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Late Triassic pentadactyl tracks from the Los Menucos Group
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on Gondwanan trackmakers’ autopod posture

Paolo Citton - 2  Ignacio Diaz-Martinez “? , Silvina de Valais "> , Carlos Console-Gonella "3

1 CONICET
2 Instituto de Investigacién en Paleobiologia y Geologia (IIPG), General Roca, Argentina

3 Instituto Superior de Correlacién Geoldgica (INSUGEO), Tucuman, Argentina

Corresponding Author: Paolo Citton
Email address: pcitton@unrn.edu.ar

The Los Menucos locality in Patagonia, Argentina, bears a quite well-known ichnofauna
resulting mostly represented by small therapsid footprints. Within this ichnofauna, large
pentadactyl footprints are also represented but to date were relatively under investigated.
These footprints are here analyzed and discussed by a palaeobiological (i.e. trackmaker
identification) standpoint. Besides the classical methodology applied in tetrapod ichnology,
high resolution Digital Photogrammetry method was performed to achieve a more
objective representation of footprint three-dimensional morphologies. Waiting for a future
ichnotaxonomical revision of the Argentinian material, footprints under study are
compared with Pentasauropus, a well-known ichnotaxon established from the Upper
Triassic lower Elliot Formation (Stormberg Group) of Karoo Basin (Lesotho, Southern
Africa). Some track features suggest a therapsid-grade synapsid as potential trackmaker,
to be sought among anomodont dicynodonts (probably Kannemeyeriiformes). While the
interpretation of limbs posture in the producer of Pentasauropus tracks from Los Menucos
locality agree with that described from the dicynodont body fossil record, the autopod
posture does not completely. The relative distance between the impression of the digital
(ungual) bases and the distal edge of the pad trace characterizing the studied tracks likely
indicates a subunguligrade foot posture in static stance but plantiportal during dynamic of
locomotion. The reconstructed posture may have implied an arched configuration of the
articulated metapodials and at least of the proximal phalanges, as well as little movement
capabilities of metapodials. A subunguligrade-plantiportal foot is a novelty among
dicynodonts and, considering the large but not gigantic dimensions of the putative
trackmakers, it was likely promoted independently from the body size, however
representing a pre-requisite for such evolutionary paths. By a biochronological standpoint,
Pentasauropus results a reliable Late Triassic marker and enables confirming the Upper
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Triassic age for the concerning bearing levels of the Los Menucos Group, as well as
probably for other Pentasauropus bearing units in Argentina.
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Abstract

The Los Menucos locality in Patagonia, Argentina, bears a quite well-known ichnofauna
resulting mostly represented by small therapsid footprints. Within this ichnofauna, large
pentadactyl footprints are also represented but to date were relatively under investigated. These
footprints are here analyzed and discussed by a palaecobiological (i.e. trackmaker identification)
standpoint. Besides the classical methodology applied in tetrapod ichnology, high resolution
Digital Photogrammetry method was performed to achieve a more objective representation of
footprint three-dimensional morphologies. Waiting for a future ichnotaxonomical revision of the
Argentinian material, footprints under study are compared with Pentasauropus, a well-known
ichnotaxon established from the Upper Triassic lower Elliot Formation (Stormberg Group) of
Karoo Basin (Lesotho, Southern Africa). Some track features suggest a therapsid-grade synapsid
as potential trackmaker, to be sought among anomodont dicynodonts (probably
Kannemeyeriiformes). While the interpretation of limbs posture in the producer of
Pentasauropus tracks from Los Menucos locality agree with that described from the dicynodont
body fossil record, the autopod posture does not completely. The relative distance between the
impression of the digital (ungual) bases and the distal edge of the pad trace characterizing the
studied tracks likely indicates a subunguligrade foot posture in static stance but plantiportal
during dynamic of locomotion. The reconstructed posture may have implied an arched
configuration of the articulated metapodials and at least of the proximal phalanges, as well as
little movement capabilities of metapodials. A subunguligrade-plantiportal foot is a novelty
among dicynodonts and, considering the large but not gigantic dimensions of the putative
trackmakers, it was likely promoted independently from the body size, however representing a

pre-requisite for such evolutionary paths.

Peer] reviewing PDF | (2018:02:25877:0:1:NEW 16 Mar 2018)


anonymous
Comment on Text
i would be better to write it as one word throughout the manuscript.

anonymous
Comment on Text
it might be better to just describe which regions it has been reported from if it is that well-known - see comments by reviewers. 

anonymous
Comment on Text
It would express yourself a bit more carefully here - maybe be adding "might have applied" 

anonymous
Comment on Text
This sound odd in this context - please rephrase 


Peer]

47 By, a biochronological standpoint, Pentasauropus results-areliable LateFriassie-marker-and

48 enables-eontirming-the- UpperTriassic-age for the concerning bearing levels of the Los Menucos

49  Group, as well as probably for other Pentasauropus bearing units in Argentina.
50

51 Keywords: Pentasauropus, Tracks, Therapsids, Dicynodonts, Triassic, Gondwana, Los
52 Menucos, Patagonia, Trackmakers
53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

Peer] reviewing PDF | (2018:02:25877:0:1:NEW 16 Mar 2018)


anonymous
Cross-Out

anonymous
Inserted Text
From

anonymous
Comment on Text
i feel biostratigraphical would be better in this context as you did not do a quantitative biochronological analysis. 

anonymous
Cross-Out

anonymous
Inserted Text
indicates an Late Triassic age

anonymous
Comment on Text
Not everybody agrees on the utility for age assignments - see comments by reviewer 2


Peer]

72

73

74

75

76

71

78

79

80

81

82

83

84

85

86

87

88

&9

90

91

92

93

94

95

INTRODUCTION

Tetrapod tracks and traces are valuable fossils informing about anatomy (e.g. Carpenter, 1992),
functional adaptations (e.g. Baird, 1980), motion (e.g. Gatesy et al., 1999; Avanzini, Pifiuela &
Garcia-Ramos, 2011; Romano, Citton & Nicosia, 2016) and ethology (e.g. Currie & Sarjeant,
1979; Barnes & Lockley, 1994; Lockley et al., 2016) of extinct animals, greatly expanding the
potential of information that is often precluded to the body-fossil record. The detailed analysis of
tetrapod footprints is therefore dramatically significant for the chance of integrating and, if
necessary, revising data derived from the tetrapod record based on osteological specimens.

The scientific study of tetrapod footprints in Argentina is relatively recent compared to
that of Europe (Duncan, 1831) and North America (Hitchcock, 1836), dating back to the first
half of twentieth century (von Huene, 1931). The first, great contribution to the field of tetrapod
ichnology in Argentina is that of Casamiquela (1964), who devoted himself to the study of
Triassic and Jurassic tetrapod tracks from Patagonia. The work of Casamiquela was followed by
other important contributions, mainly represented by fieldworks and collection of important
tetrapod ichnofaunas from the Ischigualasto-Villa Union Basin (Romer, 1966) and Cuyo Basin
(Bonaparte, 1966), and by the extensive catalog of tetrapod ichnofaunas from South America
provided by Leonardi (1994). Apart from the different ichnological records, the only
comprehensive ichnotaxonomical revision of Triassic tetrapod ichnofaunas from Argentina was
conducted by Melchor & de Valais (2006), who re-discussed eight ichnofaunas spanning the
whole Triassic. Among these, the well-known Los Menucos ichnofauna was largely studied in

the distant and recent past (Casamiquela, 1964, 1975, 1987; Leonardi & de Oliveira, 1990;
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Leonardi, 1994; Domnanovich & Marsicano, 2006; Melchor & de Valais, 2006; de Valais, 2008;
Domnanovich et al., 2008; Diaz-Martinez & de Valais, 2014), resulting dominated by small
therapsid footprints. The bulk of this ichnofauna was historically attributed to different new
ichnotaxa by Casamiquela (1964, 1974), which coined Gallegosichnus garridoi, Calibarichnus
ayestarani, Palaciosichnus zettii, Ingenierichnus sierrai, Rogerbaletichnus aguilerai,
Stipanicichnus bonettii and Shimmelia chiroteroides. These ichnotaxa have been posteriorly
revised by Melchor & de Valais (2006), which considered the ichnogenera Gallegosichnus
Casamiquela, 1964, Calibarichnus Casamiquela, 1964, Palaciosichnus Casamiquela, 1964 and
Stipanicichnus Casamiquela, 1975 to be synonyms of Dicynodontipus and proposed the
abandonment of Ingenierichnus sierrai Casamiquela, 1964, Rogerbaletichnus aguilerai
Casamiquela, 1964 and Shimmelia chirotheroides Casamiquela, 1964 due to the poorly
preservation of the material. Leaving out the report of an undetermined chirotheroids tracks (de
Valais, 2008), a single track referred to as Rhynchosauroides and large pentadactyl footprints
mentioned as Pentasauropus sp. (Domnanovich et al., 2008) constitute up to know the only other
well-represented tetrapod track record from Los Menucos area. However, with respect to
Dicynodontipus, large pentadactyl footprints were under investigated, as well as a detailed
ichnological study focused on track-trackmaker relationships was never performed until now.
An ichnological analysis based on this material from the Triassic Los Menucos Group of
Patagonia Argentina is here proposed and discussed in terms of palacobiology and identity of
trackmaker, shedding lights on the autopodial anatomy of footprint-related Gondwanan

producers and their dynamics of locomotion.

