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Abstract 17 

Background: Arachis hypogaea L. is an economically important  oilseed crop 18 

worldwide and there are comprising six botanical varieties within the species. There are 19 

still limited chloroplast (cp) genomic resources available for this species.. HereIn this 20 

work, we investigated characterized the chloroplast (cp) genome sequences of the four 21 

widely distributed peanut varieties.. The complete chloroplast (cp) genome sequences 22 

of four representative botanical types were obtained by next-generation sequencing 23 

(NGS); these sequences will provide useful genomic resources for further phylogeny 24 

reconstruction. 25 

 26 

Methods: The cp genome data of four widely distributed botanical varieties (var. 27 

hypogaea. var. hirsuta, var. fastigiata and var. vulgaris) were obtained by next-28 

generation sequencing (NGS). These high throughput sequencing data  reads of the 29 

four studied A. hypogeae types (var. hypogaea. hirsuta, fastigiataand vulgari)were then 30 

assembled, annotated and comparatively analyzed. 31 

Results: The total cp genome lengths of  the studied A. hypogaea varieties werewas 32 

156,354 bp (for var. hypogaea), 156,878 bp (for var. hirsuta), 156,718 bp (for var. 33 

fastigiata ) and 156,399 bp (for var. vulgaris), respectively. Comparative cp genome 34 

sequence analysis of theses cp genome sequencesof these four types revealed that their 35 

gene content, gene order and GC content were quite similar to each otherhighly 36 

conserved, with only a total of 46 SNPs and 26 InDels identified among them. Most of 37 

the variation is restricted to non-coding sequences, especially, the trnI-GAU intron 38 

region. In addition, a was detected to be highly variable variableregion (trnI-GAU 39 

intron) was also detected which and will be useful for future evolutionary studies.  40 

Discussion: These four cp genome sequences acquired here will provide valuable 41 

genetic resources for distinguishing  the four studied A. hypogaea botanical 42 

varietiestypes and determining their evolutionary relationship. 43 

 44 

Short title:  45 

Peanut cp genomes analysis 46 



 47 

 Introduction 48 

Cultivated peanut (Arachis hypogaea L.) is one of the most important oilseed crops,  49 

that is mainly planted mainly in China, India, the United States of America and 50 

Argentina (Hammons 1994; Grabiele et al. 2012; Bertioli et al. 2016). Based on both 51 

morphological (Gibbons et al. 1972, Krapovickas and Vanni, 1960; 2010) and 52 

molecular (Gepts 1993; He & Prakash 2001) evidences, six A. hypogaea botanical 53 

varieties of A. hypogaea have been identified: var. hypogaea, var. hirsuta, var. fastigiata, 54 

var. vulgaris (Gibbons et al. 1972), as well as var. aequatoriana and var. peruviana, 55 

with the last two being region specific. Here, we investigated the chloroplast (cp) 56 

genome sequences of the four widely distributed peanut varieties.  57 

 58 

In land plants, the cp genome is circular and has a large single copy (LSC) region and 59 

a small single copy (SSC) region that are separated by a pair of inverted repeats (IRs) 60 

regions (Raubeson and Jansen 2005). The major role of the chloroplast (cp) is to 61 

conduct photosynthesis, and apart from that; additionally, it is also involved in the 62 

biosynthesis of fatty acids, vitamins, pigments and amino acids (Prabhudas et al. 2016). 63 

In land plants, the cp genome is circular and has a large single copy (LSC) region and 64 

a small single copy (SSC) region that are separated by a pair of inverted repeats (IRs) 65 

(Raubeson and Jansen 2005). Different from nuclear sequence, the cp genome DNA 66 

has several advantages, including nonlow-recombination, a haploid ploidy, and 67 

maternal inheritance, making it cp DNA an ideal target tool for evolutionary studies  68 

(Birky 2001; Wu and Ge 2012). For example, with the help of genetic markers that 69 

includes non-coding cpDNA regions (trnTR-trnS and trnT-trnY),  Grabiele et al. (2012) 70 

found out that the six peanut botanical varietiestypes to were very likely to have a single 71 

genetic origin, however, the fine evolutionary relationship between these varieties 72 

remains to be resolved due to limited sequence information.  73 

Now, tThe rapid progress of high-throughput sequencing technology development may 74 

provide us a chance to do sohas greatly facilitated the acquisition of cp genome data. 75 

