highly sharp and long (e.g. MMLM 

285 075-1, MMLM 1 and MMLM 2; Figs. 8E-8H, 9A-9D).

286 Central digits are commonly the most deeply and uniformly impressed, both in manus 

287 and pes tracks (e.g. MPCA 27029-4, MPCA 27029-5, MMLM 1; Figs. 5F-5G, 6B-6C, 9B-9C). 

288 When a certain degree of variability is observed, digit III and IV imprints are the most deeply 

289 imprinted (e.g. MPCA 27029-1, MPCA 27029-3, MPCA 27029-16; Figs. 4B-4C, 5B-5C, 7B-

290 7C), followed by digit II and I imprints. The digit V trace, when preserved, is shorter and closer 

291 to the pad trace than the other digit traces and is only faintly imprinted (e.g. MMLM 075-1, but 

292 see MPCA 27029-16/9/10 for a different configuration of depth of impression; Figs. 7B-7C, 8F-

293 8G).

294 Behind the digit traces, a roughly sub-circular to elliptical sole pad trace can be preserved 

295 (e.g. MPCA 27029-1/2/4/5/6, MPCA 27029-5, MPCA 27029-16/10, MMLM 075-1, MMLM 

296 1/2/4, MMLM 2/1; Figs. 4A-4D, 6A-6D, 7A-7D, 8E-8H, 9). The sole pad trace lies at a short 

297 distance from the base of the central digit traces and commonly approximates the most medial 

298 and lateral digit imprints (e.g. MPCA 27029-1; Figs. 4A-4D). Commonly, the sole pad trace is 

299 separated from central digit traces ahead by a non impressed area, which appears as a groove or 

300 as a ridge depending on the mode of preservation, tapering towards the most medial and lateral 

301 digit imprints. This should not be confused with displacement areas of similar morphology, 

302 which are instead related to digit traces (i.e. thrust of digit pushing the sediment backwardly; Fig. 
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303 10), where this area is not impressed (e.g. MPCA 27029-2, MPCA 27029-3/1/4, MPCA 27029-4, 

304 MPCA 27029-9/3/5, MPCA 27029-21/4, MPCA 27029-33/1/2/3, MMLM 2/3; Figs. 4E-4H, 5, 

305 6E-6H, 7E-7H, 8A-8D, 9E-9H).

306 The sole pad trace is more deeply impressed in its central portion; depth of impression 

307 slightly decreases toward the lateral and distal portion (i.e. close to the non impressed area 

308 behind digit traces, MPCA 27029-1, MMLM 075-1, MMLM 1; Figs. 4B-4C, 8F-8G, 9B-9C).

309 When possible, we tried to define the orientation of the footprint axis with respect to the 

310 trackway midline. The axis of pes tracks is in some cases rotated inwardly with respect to the 

311 trackway midline but it can also be parallel to the trackway midline (e.g. MPCA 27029-9, 27029-

312 16), while manus tracks show a wider range of variability, being both inwardly and outwardly 

313 rotated with respect to the hypothetical trackway midline (e.g. MPCA 27029-1 and MMLM2, 

314 respectively). When possible, measurements and ratios were taken; measurements were 

315 performed taking into account digit III as the homologous point, both for manus and pes tracks. 

316 Results are reported in Table 2 and Table 3.

317 Remarks. The footprints from the Los Menucos ichnosite are characterized by having the 

318 following features: homopodic manus and pes tracks with low dimensional heteropody, up to 

319 five digit imprints aligned, forming an anteriorly convex arch, a sole pad trace more impressed 

320 centrally or centro-laterally. On the basis of these general features, the specimens from Los 

321 Menucos are tentatively referred to as Pentasauropus.

322 The ichnogenus Pentasauropus Ellenberger, 1970 was established on the basis of 

323 material collected and described some years before (Ellenberger, 1955) from the Upper Triassic 

324 lower Elliot Formation (Stormberg Group) of the Karoo Basin of Lesotho (Southern Africa). 

325 Five ichnospecies were originally included in the ichnogenus, namely Pentasauropus erectus, 
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326 Pentasauropus incredibilis, Pentasauropus maphutsengi, Pentasauropus morobongensis and 

327 Pentasauropus motlejoi, which remained unchanged in the subsequent formal listing 

328 (Ellenberger, 1970, 1972). Material from the Ellenberger collection referred to this ichnogenus, 

329 is housed at the University of Montpellier (France) and represented by six casts originally 

330 mentioned as Pentasauropus incredibilis (LES 054 1-3, LES 054 4), Pentasauropus 

331 morobongensis (LES 005) Tetrasauropus gigas (LES 038), plus some missing specimens (see 

332 D’Orazi Porchetti & Nicosia, 2007, and reference therein for a complete assessment of inventory 

333 numbers).

334 After the original and subsequent publications of Ellenberger (1955, 1970, 1972), the 

335 ichnogenus was considered as valid by Olsen & Galton (1984), Lockley & Meyer (2000), 

336 D’Orazi Porchetti & Nicosia (2007), Bordy, Abrahams & Sciscio (2017), and Hunt, Lucas & 

337 Klein (2018). D’Orazi Porchetti & Nicosia (2007) emended the diagnosis of the ichnogenus to 

338 appoint the type ichnospecies and considered the five ichnospecies as synonyms of 

339 Pentasauropus incredibilis. Differences in track pattern were considered as originated by 

340 dimensional constraints and/or behavioural factors, and the main footprint characters (e.g. 

341 number and arrangement of digits, heteropody) do not justify an ichnospecies separation 

342 (D’Orazi Porchetti & Nicosia, 2007). Moreover, agreeing with Lockley & Meyer (2000), the 

343 same authors assigned tracks originally referred to as Tetrasauropus gigas to Pentasauropus.