GEOLOGICAL SETTING
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Continental deposits of Triassic age in Argentina were accumulated in different basins in the
northwestern region (La Rioja province), the Cuyo region (Mendoza, San Juan and San Luis
provinces) as well as in the Patagonia region, namely in the Macizo del Deseado (northern sector
of the Santa Cruz province) and in the eastern, central and western sectors of the North
Patagonian Massif (Rio Negro province). These elongated, narrow rift basins with a prevalent
NW-SE and NNW-SSE trends were developed during Permian and Triassic periods and witness
an early evidence of the breakup of the western margin of south-west Gondwana, which occurred
towards the end of the Triassic and the beginning of the Jurassic (Kokogian et al., 1999; Franzese
& Spalletti, 2001; Barredo et al., 2012).

The Triassic tetrapod track record of southern South America is exclusive of three basins,
namely the Ischigualasto-Villa Union Basin (San Juan and La Rioja provinces; e.g. Romer, 1966;
Melchor et al., 2001, 2003; Melchor & de Valais, 2006), the Cuyo Basin (Mendoza and San Juan
provinces; e.g.Bonaparte, 1966; Romer, 1966; Marsicano & Barredo, 2004; de Valais et al.,
2006; de Valais, 2007), located at a palaeolatitude ranging between 35-37°S (Prezzi, Vizan &
Rapalini, 2001) and the Los Menucos Basin (Rio Negro province; e.g. Casamiquela, 1964, 1975;
Manera de Bianco & Calvo, 1999; Domnanovich & Marsicano, 2006; Domnanovich et al., 2008;
Diaz-Martinez & de Valais, 2014), at about 45°S (Prezzi, Vizan & Rapalini, 2001). In the
northern basins the record encompasses most of the Triassic Period, while in the Los Menucos
Basin sedimentation would have taken place in the Late Triassic (Spalletti, 1999).

After the first works of Stipanicic (1967), Stipanicic et al. (1968) and Stipanicic &
Methol (1972, 1980), the Los Menucos Group (also as ‘Complejo Los Menucos’ - Los Menucos
Complex in Cucchi, Busteros & Lema, 2001) was established by Labudia & Bjerg (2001) to

indicate dacitic to rhyolitic ignimbrites, mesosilicic lavas and subordinated Triassic sediments
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exposed around of the Los Menucos town, in the north-western sector of the Nord Patagonian
Massif (Rio Negro province, Argentina; Fig. 1).

This lithostratigraphic unit can lie unconformably, through a non-conformity, on the low
grade metamorphic complex of the Colo Niyeu Formation, Lower Cambrian in age (Martinez
Dopico et al., 2017). Or, according to Labudia & Bjerg (2005, but see Luppo et al., 2017 for a
contrasting stratigraphic assessment), on granitoids of the Permo-Triassic La Esperanza Plutonic
Complex. The upper limit of the Los Menucos Group is marked by an erosive unconformity,
above which Upper Cretaceous continental and marine deposits or Tertiary basalts crop out
(Labudia & Bjerg, 2001). Within the Los Menucos Group two lithostratigraphic units were
defined, namely the Vera Formation and the Sierra Colorada Formation (Labudia & Bjerg,
2001). This subdivision, though on the basis of different nomenclatural ranks, followed that of
Miranda (1969) who recognized two informal members, one volcanic and the other sedimentary
and pyroclastic (“Sedimentitas Keuperianas” sensu Stipanicic et al., 1968) within the Los
Menucos Formation as defined by Stipanicic (1967).

The Vera Formation is mainly composed of volcanic and continental deposits and
typically displays rocks indicative of both volcanics and sedimentary processes (Labudia &
Bjerg, 2001). The sedimentary succession, ranging from 2 to 150 meters in thickness, is mainly
represented by brownish to yellowish conglomerates, made of metamorphic and volcanic clasts
up to 15 centimeters in diameter, white to greenish sandstones and reddish brown to red pelites
(Labudia & Bjerg, 2001). These sediments were laid down inside small basins bordered by
regional and local faults with attitude NE-SW, E-W and NW-SE (Labudia & Bjerg, 2001).
Volcanic ashes, tuffs and tuffites, dacitic pyroclastic flows products and volcanic breccias are

intercalated with epiclastics (Labudia & Bjerg, 2001). Sedimentation took place mainly in
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alluvial plain, floodplains, ephemeral rivers and small lacustrine palacoenvironments (Labudia &
Bjerg, 2001), in a seasonal climate condition with alternating periods of dry and wet conditions
(Gallego, 2010). Sedimentary and volcanoclastic levels within the Vera Formation are
characterized by a very rich palaeoflora, the so-called “Dicroidium type flora”, which is very
common within tuffaceous mudstone (Stipanicic, 1967; Stipanicic & Methol, 1972; Artabe,
1985a, b; Labudia et al., 1995; Labudia & Bjerg, 2001), and by an abundant tetrapod fauna. This
fauna is represented by tetrapod tracks (Casamiquela, 1964, 1975, 1987; Leonardi & de Oliveira,
1990; Leonardi, 1994; Domnanovich & Marsicano, 2006; Melchor & de Valais, 2006; de Valais,
2008; Domnanovich et al., 2008; Diaz-Martinez & de Valais, 2014) preserved on sandstones
with poorly selected grains and with a variable content of tuffaceous breccias. Skeletal-faunafor
the-time-being represented by remains of an amiiform fish (Bogan et al., 2013);4s-very-searee.

The Sierra Colorada Formation is essentially made of ignimbritic volcanic rocks (Labudia
& Bjerg, 2001). Different dates are available for the Los Menucos Group: Rapela et al. (1996)
dated rocks pertaining to the Sierra Colorada Fm. at 222 + 2 Ma (Norian, Late Triassic) with the
Rb/Sr isochron method, while Lema et al. (2008) dated at 206.9 = 1.2 Ma (Rhaetian, Late
Triassic) with the Ar/Ar method. Unfortunately, these dates which were made on rocks
pertaining to the Sierra Colorada Formation and not allow to radiometrically constrain also the
Vera Formation. For this lithostratigraphic unit, on the basis of the “Dicroidium flora” and the
tetrapod ichnofauna (i.e. Dicynodontipus and Pentasauropus, see below) both coming from this
sedimentary facies (Stipanicic, 1967), an Upper Triassic age was proposed.

More recent results, obtained from the basal, middle and upper portion of a 6 km thick
geological section trough the Los Menucos Group (Luppo et al., 2017, figs. 1 and 2), indicate an

age of 257 + 2 Ma (Wuchiapingian, Late Permian) for a rhyolitic ignimbrite, 252 + 2 Ma
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(Changhsingian, Late Permian) for an andesite and 248 = 2 Ma (Olenekian, Early Triassic) for a
dacitic ignimbrite (Luppo et al., 2017). These new data predate the main volcanic activity to an

about 10 Ma period between the Late Permian and the Early Triassic, making the Los Menucos

Group coeval with the La Esperanza Plutono-Volcanic Complex (Luppo et al., 2017) and

conflicting with previous geological and chronostratigraphical reconstructions.