The cp genomes, which are not only powerful for reconstructing interspecific 76 



phylogeny (Jansen et al. 2007; Parks et al. 2009; Moore et al. 2010), but are also helpful 77 

for investigating genome dynamic structure study at the subspecies level. For instance, 78 

Zhao et al. (2015) reported compared the cp genomes of four Chinese Panax ginseng 79 

strains and found the minor allele sites, which indicated the cp genome was undergoing 80 

dynamic change to fit different environments.suggested that their genome dynamic was 81 

under selective pressure. 82 

 83 

China has become the largest producer of cultivated peanuts in the world (Yu 2008), 84 

and the four A. hypogaea botanical types in this study, has been planted there for more 85 

than 500 years. Although there are six botanical varieties within A. hypogaea that differ 86 

at both the morphological and molecular levels (Ferguson et al. 2004), only very limited 87 

A. hypogaea cp genome data are currently available (Prabhudas et al. 2016; Choi and 88 

Choi 2017). Here, we acquired and closely examined the four complete cp genome 89 

complete nucleotide sequences of the four main peanut botanical varieties the 90 

availability of more peanut cp genomes will supply more molecular, providing valuable 91 

genetic resources for further evolutionary studiesresolutions. 92 

 93 

Materials & Methods 94 

DNA extraction and sequencing 95 

Four representative A. hypogaea botanical typesvarieties (var. hypogaea, var. hirsuta,, 96 

var. var. ffastigiata and var. vulgaris) were collected from Shandong Peanut Research 97 

Institute, Qingdao, China. China has become the largest producer of cultivated peanut 98 

in the world (Yu 2008), and these four main botanical varieties have been cultivated in 99 

China for more than 500 years. The seedlings were grown using hydroponic methods. 100 

The cp DNA was isolated from fresh leaves (> 5 g) collected fromof 3~- to 4- week-101 

old seedlings using the Plant Chloroplast DNAOUT Kit (Bjbalb, China). The Qquality 102 

of cp DNA samples were was detected checked by agarose gel electrophoresis with 103 

Super GelRed (US Everbright Inc, Suzhou, China).. The lLibraries with an average 104 

length of 350 bp was were constructed using a the NexteraXT DNA Library Preparation 105 

Kit (Illumina, China). The quality of the libraries were testedwas checked  by 106 
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GeneRead DNA QuantiMIZE Assay Kit (QIAGEN, Germany). Sequencing was 107 

performed on the Illumina HiSeq Xten platform (Illumina, China), and the average 108 

length of the generated reads was 150 bp (Illumina, China).  109 

 110 

Data assembly and annotation 111 

The quality of the raw paired-end reads was assessed by FastQC v0.11.3 (Andrews 112 

2014). All raw HiSeq data of for four  A. hypogaea varieties were filtered based on 113 

the following rules: 1) adapter trimming; 2) reads quality control with; each read has < 114 

5% unidentified nucleotides and > 50% of its bases with a quality value of > 20. This 115 

filtration was accomplished carried out using Cutadapt v1.7.1 (Martin 2011). The high-116 

quality data were then assembled into contigs using the de novo assembler SPAdes 117 

v3.9.0 (Nurk et al. 2013), and these contigs were further assembled into complete cp 118 

genomes by further connection using NOVOPlasty (Dierckxsens et al. 2016).. The 119 

assembled data were checked against the the published complete cp genome of A. 120 

hypogaea var. Co7  (GenBank accession no. KX257487, Prabhudas et al. 2016). The 121 

cp genes were annotated by using the DOGMA tool with the default parameters 122 

(Wyman et al. 2004). The cp genome images were drawn with OGDraw v1.2 (Lohse et 123 

al. 2007).  124 

 125 

Variation detection of variation and analysis of evolutionary relationship analysis  126 