344 In agreement with the emended ichnogeneric diagnosis by D’Orazi Porchetti & Nicosia 

345 (2007), the arcuate pattern of manus and pes tracks derived from the five equally spaced claw or 

346 ungual traces (those of imprints of digit II, III and IV are the largest). In other cases a roughly 

347 rounded sole pad is observed behind claw or ungual traces (LES 053 A, B, C in Ellenberger, 

348 1972, pl. IV and V and LES 038). According to D’Orazi Porchetti & Nicosia (2007), the axis of 
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349 the pes impressions is always inwardly rotated, while that of the manus impression can range 

350 from slightly inwardly rotated (LES 052 B and LES 053 A) to slightly outwardly rotated (LES 

351 038 and LES 052 A). Although long and complete trackways are not represented, this character 

352 seems to characterize also the studied material based on the reconstruction of an hypothetical 

353 midline (e.g. Fig. 4A-D, footprints 4 and 6; Fig. 5A-D, footprint 2). In some cases, short stride 

354 length in relation to overall footprint dimension could indicate a primary overstepping. However, 

355 in our opinion this trackway character cannot be ensured on the basis of the material under study 

356 and most probably, taking into account the complexity of the dynamic of locomotion, cannot be 

357 inferred only from the stride lengths and footprint dimensions. Thus, for the time being, we 

358 prefer not to stress the interpretation about the overstepping.

359 Outside of South Africa, tracks tentatively referred to the ichnogenus were reported from 

360 Upper Triassic Chinle Group of Utah (Lockley & Hunt, 1995; Hunt-Foster et al., 2016) and 

361 Colorado (Gaston et al., 2003, fig. 12B), both USA. Moreover, tracks possibly referable to 

362 Pentasauropus were found in the Gettysburg Shale of the Gettysburg Basin of the Newark 

363 Supergroup (Baird pers. comm in Olsen & Galton, 1984). In Argentina, apart from the report 

364 from the Triassic Vera Formation (Río Negro province, Domnanovich et al., 2008), tracks 

365 referred to as Pentasauropus were described from the Carnian Portezuelo Formation (‘Type Q2’ 

366 sensu Marsicano & Barredo, 2004). In addition, tracks with similar morphology to 

367 Pentasauropus were also reported from the Middle Triassic Cerro de Las Cabras Formation 

368 (Mendoza province, as cf. Pentasauropus in de Valais, Melchor & Bellosi, 2006) and from the 

369 Portezuelo Formation (San Juan province) as ‘huellas cuadrúpedas tipo C’ (de Valais, 2008) but, 

370 for the time being, this material remains in open nomenclature.

371 Zoological attribution
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372 Several attempts to identify the trackmaker of Pentasauropus have been made. The ichnogenus 

373 was originally attributed to amphibians, basal melanorosaurid, ornithischian, anapsid and basal 

374 sauropod (Ellenberger & Ellenberger, 1958: p. 67; Ellenberger, 1970, 1972). Moreover, Haubold 

375 (1974, 1984) referred Pentasauropus to a sauropod or therapsid trackmaker. A dicynodont was 

376 also proposed as producer by Olsen & Galton (1984), Anderson, Anderson & Cruickshank 

377 (1998) and Lockley & Meyer (2000). Galton & Heerden (1998) attributed Pentasauropus to 

378 large anomodont dicynodonts. D’Orazi Porchetti & Nicosia (2007) accepted the attribution to a 

379 dicynodont, observing a good match between the skeletal autopodia of Triassic dicynodonts and 

380 the structure of digital impressions of the manus and pes, apart from the strong homopody and 

381 the limb posture (see also Walter, 1986). Recently, the kannemeyeriiform dicynodont 

382 Pentasaurus goggai from the lower Elliot Formation of South Africa has been referred as 

383 probable trackmaker of Pentasauropus tracks from the same lithostratigraphic unit (Kammerer, 

384 2018).

385 The studied material from the Los Menucos locality presents some features that allow 

386 corroboration of the therapsid interpretations about trackmaker identity. At the same time, 

387 attempts to identify the putative trackmaker opens the way for new inferences about the posture 

388 of the autopodia.

389 Limb posture kept by Pentasauropus trackmakers during the step cycle can be tentatively 

390 inferred from the trackway pattern (Peabody, 1948, 1959; Kubo & Benton, 2009; Kubo & Ozaki, 

391 2009), even if this interpretation is often far from being simple and linear (Crompton & Jenkins, 

392 1973). For example, it must be noted that non therapsid-synapsids with sprawling posture can 

393 left trackways in which the left and right tracks lie near to the axial midline (i.e. narrow internal 

394 trackway width mirroring a semi-erect to erect posture of the trackmaker) by adopting side to 
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395 side flexion of the trunk (Hopson, 2015). The same was described for a therapsid trackway by 

396 Smith (1993). Some degree of lateral undulation of the vertebral column causing swing of the 

397 hips has been also described on the basis of skeletal remains (Fröbisch, 2006: p. 1305). However, 

398 in sprawling trackmakers adopting trunk flexion and producing narrow trackways, tracks are 

399 mainly inwardly oriented with respect to the trackway midline (see Hopson, 2015, fig. 8.1). In 

400 the studied material, the orientation of footprint axis (passing through digit III) is parallel to the 

401 travel direction. This feature, combined with the extremely narrow internal trackway width 

402 measured from pes tracks (see Table 2 and Figs. 4A-4D, 5A-5D, 6E-6H, 7A-7D), allow to 

403 exclude a sprawling posture and most likely indicate a semi-erect posture for the trackmaker hind 

404 limbs. A lateral trunk undulation during the step cycle could have been also adopted by the 

405 Pentasauropus trackmaker and it would account for the variable pace angulation measured in 

406 manus tracks, possibly coupled with low trackmaker velocity.