MATERIAL AND METHODS
The present study is based on the direct analysis of track-bearing slabs MPCA 27029-1/5, MPCA
27029-9, MPCA 27029-16, MPCA 27029-21 and MPCA 27029-33 presently stored at the
Museo Provincial Carlos Ameghino (Cipolletti, Rio Negro province, Argentina), MMLM 1 and
MMLM 2 stored at the Museo Municipal de Los Menucos (Los Menucos, Rio Negro province,
Argentina) and MMLM 075-1 (ex MRPV 1987P.V.06 in Domnanovich et al., 2008, hereafter
MMLM 075-1), currently deposited at the Museo Provincial Maria Inés Kopp (Valcheta, Rio
Negro province, Argentina). Except for the specimen MMLM 075-1, the material under study
was to date unpublished. Few other slabs, both with and without label, are stored at the Museo
Provincial Carlos Ameghino but were not considered in this study due to faint preservation of the
tracks.

The provenance of the track-bearing slabs can be traced back to the ex cantera de Felipe

Curuil, estancia Yancaqueo, west of the town of Los Menucos (Domnanovich et al., 2008), but g

In order to characterize the microfacies of the trampled sediments, two thin sections were
obtained from the slab MPCA 27029-19, both parallel and perpendicular to the trampled surface.

This is one of the slab bearing not well preserved tracks but identical, from a sedimentological
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standpoint, to the studied material. For the description of thin sections, Mackenzie, Donaldson &
Guilford (1982) and Scasso & Limarino (1997) were taken as a reference. Thin sections are
presently stored at the Museo Provincial Carlos Ameghino in Cipolletti (Rio Negro province,
Argentina) and labelled as MPCA 27029/19.1 (parallel to the trampled surface) and MPCA
27029/19.2 (perpendicular to the trampled surface).

On the whole, about 60 footprints were analyzed. For each slab, tracks were numbered
using Arabic numerals and, when referring to single tracks in the text, they are indicated as
/mumber following the slab label (e.g. MPCA 27029-1/4 where MPCA 27029-1 and number 4
indicate slab and single track, respectively). Studied material mainly consist of isolated sets or
incomplete trackways. Measurements related to trackmaker body dimension were obtained from
the slabs MPCA 27029-1, MPCA 27029-9, MPCA 27029-16 and MPCA 27029-21. On single
tracks, which as after discussed are mainly represented by digit traces, measurement of footprint
width was taken. Also, track features and differential depth of impression allowed in some cases
to recognize footprint identity, side of the trackway when incompletely preserved, or tracks
belonging to different trackways (e.g. MMLM 075-1), and element orientations. Measurements
of the footprints were performed according to guidelines introduced by Leonardi (1987).

Track outlines were represented through interpretative drawings. High resolution Digital
Photogrammetry was undertaken to achieve a more objective representation of track three-
dimensional morphology. This method is based on Structure from Motion (SfM) (Ullman, 1979)
and Multi View Stereo (MVS) (Seitz et al., 2006) algorithms and produces high quality dense
point clouds. Recently, different software solutions for Digital Photogrammetry were discussed
(e.g. Falkingham, 2012; Cipriani et al., 2016) and the method was largely adopted in the field of

the tetrapod ichnology (e.g. Breithaupt, Matthews & Noble, 2004; McCrea et al., 2015; Citton et
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al., 2016, 2017; Diaz-Martinez et al., 2016; Diaz-Martinez, Gonzalez & de Valais, 2017). To
model the studied specimens, the software package Agisoft PhotoScan Pro (Educational
License), which enables creating 3D textured meshes by means of semi-automatic processing of
images (Mallison & Wings, 2014), was used.

The images selected for photogrammetric process were acquired using a Nikon Coolpix
P520 camera with 4.3-7.6 focal length, resolution 4896x3672 and pixel size ranging from
1.25x1.25 pm and 1.27x1.27 pum. Camera altitude ranges from 26.2 cm (MPCA 27029-4) to 63.8
cm (MPCA 27029-3); ground resolution varies from 0.0753 mm/pix (MPCA 27029-4) to 0.183
mm/pix (MPCA 27029-3); RMS reprojection error ranges from 0.145637 pix (MPCA 27029-1)
t0 0.273984 pix (MPCA 27029-21); mean key point size varies from 2.28824 pix (MPCA 27029-
21) to 3.99373 pix (MPCA 27029-1). In order to correctly scale the calculated model, a metric
reference marker was applied on the surface. Three-dimensional models were converted to
eeleur-topographic profiles using the software Paraview (version 5.4.1).
Institutional abbreviations.
LES - Laboratoire de Paléontologie, Institut de Sciences de I’Evolution of the University of
Montpellier II collection, Montpellier, France; MPCA - Museo Provincial Carlos Ameghino,
Cipolletti, Rio Negro province, Argentina; MMLM - Museo Municipal de Los Menucos, Los
Menucos, Rio Negro province, Argentina; MRPV - Museo Provincial Maria Inés Kopp,

Valcheta, Rio Negro province, Argentina.

TRACK RECORD

Sedimentological observations
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Track-bearing slabs consist of yellowish to greenish, medium to mainly coarse grained and
poorly sorted volcaniclastic sandstone lacking to unaided eye ef-any sedimentary structures,
neither on the surface nor in cross-section.

The observed texture ranges from inequigranular/equigranular (Figs. 2A, 2B) to
predominantly equigranular (Fig. 2C). Phenocrysts, mainly subhedral and anhedral, range in
dimension from 0,5 mm to 1,5 mm and show in one case incipient orientation. Phenocrysts are
represented mainly by plagioclase, quartz, alkaline feldspar, biotite, amphibole (hornblende),
orthopyroxene (enstatite) and calcite floating in a mafic, glassy matrix.

The highly epiclastic texture observed at the base of the trampled surface (thin section
MPCA 27029/19.2), mainly represented by fragments of quartz and some lithics displaying
attrition and rounded to sub-angular shape, suggesting sedimentary reworking of an original tuff
of probable dacitic composition. The texture observed in the thin section MPCA 27029/19.1
instead indicates a scarce sedimentary reworking (Fig. 2D). In section, a faint normal gradation
can be observed most likely indicating short sedimentation events; on the whole, the track-
bearing slabs can be related to a proximal fluvial environments.

Track preservation

The vertebrate tracks studied herein are preserved as concave epireliefs (MPCA 27029-1 and
MMLM 075-1) and convex hyporeliefs (MPCA 27029-2; MPCA 27029-3; MPCA 27029-4;
MPCA 27029-5; MPCA 27029-9; MPCA 27029-16; MPCA 27029-21; MPCA 27029-33;
MMLM 1 and MMLM 2). MMLM 075-1 is composed of four slabs, two as casts -with negative
epichnial tracks, labeled as MMLM 075-1/1a, /2 and /3a- and two as their moulds -with positive
hypichnial tracks, labeled as MMLM 075-1/1b and 3/b. There are no evidences of any layer

between the casts and the moulds and the shape of both concave epireliefs and convex
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hyporeliefs are exactly complementary (Fig. 3). Therefore, and taking into account that the tracks
preserved similarly (i.e. sub-circular/sub-ovoidal to pointed digit impressions; roughly sub-
circular to elliptical pad tracks; very thin displacement rims in the pad and well-marked in the
digit impressions), in our opinion the concave epireliefs are true tracks (sensu Marty,
Falkingham & Richter, 2016) and the convex hyporeliefs are natural casts (sensu Marty,
Falkingham & Richter, 2016).

In general, the tracks studied here are moderate well preserved (grade 1 sensu Belvedere &
Farlow, 2016), and the true tracks are not elite tracks (sensu Lockley, 1991). In addition, they are
not modified true tracks (sensu Marty, Falkingham & Richter, 2016) because they lack of
evidences of physiochemical (e.g. weathering) and/or by biological influences after they were
made. Thereby, the shape of these tracks is mainly conditioned by the substrate consistency
(grain size and water content). Recently, Falk et al. (2017) performed neoichnological
experiments in which compared the shape of several tracks impressed in three different
sediments (fine, medium and coarse sand) with three different moisture content (wet, moisture
and dry). They concluded that wet and dry coarse sediments preserve tracks without fine details,
but moisture coarse sediment might preserve the overall track shape and details as claw
impessions. As it has been previously commented, the tracking surface is a medium to coarse
sandstone, and tracks have depth digit impressions with extruded rims. Therefore, and according
to Falk et al. (2017) experiments, the trackmakers most likely walked on humid, not waterlogged
nor dry, coarse sediments with a moderately plastic behaviour, able to record the main
anatomical features of the autopods.