Multiple sequence alignment were was generated using VISTA and Mauve v2.3.1 127 

software (Frazer et al. 2004; Darling et al. 2010) and were was checked manually when 128 

necessary. All alignments and related information were visualized using the VISTA 129 

viewer program (Mayor et al. 2000). Single nucleotide polymorphisms (SNPs) were 130 

detected identified by Mauve software v2.3.1. InsertionsThe insertions/deletions 131 

(InDels) were retrieved from the sequence alignment sequences using the mVISTA 132 

package. An InDels image including 10 bp up- and downstream was then generated. 133 

Simple sequence repeats (SSRs) were isolated from all filtered InDels. Repeat 134 

sequences with repeating units of 2-6 bp and that repeated no fewer than three times 135 

were considered as SSRs.  DNA flexibility was used to target the regions of high DNA 136 



helix flexibility within la DNA sequence calculated by the Graphs package of Unipro 137 

UGENE (Okonechnikov et al. 2012). 138 

Genetic The genetic relationship of the four peanut cp genomes together with two 139 

available peanut cp genome sequences (GenBank accession no. KX257487 and 140 

KJ468094; Prabhudas et al. 2016; Choi and Choi 2017) were examined by constructing 141 

a minimum evolutionary (ME) tree using MEGA v6 with default parameters (Tamura 142 

et al. 2011). revealed based on the whole cp genome sequences of the peanut botanical 143 

types and other related species The cp genome sequences from four other related 144 

species (Robinia pseudoacacia, Ceratonia siliqua, Leucaena trichandra and Senna tora) 145 

of Fabaceae were used as outgroups (CSI-BLAST E-value < 10-6). The closely related 146 

species of the Fabaceae with a high similarity (E value <10-6) were considered 147 

outgroups. A minimumevolutionary tree was constructed via the minimum evolution 148 

(ME) algorithm in MEGA v6 with the default parameters (Tamura et al. 2011). 149 

 150 

Results 151 

cp genome assemblyAssembly and validation of cp genomes 152 

High-throughput sequencing based on the Illumina HiSeq Xten system generated raw 153 

data (> 1Gb sequencing data per sample)More than 1 Gb raw sequencing data per 154 

sample was generated from high-throughput sequencing. After cleaning and trimming, 155 

22,511,400 (var. vulgaris ) to 62,087,400 (var. hirsuta) paired-end reads were acquired, 156 

which were then mapped separately to the reference cp genome, attaining coverage 157 

amounts of 143× to 396×. After performing the de novo and reference-guided assembly 158 

with minor modifications, we acquired four complete cp genome sequences that belong 159 

to, respectively for, A. hypogaea varieties var. hypogaea,. var. hirsuta, var. fastigiata, 160 

var. fastigiata and var. vulgaris (Figure 1; Table 1). 161 

For each of the assembled cp genome sequences, a .sqn file that was generated using 162 

by the sequin Sequin software  (https://www.ncbi.nlm.nih.gov/projects/Sequin/), 163 

submitted to NCBI Genbank  GenBank and acquired the following accession numbers: 164 

MG814006 (for var. fastigiata), MG814007 (for var. hirsuta), MG814008 (for var. 165 

hypogaea), and MG814009 for (var. vulgaris). Users can download the data for research 166 

Formatted: Superscript



purposes only with quoting thewhen referencing this paper. 167 

 168 

Genetic structure of the peanut cp genome 169 

These four acquired peanut cp genomes were found to have the classical quadripartite 170 

structure of land plant chloroplast genomes that comprises a LSC, a SSC and two IR 171 

(A/B) regions. The sequence lengths among the four cp genomes ranged from 156,354 172 

bp to 156,878 bp. The size varied from 85,900 bp (var. hirsuta) to 86,196 bp (var. 173 

fastigiata) in the LSC region, from 18,796 bp (var. hypogaea, var. hirsuta and var. 174 

vulgaris) to 18,874 bp (var. fastigiata) in the SSC region and from 25,806 bp (var. 175 

hypogaea) to 26,091 bp (var. hirsuta) in the IR (A/B) region (Table 1). A total of 110 176 

unique genes in the cp genome contained were identified from the cp genome: four 177 