407 A more upright posture with respect to that of non-therapsid synapsids is also indirectly 

408 sustained by the symmetry of manus and pes tracks. This character mirrors a symmetry of the 

409 trackmaker’s autopods, a character combined with the acquisition of upright posture and limbs 

410 parallel to the sagittal plane of the trackmaker during locomotion (Romer, 1956; Hopson, 1995).

411 Number of digit imprints, symmetry of manus and pes track, and the morphology of 

412 unguals enable us to corroborate previous interpretations and suggest a dicynodont as the most 

413 probable trackmaker of Pentasauropus. Also the limb posture as supposed from tracks 

414 sufficiently matches those discussed for Triassic dicynodonts by Fröbisch (2006).

415 Pentasauropus producers, based on the type specimens, were characterized by a very low 

416 dimensional heteropody and by morphological homopody. Thus, mainly based on these 

417 characters, a quite confident match can be found, among dicynodonts, with Kannemeyeriiformes 
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418 [see, for example, the descriptions and reconstructions of the autopods of Dinodontosaurus by 

419 Morato (2006:fig. 30), Tetragonias njalilus by Cruickshank (1967:fig. 17) and by Fröbisch 

420 (2006:fig. 9)]. Kannemeyeriiform manual and pedal skeletal elements are in fact generally 

421 homomorphic and conservative across the clade, as recently stated by Kammerer (2018). 

422 Variation in manus morphology among kannemeyeriiforms is only limited to minor differences 

423 in ungual shape (Lucas, 2002). Digit traces are here considered roughly compatible with broad 

424 ungual phalanges characterized by rounded tips but the exact shape cannot be determined. The 

425 morphological variability of ungual traces most likely depends from substrate conditions at the 

426 time of impression and, as discussed below, from the dynamics of the locomotion of the 

427 producers.

428 Among the other possible producers already mentioned in the literature, are excluded: i) 

429 an amphibian trackmaker, for the pentadactyl manus and general morphology; ii) an anapsid 

430 trackmaker, for the trackway configuration and footprint axis orientation; iii) a sauropodomorph 

431 and sauropod trackmaker, for the trackway configuration, footprint axis orientation and 

432 morphological homopody.

433 The posture of the autopodia of the Pentasauropus trackmaker that can be inferred from 

434 the ichnological material differs from that inferable from the description by Cruickshank (1967) 

435 description. In those Pentasauropus tracks that show an impression of the sole or palm, a 

436 negligible distance between the distal margin of the sole/palm pad trace and the proximal margin 

437 of the central digit traces, further reducing towards digits I and V, was observed (Table 3). This 

438 feature most likely indicates that not all of the foot bones contacted the ground during 

439 locomotion, at the same time constraining the orientation of metapodial and basipodial elements, 

440 and most likely also that of the more proximal phalanges, in the articulated autopod. Thus, the 
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441 reconstruction proposed here contemplates an inclined position of pedal and manual elements in 

442 the autopods of Pentasauropus producers. The sub-circular to elliptical pad trace behind the digit 

443 traces is consequently considered compatible with an extended fleshy pad below the basipodials 

444 and likely metapodials of the autopods of the producer.

445

446 DISCUSSION

447 The autopod posture of Pentasauropus trackmaker

448 Compared to the ichnogenus Pentasauropus, tracks from Los Menucos Group have allowed us to 

449 verify previous ichnological interpretations based on the reference material from Lesotho and 

450 have enabled us to corroborate the identification of a putative trackmaker and its limb posture. 

451 Moreover, the studied material sheds light on the trackmaker autopod posture. The smaller tracks 

452 (e.g. MPCA27029-16) are here interpreted to have been left by a juvenile trackmaker and 

453 allowed to appreciate that track morphology and structure are uniform in different ontogenetic 

454 stages of the same type of producer.

455 Number of digit imprints, symmetry of manus and pes track, morphology of ungual 

456 traces, limb posture and morphologically homopodic manus and pes tracks indicate the producer 

457 of Pentasauropus to be sought among dicynodonts of the clade Kannemeyeriiformes (Fröbisch, 

458 2009). Within this panorama and accepting the proposed palaeozoological attribution, 

459 Pentasauropus tracks represent a valuable datum, further enriching the dicynodont record of the 

460 Triassic of Argentina (Cox, 1962; Bonaparte, 1969, 1971, 1981; Lucas, 1998, 2010, 2018; 

461 Rogers et al., 2001; Zavattieri & Arcucci, 2007; Fröbisch, 2009; Domnanovich & Marsicano, 

462 2012; Abdala et al., 2013; Mancuso et al., 2014).
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463 The studied tracks enabled us to improve the knowledge of the therapsid faunas from 

464 south-western Gondwana, especially about their locomotion and functionality of fore and hind 

465 autopods. The inferred limb posture of the Pentasauropus trackmaker finds a match with the 

466 osteological data provided by the therapsid record (e.g. King, 1981a; Fröbisch, 2006) and allows 

467 to corroborate interpretations derived from body-fossils. Meristic and qualitative track characters 

468 and trackway parameters, if jointly considered, suggest that the Pentasauropus trackmaker had a 

469 semi-erect to erect posture, especially the hind limbs (Fig. 11A-B).

470 Contrarily to what was stated in the past about therapsid posture (Charig, 1980; 

471 Bonaparte, 1982), therapsid-grade limb osteology was characterized by several important 

472 modifications, which indicate a more parasagittal stance of the limbs (Romer, 1956; Boonstra, 

473 1967; Jenkins, 1971), especially if compared with the prevalent sprawling posture of non-

474 therapsid synapsids (Romer, 1956; Hopson, 2015). Modifications of the scapula and the glenoid 

475 have allowed the elbow to rotate inwardly, bringing the humerus closer to the sagittal plane 

476 (Walter, 1986). The iliac blade was expanded anteriorly and allowed the insertion of a larger 

477 iliofemoralis muscle, enabling femoral retraction (Romer, 1956; Walter, 1986). Moreover, the 

478 femoral head folded medially and enabled a more parasagittal position of the propodial (Romer, 

479 1922; Walter, 1986).