Description. All the discussed slabs are illustrated in Figs. 4-9. The studied footprints from Los

Menucos ichnosite are manus and pes tracks with very low heteropody, both of them mainly
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preserved as tetradactyl, although pentadactyl tracks are present (MPCA 27029-1/4/6, MPCA
27029-2/2, MPCA 27029-4/2, MPCA 27029-16/10, MPCA 27029-33/2, MMLM 075-1) (Figs. 4,
5E-5H, 7A-7D, 8) as well as tridactyl ones, in which the central digits are those impressed
(MPCA 27029-9/2, MPCA 27029-16/8, MPCA 27029-21/3, MMLM 1/1, MMLM 2/3) (Figs.
6E-6H, 7, 9). Position of manus impression can be at the middle of a pes stride or lying closer to
the previous pes impression or to the subsequent. Digit traces are commonly arranged to shape
an arcuate pattern that is convex anteriorly, according to which the digit III trace (the central
one) or digit III and IV traces are the most advanced. In several cases, the digit imprints are
representing the only element constituting the tracks; variability affecting the number of digits
can be obvious on the same slab and within the same manus-pes set (e.g. MPCA 27029-21,
MMLM 2; Figs. 7E-7H, 9E-9H). In the material under study the degree of curvature of the
arcuate pattern is variable and appears more pronounced in some smaller tracks (e.g.
MPCA27029-16/7/9/10; Figs. 7A-7D) than in larger ones (e.g. MPCA 27029-1/4, MMLM 075-
1, MMLM 2/2; Figs. 4, 8E-8H, 9E-9H). Apart from degree of curvature, the general morphology
remains consistent despite dimensional differences, that are here interpreted as most likely
pertaining to different ontogenetic stages of the same type of producer.

Digit traces show two distinct morphologies: in some cases they are characterized by a
sub-circular/sub-ovoidal morphology (e.g. MPCA 27029-9, MPCA 27029-16, MPCA 27029-21;
Figs. 6E-6H, 7), while in other cases digit traces are markedly pointed (e.g. MPCA 27029-2,
MPCA 27029-4, MPCA 27029-5, MPCA 27029-33; Figs. 4E-4H, SE-5H, 6A-6D, 8A-8D). This
two morphologies can co-exist on the same slab and within the same set or trackway, thus
pertaining to the spectrum of internal variability of the ichnotaxon. When pointed, the most

medial digit traces (i.e. digit I or II imprints) both of manus and pes tracks can be affected by
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trailing marks. These extramorphological features (see Peabody, 1948, for the concept of
extramorphology in tetrapod ichnology) qualitatively range from weakly hinted and short (e.g.
MPCA 27029-1/6, MPCA 27029-2/1, MPCA 27029-3/1/2, MPCA 27029-4/2, MPCA 27029-5,
MPCA 27029-9/4/6; Figs. 4, 5, 6) to highly sharp and long (e.g. MMLM 075-1, MMLM 1 and
MMLM 2; Figs. 8E-8H, 9) and are mostly inward oriented with respect to the hypothetical,
reconstructed, trackway midline. Also digit III and, with a lesser extent, digit IV imprints, can be
affected by the same extramorphology, even if in such cases the trailing traces it is never as
developed as in the medial digit traces.

A brief account on differential depth of studied tracks is deemed necessary, in order to
hypothesize trackmaker functionality and deepen the discussion about zoological attribution
following in the next section, as recently discussed for other tetrapod tracks (e.g. Romano, Citton
& Nicosia, 2016; Citton et al., 2017). In the studied material, central digits are commonly the
most deeply and uniformly impressed, both in manus and pes tracks (e.g. MPCA 27029-4,
MPCA 27029-5, MMLM 1; Figs. SF-5G, 6B-6C, 9B-9C). When a certain degree of variability is
observed, digit III and IV imprints are the most deeply imprinted (e.g. MPCA 27029-1, MPCA
27029-3, MPCA 27029-16; Figs. 4B-4C, 5B-5C, 7B-7C), followed by digit II and I imprints.
Digit V trace, when preserved, results only faintly imprinted on the substrate (e.g. MMLM 075-
1, but see MPCA 27029-16/9/10 for a different configuration of depth of impression; Figs. 7B-
7C, 8F-8G).

Behind digit traces, a roughly sub-circular to elliptical pad trace can be preserved (e.g.
MPCA 27029-1/2/4/5/6, MPCA 27029-5, MPCA 27029-16/10, MMLM 075-1, MMLM 1/2/4,
MMLM 2/1; Figs. 4A-4D, 6A-6D, 7A-7D, 8E-8H, 9), lying at short distance from the base of the

central digit traces and commonly contacting the most medial and lateral digit imprints (e.g.
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MPCA 27029-1; Figs. 4A-4D). This trace is separated from central digit traces ahead by a non
impressed area, which appears as a groove or as a ridge depending on the mode of preservation
(concave epirelief or convex hyporelief), tapering towards the most medial and lateral digit
imprints. This should not be confused with displacement areas of similar morphology, which are
instead related to digit traces (i.e. thrust of digit at the end of the cycle of locomotion; Fig. 10),
where the non impressed area is absent (e.g. MPCA 27029-2, MPCA 27029-3/1/4, MPCA
27029-4, MPCA 27029-9/3/5, MPCA 27029-21/4, MPCA 27029-33/1/2/3, MMLM 2/3; Figs.
4E-4H, 5, 6E-6H, 7E-7H, 8 A-8D, 9E-9H).

The pad trace behind digit traces result to be more impressed centrally or centro-laterally
and distally (i.e. close to the non impressed area behind digit traces, MPCA 27029-1, MMLM
075-1, MMLM 1; Figs. 4B-4C, 8F-8G, 9B-9C).

The axis of pes tracks is commonly inwardly rotated with respect to trackway midline but
it can also be parallel to the trackway midline (e.g. MPCA 27029-9, 27029-16), while manus
tracks show a wider range of variability, being both inwardly and outwardly rotated with respect
to the trackway midline (e.g. MPCA 27029-1 and MMLM?2, respectively). When possible,
measurements and ratios were taken; measurements were performed taking into account digit I11
as homologous point, both for manus and pes tracks. Pace length on manus tracks was measured
on specimen MPCA 27029-1, resulting 42.2 cm and 33.3 cm; specimen MPCA 27029-9,
resulting 28.5 cm; specimen MPCA 27029-16, resulting 21 cm and 15 cm. Pace length on pes
tracks was measured on specimen MPCA 27029-1, resulting 41.7 cm and 40.5 cm; specimen
MPCA 27029-9, resulting 37 cm and 32.5 cm; specimen MPCA 27029-16, resulting 22.5 cm;
specimen MPCA 27029-21, resulting 37 cm, 34 cm and 34.5 cm. Stride length on manus tracks

was measured on specimen MPCA 27029-1, resulting 59.5 cm; specimen MPCA 27029-16,
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resulting 28.5 cm; specimen MMLM 1, resulting 52 cm; specimen MMLM 2, resulting 40.5 cm.
Stride length on pes tracks was measured on specimen MPCA 27029-1, resulting 62.4 cm;
MPCA 27029-3, resulting 63.5 cm; specimen MPCA 27029-9, resulting 45.5 cm; specimen
MPCA 27029-21, resulting 37.5 cm and 41 cm; specimen MPCA 27029-33, resulting 63.5 cm;
specimen MMLM 075-1, resulting 57.3 cm. External trackway width resulted 50 cm for MPCA
27029-1; 36 cm for MPCA 27029-9; 32 cm for MPCA 27029-16; 38.5 cm for MPCA 27029-21.
Pace angulation on pes tracks was measured and it results ranging from 62° (MPCA 27029-21)
to 99° (MPCA 27029-1); pace angulation measured on manus tracks results slightly more
variable, ranging between 64° (MPCA 27029-21) and 101° (MPCA 27029-1). The ratio
trackway width:stride length (pedes) resulted 0.80 (MPCA 27029-1), 0.79 (MPCA 27029-9),
1.03(MPCA 27029-21). Gleno-acetabular distance was measured on specimens MPCA 27029-1,
27029-9, 27029-16 and, tentatively, 27029-21 and resulted 46.2 cm, 40 cm, 26 cm and 36.2 cm,
respectively. The ratio stride length:gleno-acetabular distance was calculated for specimens
MPCA 27029-1, MPCA 27029-9, MPCA 27029-16 and MPCA 27029-21, resulting respectively
1.29 (calculated considering manus tracks) and 1.35 (calculated considering pes tracks); 1.14
(calculated considering pes tracks); 1.10 (calculated considering manus tracks) and 1.03
(calculated considering pes tracks).
Remarks. These footprints from Los Menucos ichnosite are characterized by having the
following features: manus and pes tracks with low heteropody, up to five digit imprints aligned
forming an arch convenx anteriorly directed, a central or central-lateral pad trace.

The ichnogenus Pentasauropus Ellenberger, 1970 was established on the basis of
material collected and described some years before (Ellenberger, 1955) from the Upper Triassic

lower Elliot Formation (Stormberg Group) of Karroo Basin in Subeng and other localities, such
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as Morobong, Seaka, Subeng, Maseru and Maphutseng, of Lesotho (Southern Africa). Five
ichnospecies were originally included in the ichnogenus, namely Pentasauropus erectus,
Pentasauropus incredibilis, Pentasauropus maphutsengi, Pentasauropus morobongensis and
Pentasauropus motlejoi, which remained unchanged in the subsequent formal listing
(Ellenberger, 1970, 1972). Material from the Ellenberger Collection referred to this ichnogenus,
presently housed at the University of Montpellier (France), is represented by four cast of those
originally mentioned as Pentasauropus incredibilis (LES 054 1-3, LES 054 4), one cast of
Pentasauropus morobongensis (LES 005) and one cast of Tetrasauropus gigas (LES 038), plus
some missing specimens (see D’Orazi Porchetti & Nicosia, 2007, and reference therein for a
complete assessment of inventory numbers).

After the original and subsequent publications of Ellenberger (1955, 1970, 1972), the
ichnogenus was deemed as valid by Olsen & Galton (1984), Lockley & Meyer (2000) and
D’Orazi Porchetti & Nicosia (2007). The latter have been emended the ichnogenus diagnosis to
appoint the type ichnospecies and considered synonymous the five ichnospecies as
Pentasauropus incredibilis (reason for choosing P. incredibilis as the type ichnospecies can be
found in D’Orazi Porchetti & Nicosia, 2007). The differences in track patterns were considered
as originated by dimensional constraints and/or behavioural factors and, at the same time,
considering that the main footprint characters (e.g. number and arrangement of digits,
heteropody) did not justify ichnospecies separation (D’Orazi Porchetti & Nicosia, 2007).
Moreover, agreeing with Lockley & Meyer (2000), the same authors located the tracks originally
referred to as Tetrasauropus gigas into Pentasauropus.

Following the emended ichnogeneric diagnosis, the arcuate pattern of manus and pes

tracks derives from the five clear equally spaced claw or ungual traces (those of imprints of digit
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IL, IIT and IV are the largest), representing in some cases the entire track. In other cases a roughly
rounded sole pad is observed behind claw or ungual traces (LES 053 A, B, C in Ellenberger,
1972, pl. IV and V and LES 038). The axis of pes impression is always inwardly rotated, while
that of the manus impression can range from slightly inwardly rotated (LES 052 B and LES 053
A) to slightly outwardly rotated (LES 038 and LES 052 A).

The specimens from Los Menucos are provisionally compared with tracks referred to as
Pentasauropus on the basis of their general features. However, a comprehensive and updated
ichnotaxonomic treatment of these footprint ywill-beenundergone-and-deseribed-elsewhere.
Zoological attribution
Several attempts to identify a trackmaker for the original ichnospecies erected within
Pentasauropus have been previously made: Pentasauropus incredibilis was attributed to a
“Theromorphe” or to a large amphibian (Ellenberger & Ellenberger, 1958: p. 67). Some years
later, a “basal melanorosaurid” (or a basal Ornitischian) was suggested as putative trackmaker of
“Pentasauropus morobongensis”, while a melanorosaurid was proposed for “Pentasauropus
motlejoi”, P. incredibilis and “P. maphutsengi”, and a possible ornithischian for “P. erectus”
(sensu Ellenberger, 1970). Moreover, an anapsid or a basal sauropod were proposed as putative
trackmakers for “P. motlejoi”, P. incredibilis and “P. erectus” (sensu Ellenberger, 1972).
Haubold (1974, 1984) referred Pentasauropus to a sauropod or therapsid trackmaker. A
dicynodont trackmaker for the ichnogenus was also proposed by Olsen & Galton (1984),
Anderson, Anderson & Cruickshank (1998), Galton & Heerden (1998, attributing Pentasauropus
to large anomodont dicynodonts) and Lockley & Meyer (2000). Finally, D’Orazi Porchetti &

Nicosia (2007) accepted the attribution to a dicynodont, observing a good fitting between the
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skeletal autopodia of Triassic dicynodonts and the manus and pes digit structures of
Pentasauropus, apart from the strong homopody and the limbs posture (see also Walter, 1986).

The studied material from Los Menucos locality, taking into account the handful of
features that can be recognized from tracks, allowed corroborating some previous interpretation
about trackmaker identity. At the same time, the attempt to identify a putative trackmaker opens
the way for new inferences about autopods posture.

Limbs posture kept by Pentasauropus trackmakers during the cycle of locomotion can be
tentatively inferred from trackway patterns, parameters and ratio (Peabody, 1948, 1959; Kubo &
Benton, 2009; Kubo & Ozaki, 2009) even if this interpretation is often far from being simple and
linear (Crompton & Jenkins, 1973). The ratio trackway width:stride length and stride
length:gleno acetabular distance, that were calculated from available trackways, indicate a semi-
erect posture for the trackmaker hind limbs, possibly up to erect, that however partially contrasts
with measured pace angulations that define wide gauge trackways, and a prevalent sprawling
posture for the fore limbs.

Pentasauropus producers, based on the type specimens, were characterized by a very low
heteropody, as suggested by the almost identical morphology and comparable dimensions of fore
and hind prints, consistently with what previously stated by other authors (e.g. Lockley & Meyer,
2000; D’Orazi Porchetti & Nicosia, 2007).

Digit traces are considered compatible with broad ungual phalanges characterized by
rounded tips. Their morphological variability most likely depends from substrate conditions at
time of impression and, as soon discussed, from the dynamic of locomotion of the producers.

Very low heteropody, number of digits, morphology of unguals and with a lesser extent

limbs posture enable to corroborate previous interpretations and suggest a dicynodont as most
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probable trackmaker of Pentasauropus. Among dicynodonts, a quite confident match can be
found with Kannemeyeriiformes [see, for example, the descriptions and reconstructions of the
autopods of Dinodontosaurus by Morato (2006:fig. 30), Tetragonias njalilus by Cruickshank
(1967:fig. 17) and by Frobisch (2006:fig. 9)].

The limbs posture as supposed from tracks fits enough with that discussed for Triassic
dicynodonts by Frobisch (2006). The observed contrast between the pace angulation measured in
hind prints and osteological data could be likely explained considering a lateral undulation of the
vertebral column causing swing of the hip (Frobisch, 2006: p. 1305). On the contrary, based on
the body fossils, the autopod posture that can be inferred from the ichnological material quite
differs from that inferable from Cruickshank description (1967). In those Pentasauropus tracks
with the impression of the sole or palm present, a negligible distance between the distal margin
of sole/palm pad trace and the proximal margin of central digit traces, further reducing toward
digits I and V, was observed. This feature most likely indicates that not all the foot bones
contacted the ground during locomotion constraining, at the same time, the orientation of
metapodial and basipodial elements, and most likely also that of the more proximal phalanges, in
the articulated autopod. Thus, the reconstruction here proposed contemplates a more inclined
position of pedal and manual elements in the autopods of Pentasauropus producers, moving
significantly away from the classic plantigrade posture proposed for therapsids. The sub-circular
to elliptical pad trace behind digit traces is consequently considered compatible with an extended
fleshy pad below basipodials and likely metapodials of the producer autopods. This fleshy pad
actively contacted the ground likely during the touch-down and weight-bearing phase, while the
final stroke was performed by acropodials and in particular by the central ones from a functional

standpoint.
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DISCUSSION

Tracks from Los Menucos Group compared to the ichnogenus Pentasauropus allowed to verify
previous ichnological interpretation based on the reference material from Lesotho and enabled to
corroborate identification of putative trackmaker, shedding light on its dynamics of locomotion
and autopodial posture.