480 Concerning the dynamics of locomotion in non-mammalian therapsids, Kemp (1978) 

481 proposed a dual-gait condition, intermediate between the plesiomorphic gait of amniotes 

482 (Sumida & Modesto, 2001) and the mammalian erect gait, based on the therocephalian 

483 Regisaurus jacobi. This condition has proved to be not possible for derived dicynodonts, such as 

484 Kingoria nowacki (King, 1985) and for kannemeyeriiformes dicynodonts, all characterized by an 

485 ankle joint inhibiting extensive rotational movements needed for dual-gait locomotion (Fröbisch, 
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486 2006). In dicynodonts, the forelimb step cycle was performed in an abducted (i.e. sprawling) 

487 posture, whereas the hind limb step cycle passed from a primitive abducted posture in earlier 

488 members, such as Robertia broomiana (see King, 1981b) to an adducted (i.e. erect) posture in 

489 more derived taxa (Walter, 1986), such as Dicynodon trigonocephalus and Tetragonias njalilus 

490 (e.g. King, 1981a; Fröbisch, 2006).

491 The autopod posture proposed for the studied tracks quite differ from the information and 

492 reconstructions derived from the body-fossil record. As stated before, the alleged autopodial 

493 structure inferred from Pentasauropus tracks is dictated by the relative distance between the base 

494 of digital (ungual) traces and the distal edge of the sub-circular pad trace, which has been 

495 referred to a fleshy pad behind the basipodial. The observed track morphology seems to imply 

496 that, except for acropodial and the fleshy pad, no other bony elements of the producer’s autopods 

497 were imprinted on the substrate, consequently indicating that they were likely raised in position. 

498 Such a configuration is considered valid for the foot bones in a static-state and would fall at least 

499 within a subunguligrade posture, implying that the phalanges were the only bony pedal elements 

500 contacting the ground in a static stance. However, if the three-dimensional footprint morphology 

501 is considered (i.e. ungual traces and pad trace behind them) concurrently with spatial data 

502 regarding pad trace/digit trace distance (Table 2), it is evident that the unguals were not the only 

503 pedal elements performing the cycle of locomotion. Thus, the foot cannot be regarded as 

504 subunguligrade from a dynamic point of view. During locomotion, the body weight of 

505 Pentasauropus producers was not carried only by phalanges but, most likely, the entire foot 

506 supported the load (Figs. 11, 12). The fleshy pad behind the basipodials actively contacted the 

507 ground most likely during the touch-down and weight-bearing phase, as was already inferred 

508 from footprint depth of impression in other producers (e.g. Romano, Citton & Nicosia, 2016; 
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509 Citton et al., 2017). Thus, from a functional standpoint, the autopod posture of the 

510 Pentasauropus trackmaker can be regarded as plantiportal (sensu Michilsens et al., 2009). Such a 

511 posture could have been accompanied by an arched configuration of the articulated metapodials 

512 and at least of the proximal phalanges (Kümmell & Frey, 2012) (Fig. 11C-D). Metacarpals 

513 forming an arched configuration when articulated were described in a specimen of Tetragonias 

514 njalilus (Cruickshank, 1967), and this kind of configuration could have been accompanied by 

515 little movement capabilities (Rubidge & Hopson, 1996) of the metapodials and could have 

516 dictated the observed relative position of the ungual traces. A manual/pedal structure like the one 

517 here hypothesized could have maintained a large surface in contact with the ground by means of 

518 cartilaginous elements and fleshy cushions on which the basipodials rested, ensuring a 

519 supportive role of the whole autopods during the cycle of locomotion and particularly during the 

520 maximum load. Digit traces were formed by acropodials deeply penetrating into the substrate 

521 during the final weight-bearing phase, kick-off and thrust. This could explain the different depth 

522 of the impression that is observed in completely preserved tracks. Among digits the series II-IV, 

523 and with a lesser extent digit I, played a major role in performing the end of the cycle of 

524 locomotion. Drag traces affecting the most medial digits could be formed during the recovery of 

525 the autopod at the end of the step.

526 A functionally plantiportal posture has been described in several mammals regardless of 

527 body-weight (e.g. South-American coati, aardvark, armadillo, coypu, among others; see 

528 Michilsens et al., 2009) but also can represent a functional strategy, co-occurrent with a 

529 graviportal structure of the limbs. A subunguligrade-plantiportal foot implies a complex set of 

530 associated characters in the autopodial anatomy of the Pentasauropus producer. Taking into 

531 account the large but not gigantic dimensions of the putative trackmakers (e.g. Morato, 2006, 
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532 estimates a body mass between 23- 32 kg for juvenile of Dinodontosaurus and exceeding 300 kg 

533 for adults, while Mancuso et al., 2014, indicate a body mass of 362 kg for Dinodontosaurus 

534 platyceps and 170 kg for Dinodontosaurus brevirostris), most likely the subunguligrade-

535 plantiportal autopod posture was promoted in these dicynodonts regardless of the body-

536 dimension, not necessarily implying an increase in body size but being a pre-requisite for 

537 lineages experiencing such an evolutionary path.

538 The Vera Formation and the track record: chronostratigraphical observations

539 As before stated, Pentasauropus or Pentasauropus-like footprints were reported to date mainly 

540 from Upper Triassic units. In Argentina, Pentasauropus tracks were reported both from Upper 

541 Triassic unit (e.g. Portezuelo Formation) and from late Middle Triassic unit (Cerro de Las Cabras 

542 Formation). In Lesotho (Southern Africa) Pentasauropus was reported from the lower Elliot 

543 Formation (Stormberg Group), which lies above the Carnian Molteno Formation. The lower 

544 Elliot Formation was considered Upper Triassic by Ellenberger (1970), Norian-Rhaetian by 

545 Olsen & Galton (1984) and Norian by Knoll (2004), Lucas & Hancox (2001) and Lucas (2018), 

546 based on fossil remains, both bones and traces. Recently, the Elliot Formation (lower and upper) 

547 was discussed by means of magnetostratigraphy, and fixed as Upper Triassic - Lower Jurassic by 

548 Sciscio et al. (2017). The same authors confirmed a Norian-Rhaetian age for the lower Elliot 

549 Formation and correlated the unit with the Los Colorados Formation in the Ischigualasto-Villa 

550 Union Basin of Argentina (Sciscio et al., 2017). A Late Triassic age of Pentasauropus-bearing 

551 levels of the Vera Formation is here proposed.