Some ichnological features indicate the producer of Pentasauropus to be sought among
anomodont dicynodonts of the clade Kannemeyeriiformes (Frobisch, 2009). The Anomodontia is
a clade of extinct, cosmopolitan therapsid synapsids representing the major primary consumers
(Watson & Romer, 1956; Mancuso et al., 2014) in terrestrial Permian and Triassic ecosystems
(Frobisch, 2009), which were able to profit by different resources (i.e. coriaceous plants) with
respect to other earlier herbivores through derived jaw joint and horny ‘beaks’ (Angielczyk,
2004). Within this clade, the Dicynodontia constituted a very diversified group of Permian and
Triassic tetrapods of different body size and ecology, among which large, ground-welling
animals were represented (Frobisch, 2009). By the Early Triassic, after a dramatic decline in
diversity at the end of the Permian, Dicynodontia experienced a second radiation represented by
members of the clade Kannemeyeriiformes, among the largest herbivores in many Triassic
ecosystems (Bonaparte, 1971, 1981; Frobisch, 2006 and references therein, Domnanovich &
Marsicano, 2012; Mancuso et al., 2014).

The occurrence of the Dicynodontia in Argentina, among other therapsid clades,
encompasses the whole Triassic Period and gpestlted-eharaeterized-by a distinct faunal
provinciality during the Middle and Late Triassic, most likely to be related to biogeographic

separation controlled by the fragmented configuration of Pangaea (Frébisch, 2009).
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Two distinct faunas from the Puesto Viejo Formation, from the Mendoza province,
characterized by kannemeyeriiformes in the lower portion of the lithostratigraphic unit and
Cynognathus in the upper one, were recognized by Bonaparte (1981; see also Abdala et al.,
2013), which correlated with the South African Lystrosaurus AZ (the lower fauna) and with
Cynognathus AZ (the upper fauna) age, respectively.

Based on radiometric data (Valencio et al., 1975), the minimum ages of the fossiliferous
beds of the Puesto Viejo Formation were fixed at 232+4 and 238 Ma (latest Ladinian-middle
Carnian according to the International Chronostratigraphic Chart - v2017/2). Recently, a early
Carnian age (Ottone et al., 2014) has been confirmed for the Puesto Viejo Group (Stipanicic et
al., 2007) and correlation between this lithostratigraphic unit and the Chanares Formation has
been proposed (Marsicano et al., 2016).

The dicynodont Vinceria andina was discovered from the Rio Mendoza Formation by
Bonaparte (1969). Zavattieri & Arcucci (2007) described kannemeyeriid dicynodonts and
indeterminate eucynodonts form the same unit. The therapsid-bearing unit could be referred to an
Induan-Anisian age on the basis of macroplants, or to a Ladinian-early Carnian age on the basis
of pollen. A late Anisian age has been recently suggested by Frobisch (2009, based on Fernando
Abdala, pers. comm., 2006), while Zavattieri & Arcucci (2007) proposed an age not older than
the late Middle Triassic. Two dicynodont genera, Dinodontosaurus and Jachaleria (see Frobisch,
2009 for taxonomical assessment) were reported from the Ischichuca Formation, generally
regarded as Ladinian in age (Rogers et al., 2001). The dicynodont Ischigualastia jenseni was
reported from the Carnian Ischigualasto Formation by Cox (1962), and represents a member of

an endemic fauna (Frobisch, 2009). Finally, the youngest Argentine fauna is that represented by
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the dicynodonts from the Los Colorados Formation, which lying above the Ischigualasto
Formation and has been referred to an early Norian age (Frobisch, 2009).

Within this panorama and accepting the proposed palaeozoological attribution,
Pentasauropus tracks represent a valuable datum further confirming the occurrence of
dicynodonts in the Triassic of Argentina and greatly increasing the knowledge of the therapsid
faunas from south-western Gondwana. Especially, what concern their locomotion and
functionality of fore and hind feet, that commonly are faintly investigated due to the relative
paucity of findings in the body fossil record.

The inferred posture of Pentasauropus trackmaker finds a match with the osteological
data provided by the therapsid record (e.g. King, 1981a; Frobisch, 2006) and allows
corroborating jaterpretation derived from body-fossils observation. Contrarily to what was stated
in the past about therapsid posture (Charig, 1980; Bonaparte, 1982), therapsid-grade limb
osteology was characterized by several important modifications from a functional standpoint,
mainly indicating a more parasagittal stance of the limbs (Romer, 1956; Boonstra, 1967; Jenkins,
1971), especially if compared with the prevalent limb posture of non-therapsid synapsids
(‘pelycosaurs’), which had massive limb girdles, with broad, shallow, laterally facing glenoid
and acetabulum indicative of a prevailing sprawling posture. Some of these modifications are: 1)
the scapula and the glenoid for what concerns the fore limbs, allowing the elbow to inwardly
rotate and bring the humerus closer to the sagittal plane (Walter, 1986); and, i1) the iliac blade
and femoral head for what concerns the hind limbs, the first expanding anteriorly and allowing
the insertion of a larger iliofemoralis muscle into the great trochanter of the femur, and thus
enabling femoral retraction, and the second one bending medially and attaining a more

parasagittal position of the propodial (Romer, 1922; Walter, 1986).
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The observation of osteological material in non-mammalian therapsids has also benefited
from functional analyses of the locomotor apparatus (e.g. Pearson, 1924; Kemp, 1982; Walter,
1986). For example, Kemp (1978) proposed a dual-gait condition, intermediate between the
plesiomorphic gait of amniotes (Sumida & Modesto, 2001) and the mammalian erect gait, for the
therocephalian Regisaurus jacobi. This hypothesis contemplates that therapsids were capable of
switching from a sprawling posture to an advanced upright one as a function of speed, due to a
moveable articulation between the astragalus and the calcaneum (i.e. cruro-tarsal). This condition
has proved to be not possible for derived dicynodonts, such as Kingoria nowacki, a Permian
emydopid with a fully adducted posture of propodials (King, 1985), and for kannemeyeriiformes
dicynodonts, all characterized by an ankle joint inhibiting extensive rotational movements
needed for dual-gait locomotion (Frébisch, 2006). In dicynodont anomodonts, the forelimb step
cycle was performed in abducted (i.e. sprawling) posture, whereas the hind limb step cycle
passed from a primitive abducted posture in earlier dicynodonts, such as Robertia broomiana
(see King, 1981b) to an adducted (i.e. erect) posture in more derived taxa (Walter, 1986), such as
Dicynodon trigonocephalus and Tetragonias njalilus (e.g. King, 1981a; Frobisch, 2006). Such
different configurations of fore and hind limb postures were explained in terms of different
functions, for example for supporting the heavy anterior half of the body (King, 1981a) and
performing a powerful forward thrust (Kemp, 1980; King, 1981a).

If the interpretation of limbs posture in the producer of the Pentasauropus tracks from
Los Menucos find a general agreement with what described from body-fossils, that regarding
autopods posture does not completely, especially if some implications are taken into account. As
stated before, the alleged autopodial structure inferred from these Pentasauropus tracks is

dictated by the relative distance between the base of digital (ungual) traces and the distal edge of
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the sub-circular pad trace, which has been referred to a fleshy pad behind the basipodial. The
observed track morphology seems to imply that, except for acropodial and fleshy pad, no other
bony element of producer autopods were imprinted on the substrate, consequently indicating that
they were likely raised in position. Such a configuration is considered valid for the foot bones in
a static-state and would fall at least within a subunguligrade posture, implying that the phalanges
were the only bony pedal elements contacting the ground in static stance. However, if the three-
dimensional footprint morphology is considered (i.e. ungual traces and pad trace behind them)
concurrently with spatial data regarding pad trace/digit trace distance, is evident that the unguals
were not the only pedal elements performing the cycle of locomotion. Thus, the foot cannot be
regarded as subunguligrade by a dynamic point of view. During locomotion, the body weight of
Pentasauropus producers was not carried only by phalanges but most likely, the entire foot
supported the load (Fig. 11). Thus, by a functional standpoint, the autopod posture of the
Pentasauropus trackmaker can be regarded as plantiportal (sensu Michilsens et al., 2009). Such a
posture could have been accompanied by an arched configuration of the articulated metapodials
and at least of the proximal phalanges. Metacarpals forming an arched configuration in end view
when articulated were described in a specimen of Tetragonias njalilus (Cruickshank, 1967), and
this kind of configuration could had been accompanied by little movement capabilities (Rubidge
& Hopson, 1996) of metapodials and could have dictated the observed relative position of ungual
traces. A manual/pedal structure like the one here hypothesized could had maintain a large
surface gontaeting the ground by means of cartilaginous elements and fleshy cushions on which
the basipodials rested, ensuring a supportive role of the whole autopods during the cycle of
locomotion and particularly during the maximum load. Digit traces were formed by acropodials

deeply penetrating into the substrate during the final weight-bearing phase, kick-off and thrust.
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This could explain the different depth of impression that is observed in completely preserved
tracks. Among digits the series II-IV, and with a lesser extent digit I, played a major role in
performing the end of the cycle of locomotion. Trailing traces affecting the material under study
could be formed for external limb rotation during foot recovery, starting from a straight or
slightly inwardly turned resting position of the autopods.

Statically subunguligrade, functionally plantiportal posture was described in several
mammals regardless of body-weight (see Michilsens et al., 2009) but also can represents a
functional strategy, co-occurrent with a graviportal structure of the limbs, in fat-footed, giant
animals like some members of the Family Elephantidae comprising the extant elephants. In these
animals, apart from connective tissues, a significant functional role is ensured by sesamoid bones
expanded into ‘digit-like’ structures (Hutchinson et al., 2011). These structures, which can have
cartilaginous precursors, absorb part of the body load moving away the stress from the toes
during locomotion (Hutchinson et al., 2011). Radial sesamoid bones have evolved convergently
in numerous tetrapod clades and represent an evident example of evolutionary exaptations, i.e.
‘features that now enhance fitness but were not built by natural selection for their current role’
(Gould & Vrba, 1982). Cruickshank (1967) has tentatively identified two sesamoid ossifications
in the fore autopod of Tetragonias njalilus, one fused to the ventral surface of the radiale, and
other associated with a terminal phalanx but were never related to a function involving load-
support during locomotion. By contrast, Sidor (2001) stated that sesamoid ossifications occur in
crown-group mammals (i.e. represented by the most recent common ancestor of all living
mammals and its descendants, living or not) and are unknown in earlier synapsids.

Subunguligrade-plantiportal foot implies a complex set of associated characters in the

autopodial anatomy of the Pentasauropus producers and represents a novelty among
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dicynodonts. Taking into account the large but not gigantic dimensions of the putative
trackmakers [(e.g. Morato (2006) estimates a body mass between 23- 32 kg for juveniles
Dinodontosaurus and exceeding 300 kg for adults, while Mancuso et al. (2014) indicate a body
mass of 362 kg for Dinodontosaurus platyceps and 170 kg for Dinodontosaurus brevirostris)],
most likely the subunguligrade-plantiportal autopod posture was promoted in these dicynodonts
regardless of the body-dimension, not necessarily implying an increase in body size but being a
pre-requisite for lineages experiencing such an evolutionary path.

As final remarks, a brief account on the biochronologic significance of Pentasauropus is
deemed necessary. As before stated, some apparent inconsistencies affect the stratigraphical
positioning of the Los Menucos Group if the new radiometric data provided by Luppo et al.
(2017) are considered jointly to the occurrence of Pentasauropus tracks from sedimentary and
volcanoclastic levels of the Vera Formation. The Vera Formation was considered for a long time
as Upper Triassic in age based on some radiometric data obtained from the overlying Sierra
Colorada Formation (Rapela et al., 1996). On the basis of the new isotopic ages, Luppo et al.
(2017) concluded that the levels bearing the ‘Dicroidium’-type flora (Artabe, 1985a, b) are
intercalated between deposits dated 252 + 2 Ma (Changhsingian, Late Permian) and 248 + 2 Ma
(Olenekian, Early Triassic). These authors also suggested that the stratigraphic position of the
deposits exposed in the Tchering quarry, near Los Menucos town, where part of the Los
Menucos ichnofauna (mainly Dicynodontipus footprints, sensu Melchor & de Valais, 2006) was
found, is not yet completely clear. Nevertheless, this quarry is spatially close to the
geochronological data provided by Luppo et al. (2017). On the other hand, the Estancia
Yancaqueo from which the Pentasauropus footprint come, is located west of Los Menucos town

and lacks of detailed geochronological and geological studies.
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645 If the global temporal distribution of Pentasauropus or Pentasauropus-like footprints is
646 analyzed, results that all the geological units where these track were identified were considered
647 as Middle Triassic or Late Triassic in age. In Lesotho, Southern Africa, Pentasauropus is

648 traditionally reported from the lower Elliot Formation (Stormberg Group) which lies above the
649  Carnian Molteno Formation. The lower Elliot Formation was considered Upper Triassic by

650 Ellenberger (1970), Norian-Rhaetian by Olsen & Galton (1984) and Norian by Knoll (2004),
651 based on fossil remains, both bones and traces ones. Recently, the Elliot Formation (Lower and
652 Upper) was discussed by means of magnetostratigraphy, and fixed as Upper Triassic - Lower
653  Jurassic by Sciscio et al. (2017). The same authors also confirmed a Norian-Rhaetian age for the
654 lower Elliot Formation, thus in agreement with previously relative data proposed on

655 palaeontological bases, and correlated the unit with the Los Colorado Formation in the

656 Ischigualasto-Villa Union Basin of Argentina (Sciscio et al., 2017). Thus, for the time being
657  Pentasauropus turn out to be a Late Triassic marker. This constrain allows to confirm an Upper
658 Triassic and most likely a Norian-Rhaetian age for the Pentasauropus-bearing sedimentary and
659 volcaniclastic levels of the Vera Formation and challenge for a probable younger age for the
660 Pentasauropus-bearing strata of Cerro de Las Cabras Formation and Portezuelo Formation. From
661 this lithostratigraphic unit, tracks were mentioned as morphologically close to Pentasauropus
662 (Marsicano & Barredo, 2004; Melchor & de Valais, 2006; de Valais, 2008).

663 As already stated, radiometric data available for the Los Menucos Group are in contrast
664 with palaeofloristic and palaeoichnological ones. The latter, and in particular the occurrence of
665  Pentasauropus, suggest an age earlier than that indicated by radiometric data and, if considered
666 as a whole, would indicate a probable diachroneity and multiple ages of sedimentary deposits

667 currently attributed to the Los Menucos Group. The current contrasting evidences between
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radiometric data and palacontological ones also stress the importance of a detailed study of the
stratigraphy of Los Menucos Group, which should be focused on the recognition of new track-
bearing levels and on the study of stratigraphical relations between volcanic (including collection

of geochronological data) and sedimentary deposits.

CONCLUSIONS

Large pentadactyl tracks from the Upper Triassic Vera Formation of the Los Menucos Group
(Rio Negro province, North Patagonia, Argentina) were studied and discussed in terms of
palaeobiological attribution.

The tracks are currently referred to as Pentasauropus Ellenberger 1970, a typical Late
Triassic ichnotaxon from the lower Elliot Formation (Stormberg Group) of Karoo Basin
(Lesotho, Southern Africa).

Material under study allowed to more effectively appreciate ichnotaxon variability, as
well as few but important morphological and extramorphological features, which have proved to
be significant for a better definition of the locomotor dynamics of the producer and particularly
of its foot anatomy. Track and trackway parameters indicate, as suggested in the past, a
dicynodont as most probable producer, and a relation with the south-American members of the
clade Kannemeyeriiformes is here proposed. At the same time, a great affinity between this
Gondwanan therapsid ichnofauna and that from South Africa is evident, as well as functional
features of producers autopods are considered significantly similar and may be related to the
same autopodial anatomy shared by the clade. A valuable feature is represented by the spatial
relationship (i.e. distance) between the pad trace, both in fore and hind prints, and the relative

digital bases, which indicates a derived subunguligrade foot in static posture, if compared with
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the plesiomorphic plantigrade foot posture of other synapsids, in which the wrist and the ankle
directly contact the ground. However, the foot likely acted as plantiportal during locomotion and
a large cushion of connective tissue behind the basipodials and partially metapodials can be
proposed for the heavy-footed producers of Pentasauropus, allowing to decrease the stress
transferred to the bones and spread it on a larger area during the touch-down and weight-bearing
phase of the locomotion cycle.

In modern animals, this kind of specialized foot can be equipped with co-opted sesamoid
ossifications that have the role of stiffening the expanded foot pad. Sesamoid ossifications,
although tentatively recognized in some dicynodonts, are not definitely ascertained in the non-
mammalian therapsid grade body-fossil record. These structures however, as well as
cartilaginous or tendinous precursors, cannot be proved but not even excluded a priori from the
trackmaker foot anatomy and could be in future may be verified or discarded by taking
advantage of new osteological and ichnological findings.