552 At the same time, the recent datations provided by Luppo et al. (2017) contrast with the 

553 Late Triassic age historically proposed for the whole Vera Formation and in particular for the 

554 deposits bearing the ‘Dicroidium’ flora and Dicynodontipus. On the basis of the new isotopic 
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555 ages, Luppo et al. (2017) concluded that the levels bearing the ‘Dicroidium’-type flora (Artabe, 

556 1985a, b) are intercalated between deposits dated 252 ± 2 Ma (Changhsingian, Late Permian) 

557 and 248 ± 2 Ma (Olenekian, Early Triassic). These authors also suggested that the stratigraphic 

558 position of the deposits exposed in the Tchering quarry, west of Los Menucos town, where 

559 Dicynodontipus (sensu Melchor & de Valais, 2006) come from, is not yet completely clear. 

560 Nevertheless, this quarry is spatially close to the outcrops where geochronological data were 

561 provided by Luppo et al. (2017). On the other hand, the Yancaqueo farm from which the 

562 Pentasauropus footprints come, is located east of Los Menucos town and lacks detailed 

563 geochronological and geological studies.

564 Thus, taking into account these new data and the chronostratigraphical distribution of 

565 Dicynodontipus (e.g. Haubold, 1983; Ceoloni et al., 1988; Retallack, 1996; de Klerk, 2002; 

566 Marsicano et al., 2004; Hunt & Lucas, 2007; Klein & Lucas, 2010; Costa da Silva, Sedor & 

567 Sequeira Fernandes, 2012; Fichter & Kunz, 2013; Díaz-Martínez et al., 2015), the previously 

568 proposed Late Triassic age for the whole Vera Formation (i.e. strata bearing Dicynodontipus and 

569 Pentasauropus, respectively) is here questioned.

570

571 CONCLUSIONS

572 Large pentadactyl tracks from the Upper Triassic Vera Formation of the Los Menucos Group 

573 (Río Negro province, North Patagonia, Argentina) were studied and discussed in terms of 

574 palaeobiological attribution.

575 The tracks are currently referred to as Pentasauropus Ellenberger 1970, an ichnotaxon 

576 established from the Upper Triassic lower Elliot Formation (Stormberg Group) of Karoo Basin 

577 (Lesotho, Southern Africa).
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578 Material under study allowed to more effectively appreciate ichnotaxon variability and 

579 proved to be significant for a better definition of the locomotor dynamics of the producer and 

580 particularly of its foot anatomy.

581 Track and trackway parameters indicate a dicynodont as the most probable producer, and 

582 a relationship with the South-American members of the clade Kannemeyeriiformes is proposed.

583 An affinity between the Gondwanan therapsid ichnofauna and that from South Africa is 

584 evident, as well as functional features of the autopods of the producer are considered 

585 significantly similar and may be related to the same autopodial anatomy shared by the clade.

586 The autopod posture for the Pentasauropus trackmaker has been interpreted as 

587 subunguligrade in static posture and plantiportal during locomotion. A large pad of connective 

588 tissue behind the basipodials and partially metapodials can be proposed for the heavy-footed 

589 producers of Pentasauropus. The cushion allowed to decrease the stress transferred to the bones 

590 and spread it on a larger area during the touch-down and weight-bearing phase of the locomotion 

591 cycle.

592 Finally, a Late Triassic age for the Pentasauropus-bearing levels of Vera Formation is 

593 confirmed, based on the age of other lithostratigraphic units bearing Pentasauropus in South 

594 Africa and United States. At the same time, a detailed stratigraphic study of the lower, bearing-

595 Dicynodontipus, strata of the Vera Formation is needed to corroborate palaeontological and 

596 geochronological data and to account the validity of the Vera Formation as lithostratigraphic 

597 unit.

598
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954 Figure captions

955 Figure 1 The Los menucos area. (A) Location map and geological sketch of Los Menucos area 

956 (from Labudía & Bjerg, 2005, redrawn and slightly modified). White star indicates Estancia 

957 Yancaqueo, from which the Pentasauropus footprints come. (B) Simplified stratigraphic 

958 section of the Los Menucos Group (from Labudía & Bjerg, 2005, redrawn and slightly 

959 modified).

960 Figure 2 Thin sections (MPCA 27029/19.1 and MPCA 27029/19.2) of track-bearing slab MPCA 

961 27029-19. Inequigranular, epiclastic texture with anhedral and subhedral phenocrysts at the 
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962 base (A) and middle portion (B) of the track-bearing slab MPCA 27029-19. (C, D) 

963 Equigranular less epiclastic texture indicating a minor sedimentary reworking of the trampled 

964 surface.

965 Figure 3 Tracks mode of preservation. Convex hyporeliefs (A, C) fitting with concave epireliefs 

966 (B, D) preserved on slab MMLM 075-1 (true tracks and natural casts, respectively).

967 Figure 4 Photos, three-dimensional models and interpretative drawings of the studied material. 

968 (A) Track-bearing slabs MPCA 27029-1; (B) Solid three-dimensional model of (A); (C) 

969 Colour topographic profile and (D) interpretative drawing of (A). (E) Track-bearing slabs 

970 MPCA 27029-2; (F) Solid three-dimensional model of (E); (G) Colour topographic profile 

971 and (H) interpretative drawing of (E). In (A)-(D), footprint 2 and 5, note the non-impressed 

972 area between the sole pad trace and the base of digit traces. In (E)-(H) note the displacement 

973 areas behind digit traces, interpreted as the result of the thrust of digit pushing the sediment 

974 backwardly.