Finally, considering the widely accepted Late Triassic age of Pentasauropus, recently
refined at the Norian-Rhaetian in the Karoo Basin, a Norian-Rhaetian age for the Pentasauropus-
bearing sedimentary levels of the Los Menucos Group is most likely for the time being, in
agreement with the previous datations on palaecontological bases but in contrast with radiometric
data obtained from volcanics of the Los Menucos Group, which ultimately stress the importance
of a detailed bio- and chronostratigraphic reconstruction of this lithostratigraphic unit. At the
same time, a quite younger age for Cerro de Las Cabras Formation and Portezuelo Formation

levels from which Pentasauropus has been described, can be tentatively proposed.
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Figure captions

Figure 1 Location map and geological sketch of Los Menucos area (from Labudia & Bjerg,
2005, redrawn and slightly modified).

Figure 2 Thin sections (MPCA 27029/19.1 and MPCA 27029/19.2) of track-bearing slab MPCA
27029-19. Inequigranular epiclastic texture with anhedral and subhedral phenocrysts at the
base (A) and middle portion (B) of the track-bearing slab MPCA 27029-19. (C, D)
Equigranular less epiclastic texture indicating a minor sedimentary reworking of the trampled
surface.

Figure 3 Tracks mode of preservation. Convex hyporeliefs (A, C) fitting with concave epireliefs
(B, D) preserved on slab MMLM 075-1 (true tracks and natural casts, respectively).

Figure 4 Photos, three-dimensional representations and interpretative drawings of the studied
material. (A) Track-bearing slabs MPCA 27029-1; (B) Solid three-dimensional model of (A);
(C) Colour topographic profile and (D) interpretative drawing of (A). (E) Track-bearing slabs
MPCA 27029-2; (F) Solid three-dimensional model of (E); (G) Colour topographic profile
and (H) interpretative drawing of (E).

Figure 5 Photos, three-dimensional representations and interpretative drawings of the studied
material. (A) Track-bearing slabs MPCA 27029-3; (B) Solid three-dimensional model of (A);
(C) Colour topographic profile and (D) interpretative drawing of (A). (E) Track-bearing slabs
MPCA 27029-4; (F) Solid three-dimensional model of (E); (G) Colour topographic profile
and (H) interpretative drawing of (E).

Figure 6 Photos, three-dimensional representations and interpretative drawings of the studied

material. (A) Track-bearing slabs MPCA 27029-5; (B) Solid three-dimensional model of (A);
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(C) Colour topographic profile and (D) interpretative drawing of (A). (E) Track-bearing slabs
MPCA 27029-9; (F) Solid three-dimensional model of (E); (G) Colour topographic profile
and (H) interpretative drawing of (E).

Figure 7 Photos, three-dimensional representations and interpretative drawings of the studied
material. (A) Track-bearing slabs MPCA 27029-16; (B) Solid three-dimensional model of
(A); (C) Colour topographic profile and (D) interpretative drawing of (A). (E) Track-bearing
slabs MPCA 27029-21; (F) Solid three-dimensional model of (E); (G) Colour topographic
profile and (H) interpretative drawing of (E).

Figure 8 Photos, three-dimensional representations and interpretative drawings of the studied
material. (A) Track-bearing slabs MPCA 27029-33; (B) Solid three-dimensional model of
(A); (C) Colour topographic profile and (D) interpretative drawing of (A). (E) Track-bearing
slabs MMLM 075-1; (F) Solid three-dimensional model of (E); (G) Colour topographic
profile and (H) interpretative drawing of (E).

Figure 9 Photos, three-dimensional representations and interpretative drawings of the studied
material. (A) Track-bearing slabs MMLM 1; (B) Solid three-dimensional model of (A); (C)
Colour topographic profile and (D) interpretative drawing of (A). (E) Track-bearing slabs
MMLM 2; (F) Solid three-dimensional model of (E); (G) Colour topographic profile and (H)
interpretative drawing of (E).

Figure 10 Morphological and extramorphological features identified on the studied material. (A)
Pes track MPCA 27029-1/5 and (B) interpretative drawing. (C) Manus track MPCA 27029/2
and (D) interpretative drawing.

Figure 11 Palaecozoological attribution of pentadactyl tracks from Los Menucos (Patagonia,

Argentina). Reconstruction of the proposed autopod posture of the Pentasauropus putative
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1115 trackmaker (A) in dorsal (B) and lateral (C) view. Basipodials in green, metapodials in blue

1116 and acropodials in light blue. Redrawn and modified from Morato (2006: fig. 54c).
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Figure 1

Location map and geological sketch of Los Menucos area (from Labudia & Bjerg, 2005,
redrawn and slightly modified).
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Figure 2

Thin sections (MPCA 27029/19.1 and MPCA 27029/19.2) of track-bearing slab MPCA
27029-19.

Inequigranular epiclastic texture with anhedral and subhedral phenocrysts at the base (A)
and middle portion (B) of the track-bearing slab MPCA 27029-19. (C, D) Equigranular less

epiclastic texture indicating a minor sedimentary reworking of the trampled surface.
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Figure 3

Tracks mode of preservation.

Convex hyporeliefs (A, C) fitting with concave epireliefs (B, D) preserved on slab

MMLM 075-1 (true tracks and natural casts, respectively).
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Figure 4

Photos, three-dimensional representations and interpretative drawings of the studied
material.

(A) Track-bearing slabs MPCA 27029-1; (B) Solid three-dimensional model of (A); (C) Colour
topographic profile and (D) interpretative drawing of (A). (E) Track-bearing slabs MPCA
27029-2; (F) Solid three-dimensional model of (E); (G) Colour topographic profile and (H)

interpretative drawing of (E).
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Figure 5

Photos, three-dimensional representations and interpretative drawings of the studied
material.

(A) Track-bearing slabs MPCA 27029-3; (B) Solid three-dimensional model of (A);
(C) Colour topographic profile and (D) interpretative drawing of (A). (E) Track-
bearing slabs MPCA 27029-4; (F) Solid three-dimensional model of (E); (G) Colour
topographic profile and (H) interpretative drawing of (E).
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Figure 6

Photos, three-dimensional representations and interpretative drawings of the studied
material.

(A) Track-bearing slabs MPCA 27029-5; (B) Solid three-dimensional model of (A); (C) Colour
topographic profile and (D) interpretative drawing of (A). (E) Track-bearing slabs MPCA
27029-9; (F) Solid three-dimensional model of (E); (G) Colour topographic profile and (H)

interpretative drawing of (E).
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Figure 7

Photos, three-dimensional representations and interpretative drawings of the studied
material.

(A) Track-bearing slabs MPCA 27029-16; (B) Solid three-dimensional model of (A); (C) Colour
topographic profile and (D) interpretative drawing of (A). (E) Track-bearing slabs MPCA
27029-21; (F) Solid three-dimensional model of (E); (G) Colour topographic profile and (H)

interpretative drawing of (E).
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Figure 8

Photos, three-dimensional representations and interpretative drawings of the studied
material.

(A) Track-bearing slabs MPCA 27029-33; (B) Solid three-dimensional model of (A); (C) Colour
topographic profile and (D) interpretative drawing of (A). (E) Track-bearing slabs MMLM 075-
1, (F) Solid three-dimensional model of (E); (G) Colour topographic profile and (H)

interpretative drawing of (E).
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Figure 9

Photos, three-dimensional representations and interpretative drawings of the studied
material.

(A) Track-bearing slabs MMLM 1; (B) Solid three-dimensional model of (A); (C) Colour
topographic profile and (D) interpretative drawing of (A). (E) Track-bearing slabs MMLM 2; (F)
Solid three-dimensional model of (E); (G) Colour topographic profile and (H) interpretative

drawing of (E).
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Figure 10

Morphological and extramorphological features identified on the studied material.

(A) Pes track MPCA 27029-1/5 and (B) interpretative drawing. (C) Manus track
MPCA 27029/2 and (D) interpretative drawing.
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Figure 11

Palaeozoological attribution of pentadactyl tracks from Los Menucos (Patagonia,
Argentina).

Reconstruction of the proposed autopod posture of the Pentasauropus putative trackmaker
(A) in dorsal (B) and lateral (C) view. Basipodials in green, metapodials in blue and

acropodials in light blue. Redrawn and modified from Morato (2006: fig. 54c).
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