975 Figure 5 Photos, three-dimensional models and interpretative drawings of the studied material. 

976 (A) Track-bearing slabs MPCA 27029-3; (B) Solid three-dimensional model of (A); (C) 

977 Colour topographic profile and (D) interpretative drawing of (A). (E) Track-bearing slabs 

978 MPCA 27029-4; (F) Solid three-dimensional model of (E); (G) Colour topographic profile 

979 and (H) interpretative drawing of (E). Note the digit trailing marks slightly affecting the digit 

980 traces of footprint 2 in (A)-(D), which are absent in footprints showed in (E)-(H) where digit 

981 traces are roughly sub circular in morphology.

982 Figure 6 Photos, three-dimensional models and interpretative drawings of the studied material. 

983 (A) Track-bearing slabs MPCA 27029-5; (B) Solid three-dimensional model of (A); (C) 

984 Colour topographic profile and (D) interpretative drawing of (A). (E) Track-bearing slabs 
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985 MPCA 27029-9; (F) Solid three-dimensional model of (E); (G) Colour topographic profile 

986 and (H) interpretative drawing of (E).

987 Figure 7 Photos, three-dimensional models and interpretative drawings of the studied material. 

988 (A) Track-bearing slabs MPCA 27029-16, produced by a juvenile trackmaker; (B) Solid 

989 three-dimensional model of (A); (C) Colour topographic profile and (D) interpretative 

990 drawing of (A). (E) Track-bearing slabs MPCA 27029-21; (F) Solid three-dimensional model 

991 of (E); (G) Colour topographic profile and (H) interpretative drawing of (E). The general 

992 morphology and structure of footprints 6-10 in (A)-(D), left by a juvenile trackmaker, is 

993 identical to that characterizing larger footprints, even when preserved only as digit traces.

994 Figure 8 Photos, three-dimensional models and interpretative drawings of the studied material. 

995 (A) Track-bearing slabs MPCA 27029-33; (B) Solid three-dimensional model of (A); (C) 

996 Colour topographic profile and (D) interpretative drawing of (A). (E) Track-bearing slabs 

997 MMLM 075-1; (F) Solid three-dimensional model of (E); (G) Colour topographic profile and 

998 (H) interpretative drawing of (E). In (E)-(H) note the long and sharp digit trailing marks.

999 Figure 9 Photos, three-dimensional models and interpretative drawings of the studied material. 

1000 (A) Track-bearing slabs MMLM 1; (B) Solid three-dimensional model of (A); (C) Colour 

1001 topographic profile and (D) interpretative drawing of (A). (E) Track-bearing slabs MMLM 2; 

1002 (F) Solid three-dimensional model of (E); (G) Colour topographic profile and (H) 

1003 interpretative drawing of (E). In (A)-(D) note the long and sharp digit trailing marks affecting 

1004 footprints 2 and 4, resembling those of Figure 8E-H.

1005 Figure 10 Morphological and extramorphological features identified on the studied material. (A) 

1006 Manus track MPCA 27029/2 and (B) interpretative drawing. (C) Pes track MPCA 27029-1/5 
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1007 and (D) interpretative drawing. Extramorphological features are in blue and grey, 

1008 morphological features are in black.

1009 Figure 11 Limb and autopod posture in the Pentasauropus trackmaker. Simplified reconstruction 

1010 of limb posture in back (A) and lateral (B) views. Simplified reconstruction of zeugopodials 

1011 and hind autopod in lateral (C) and bottom (D) views. In colour the possible extension of the 

1012 fleshy cushion on which the basipodials rested, ensuring support during locomotion. See the 

1013 supplementary video to get a more complete view of the reconstruction. Artwork by Fabio 

1014 Manucci.

1015 Figure 12 Speculative in vivo reconstruction (based on Dinodontosaurus) of a 

1016 kannemeyeriiformes dicynodont, a most probable producer of Pentasauropus tracks. 

1017 Reconstruction in back (A) and lateral (B) view of the trackmaker walking in amble gait. See 

1018 the supplementary video to get a more complete view of the reconstruction. Artwork by Fabio 

1019 Manucci.

1020 Table captions

1021 Table 1 Photogrammetric report. Main processing parameters of the photogrammetric models 

1022 (from Agisoft Photoscan Professional reports).

1023 Table 2 Mean measurements (in cm) of track and trackway parameters. ETW, external trackway 

1024 width; Fl, footprint length; Fw, footprint width; GAD, gleno-acetabular distance: (a), 

1025 ‘primitive’ alternate pace (the trunk length of the producer is underestimated); (b), alternate 

1026 pace; (c), amble (a, b, c, considering primary overlap sensu Leonardi, 1987); ITW, internal 

1027 trackway width; Mpa, manus pace angulation; Mpl, manus pace length; Msl, manus stride 

1028 length; Ppa, pes pace angulation; Ppl, pes pace length; Psl, pes stride length; Psl/GAD, pes 
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1029 stride length/gleno-acetabular distance ratio; ETW/SL, external trackway width/stride length 

1030 ratio.

1031 Table 3 Sole pad-ungual trace distance. Distance (in cm) between the distal margin of the sole 

1032 pad trace and the proximal margin of the digit traces in complete Pentasauropus footprints. 

1033 The measurements most likely indicate a raised and inclined position of the metapodial 

1034 elements of fore and hind foot in the Pentasauropus trackmaker.

PeerJ reviewing PDF | (2018:02:25877:1:1:NEW 7 Jun 2018)

Manuscript to be reviewed



Figure 1

The Los menucos area.

(A) Location map and geological sketch of Los Menucos area (from Labudía & Bjerg, 2005,

redrawn and slightly modified). White star indicates Estancia Yancaqueo, from which the

Pentasauropus footprints come. (B) Simplified stratigraphic section of the Los Menucos Group

(from Labudía & Bjerg, 2005, redrawn and slightly modified).
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Figure 2

Thin sections (MPCA 27029/19.1 and MPCA 27029/19.2) of track-bearing slab MPCA

27029-19.

Inequigranular, epiclastic texture with anhedral and subhedral phenocrysts at the base (A)

and middle portion (B) of the track-bearing slab MPCA 27029-19. (C, D) Equigranular less

epiclastic texture indicating a minor sedimentary reworking of the trampled surface.
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Figure 3

Tracks mode of preservation.

Convex hyporeliefs (A, C) fitting with concave epireliefs (B, D) preserved on slab MMLM 075-1

(true tracks and natural casts, respectively).
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Figure 4

Photos, three-dimensional models and interpretative drawings of the studied material.

(A) Track-bearing slabs MPCA 27029-1; (B) Solid three-dimensional model of (A); (C) Colour

topographic profile and (D) interpretative drawing of (A). (E) Track-bearing slabs MPCA

27029-2; (F) Solid three-dimensional model of (E); (G) Colour topographic profile and (H)

interpretative drawing of (E). In (A)-(D), footprint 2 and 5, note the non-impressed area

between the sole pad trace and the base of digit traces. In (E)-(H) note the displacement

areas behind digit traces, interpreted as the result of the thrust of digit pushing the sediment

backwardly.

PeerJ reviewing PDF | (2018:02:25877:1:1:NEW 7 Jun 2018)

Manuscript to be reviewed



PeerJ reviewing PDF | (2018:02:25877:1:1:NEW 7 Jun 2018)

Manuscript to be reviewed



Figure 5

Photos, three-dimensional models and interpretative drawings of the studied material.

(A) Track-bearing slabs MPCA 27029-3; (B) Solid three-dimensional model of (A); (C) Colour

topographic profile and (D) interpretative drawing of (A). (E) Track-bearing slabs MPCA

27029-4; (F) Solid three-dimensional model of (E); (G) Colour topographic profile and (H)

interpretative drawing of (E). Note the digit trailing marks slightly affecting the digit traces of

footprint 2 in (A)-(D), which are absent in footprints showed in (E)-(H) where digit traces are

roughly sub circular in morphology.
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Figure 6

Photos, three-dimensional models and interpretative drawings of the studied material.

(A) Track-bearing slabs MPCA 27029-5; (B) Solid three-dimensional model of (A); (C) Colour

topographic profile and (D) interpretative drawing of (A). (E) Track-bearing slabs MPCA

27029-9; (F) Solid three-dimensional model of (E); (G) Colour topographic profile and (H)

interpretative drawing of (E).
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Figure 7

Photos, three-dimensional models and interpretative drawings of the studied material.

(A) Track-bearing slabs MPCA 27029-16, produced by a juvenile trackmaker; (B) Solid three-

dimensional model of (A); (C) Colour topographic profile and (D) interpretative drawing of (A).

(E) Track-bearing slabs MPCA 27029-21; (F) Solid three-dimensional model of (E); (G) Colour

topographic profile and (H) interpretative drawing of (E). The general morphology and

structure of footprints 6-10 in (A)-(D), left by a juvenile trackmaker, is identical to that

characterizing larger footprints, even when preserved only as digit traces.

PeerJ reviewing PDF | (2018:02:25877:1:1:NEW 7 Jun 2018)

Manuscript to be reviewed



PeerJ reviewing PDF | (2018:02:25877:1:1:NEW 7 Jun 2018)

Manuscript to be reviewed



Figure 8

Photos, three-dimensional models and interpretative drawings of the studied material.

(A) Track-bearing slabs MPCA 27029-33; (B) Solid three-dimensional model of (A); (C) Colour

topographic profile and (D) interpretative drawing of (A). (E) Track-bearing slabs MMLM 075-

1; (F) Solid three-dimensional model of (E); (G) Colour topographic profile and (H)

interpretative drawing of (E). In (E)-(H) note the long and sharp digit trailing marks.
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Figure 9

Photos, three-dimensional models and interpretative drawings of the studied material.

(A) Track-bearing slabs MMLM 1; (B) Solid three-dimensional model of (A); (C) Colour

topographic profile and (D) interpretative drawing of (A). (E) Track-bearing slabs MMLM 2; (F)

Solid three-dimensional model of (E); (G) Colour topographic profile and (H) interpretative

drawing of (E). In (A)-(D) note the long and sharp digit trailing marks affecting footprints 2

and 4, resembling those of Figure 8E-H.
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Figure 10

Morphological and extramorphological features identified on the studied material.

(A) Manus track MPCA 27029/2 and (B) interpretative drawing. (C) Pes track MPCA 27029-1/5

and (D) interpretative drawing. Extramorphological features are in blue and grey,

morphological features are in black.
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Figure 11

Limb and autopod posture in the Pentasauropus trackmaker.

Simplified reconstruction of limb posture in back (A) and lateral (B) views. Simplified

reconstruction of zeugopodials and hind autopod in lateral (C) and bottom (D) views. In

colour the possible extension of the fleshy cushion on which the basipodials rested, ensuring

support during locomotion. See the supplementary video to get a more complete view of the

reconstruction. Artwork by Fabio Manucci.
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Figure 12

Speculative in vivo reconstruction (based on Dinodontosaurus) of a kannemeyeriiformes

dicynodont, a most probable producer of Pentasauropus tracks.

Reconstruction in back (A) and lateral (B) view of the trackmaker walking in amble gait. See

the supplementary video to get a more complete view of the reconstruction. Artwork by

Fabio Manucci.
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Table 1(on next page)

Photogrammetric report.

Main processing parameters of the photogrammetric models (from Agisoft Photoscan

Professional reports).

PeerJ reviewing PDF | (2018:02:25877:1:1:NEW 7 Jun 2018)

Manuscript to be reviewed



3D Model
Number 

of images

Camera 

altitude (cm)

Ground 

resolution 

(mm/pix)

RMS 

reprojection 

error

Mean Key 

point size 

(pix)

Scale bars 

total error 

(m)

MPCA 27029-

1
61 55 0.108

0.145637 

(0.595447 pix)
3.99373 0.000211567

MPCA 27029-

2
38 49.6 0.142

0.211741 

(0.749639 pix)
3.83623 0.000120665

MPCA 27029-

3
36 63.8 0.183

0.221627 

(0.663238 pix)
3.1918 0.000101555

MPCA 27029-

4
36 26.2 0.0753

0.225287 

(0.695116 pix)
3.21872 0.000145928

MPCA 27029-

5
25 30.2 0.0867

0.186287 

(0.548475 pix)
3.41294 0.000125956

MPCA 27029-

9
36 31.9 0.0916

0.206052 

(0.638116 pix)
3.27202 0.000154204

MPCA 27029-

16
30 52.3 0.13

0.254353 

(0.874324 pix)
3.64063 0.000179922

MPCA 27029-

21
59 47.3 0.127

0.273984 

(0.529254 pix)
2.28824 0.000184177

MPCA 27029-

33
74 50.2 0.144

0.25616 

(0.993387 pix)
3.90857 0.000121254

MMLM 075-1 54 37.8 0.0898
0.196238 

(0.739726 pix)
3.75732 0.000118491

MMLM 1 77 42.5 0.101
0.222075 

(0.673395 pix)
3.09592 0.00332392

MMLM 2 52 33 0.0949
0.234591 

(0.852769 pix)
3.78559 5.99994e-05

1
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Table 2(on next page)

Mean measurements (in cm) of track and trackway parameters.

ETW, external trackway width; Fl, footprint length; Fw, footprint width; GAD, gleno-acetabular

distance: (a), ‘primitive’ alternate pace (the trunk length of the producer is underestimated);

(b), alternate pace; (c), amble (a, b, c, considering primary overlap sensu Leonardi, 1987);

ITW, internal trackway width; Mpa, manus pace angulation; Mpl, manus pace length; Msl,

manus stride length; Ppa, pes pace angulation; Ppl, pes pace length; Psl, pes stride length;

Psl/GAD, pes stride length/gleno-acetabular distance ratio; ETW/SL, external trackway

width/stride length ratio.
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Specimen Fl Fw Mpl Ppl Mpa Ppa Msl Psl
ET

W
ITW ETW/SL GAD

Psl/GA

D

MPCA 

27029-1

10.6

12.8

8.9

10.3

12.2

42.2

33.3

41.7

40.5
101° 99° 59.5 62.4 50.0 3.65 0.82

46.2 (a)

47.8 (b)

91.6 (c)

1.01

MPCA 

27029-2
/

15.7

13.5
/ / / / / / / / / / /

MPCA 

27029-3
/

12.7

14.7
/ / / / / 63.5 / / / / /

MPCA 

27029-4
/

12.6

13.3
/ / / / / / / / / / /

MPCA 

27029-5
6.6 11.6 / / / / / / / / / / /

MPCA 

27029-9
/

7.4

10.9
28.5

37.0

32.5
/ 81° / 45.5 36 7.36 0.79

40.0 (a)

46.9 (b)

63.1 (c)

0.91

MPCA 

27029-16
5.6

8.1

7.1

21.0

15.0
22.5 100° / 28.5 / 23.0 4.40 0.81

26.0 (a)

33.1 (b)

37.4 (c)

/

MPCA 

27029-21
/ 10.7 /

37.0

34.0

34.5

/ 70° /
37.5

41
38.5 5.85 1.03 / /

MPCA 

27029-33
/

15.4

12.8
/ / / / / 63.5 / / / / /

MMLM 

075-1

10.2

11.8

13.6

9.8
/ / / / / 57.3 / / / / /

MMLM 1
10.2

10.9

13.5

14
/ / / / 52.0 / / / / / /

MMLM 2 /
12.2

11.4
/ / / / 40.5 / / / / / /

1
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Table 3(on next page)

Sole pad-ungual trace distance.

Distance (in cm) between the distal margin of the sole pad trace and the proximal margin of

the digit traces in complete Pentasauropus footprints. The measurements most likely indicate

a raised and inclined position of the metapodial elements of fore and hind foot in the

Pentasauropus trackmaker.
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MPCA 27029-1

Digit I Digit II Digit III Digit IV Digit V

Footprint 2 1.35 1.41 1.84 1.22 /

Footprint 4 1.68 1.66 1.84 1.91 /

Footprint 5 / 1.26 1.45 1.52 1.20

Footprint 6 1.2 1.25 2.18 2.24 1.33

MPCA 27029-5

Digit I Digit II Digit III Digit IV Digit V

Footprint 1 / 0 0.96 1.13 0.4

MPCA 27029-16

Digit I Digit II Digit III Digit IV Digit V

Footprint 10 0.92 0.9 1.1 0.94 0.79

MMLM 075-1

Digit I Digit II Digit III Digit IV Digit V

Footprint 1 1.65 2.09 2.94 2.56 1.45

Footprint 3 / 1.41 1.68 2.19 1.63

Footprint 4 1.95 2.25 2.45 2.25 1.58

MMLM 1

Digit I Digit II Digit III Digit IV Digit V

Footprint 2 1.88 2.53 2.73 2.25 /

Footprint 4 1.59 1.86 2.25 2.12 /

MMLM 2

Digit I Digit II Digit III Digit IV Digit V

Footprint 1 1.66 2.37 2.02 2.27 /

1
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