ribosomal RNA (rRNA) genes, 76 protein-coding genes and 30 transfer RNA (tRNA) 178 

genes (Table 2). Among the 110 identified genes, Six six protein-coding genes, six 179 

tRNA genes and four rRNA genes were distributed in the IR (A/B) regions.  The cp 180 

genome consisted of 55.66% of coding regions and 44.34% of non-coding regions, 181 

including both intergenic spacers and introns. The overall GC content of the cp genomic 182 

sequences was 36.3~36.4%, and the GC contents in of the LSC, SSC, and IR (A/B) 183 

regions was were 33.8%, 30.2~30.3%, and 42.8~42.9%,  respectively (Figure 2; Table 184 

2). 185 

 186 

DNA flexibility 187 

The flexibility value of the peanut cp genome ranged from 9.87 to 12.21 (Figure 2). 188 

Regions of higher flexibility (top 5%) with a maximum value of 12.21 were detected, 189 

including the psbK-accD intergenic spacer region (56,131-57,150 bp), trnL-UAAtrnT-190 

UGU intron (14,201-15,280 bp) and ndhL (120,641-121,680 bp). These regions were 191 

the start sites of the RNA polymerase complex or the transcription site  for protein 192 

complex recognition. Moreover, the regions of less flexibility (top 5%) with a minimum 193 

value of 9.85 comprised two 23S rRNA blocks (108,681-109,690 bp; 134,081-135,080 194 

bp), perhaps because of the requirement for base pairing in the secondary structures of 195 

the products. 196 



 197 

Variation among the cp genomes variations 198 

Multiple alignments of the peanut cp genome sequences were performed. NAmong the 199 

four acquired peanut cp genome sequences, there waso regions in the four peanut 200 

botanical types presented no differed difference at the junction positions (Figure 32). 201 

VISTA-based identity plots illustrated the hotspot regions of genetic variation among 202 

the cp genomes (Figure 4). A total of 46 SNPs were found within the quadripartite 203 

structural region. VISTA-based identity plots illustrated the hotspot regions of genetic 204 

variation among the cp genomes (Figure 43). As expected, non-coding regions 205 

sequences exhibited more variation than did the coding sequencesregions, and the 206 

greater amounts of substitutions were found in the trnI-GAU intron (25 SNPs) and the  207 

ycf3-psaA spacer (8 SNPs) regions. The only identified non-synonymous was located 208 

within the psaA gene. The hydrophobic amino acid Tyr in var. hypogaea, var. fastigiata 209 

and var. vulgaris was replaced by the hydrophilic amino acid Asn in var. hirsuta. 210 

A total of 26 InDels were detectedidentified: 13 thirteen were located in spacers, 9 nine 211 

were in introns, and 4 four were in genes; 15 were in the LSC region, 2 two were in the 212 

SSC region, and 9 nine were in IR (A /–B) regions (Supplementary Figure S1). Among 213 

these InDelsfour botanical varieties, large InDels (> 50 bp) were found in the psbK-214 

trnQ intergenic spacer, the trnL intron (an IR), and ycf1. Among those InDels, we 215 

identified 6 six SSR regions with >7 repeat nucleotides whose (sequence identity was > 216 

90%): 4 four A stretches and 1 one T stretches ranging from 7 bp to 16 bp, as well as 1 217 

one with a CTAG dinucleotide repeat motif. No C or G stretches were identified. 218 

Moreover, InDels in the ycf1 and the ycf2 regions represent frameshift mutations: 219 

Specifically, the 63 bp-insertion at the end of the ycf1 gene led to a longer amino acid 220 

sequence in var. fastigiata, while a 18 bp-deletions was found in the middle of IR (A 221 

/B) ycf2 gene regions in var. hypogaea. 222 

 223 

Genetic relationship analysis 224 

The similarity results showed that Robinia pseudoacacia, Ceratonia silique, Leucaena 225 

trichandra and Senna tora of the Fabaceaeserved as outgroups. Due to the low genetic 226 
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diversity, the whole cp genome sequences were used to construct an evolutionary tree 227 

based on ME algorithms. The results showed that these peanut cp genomes sequences 228 

of the six peanut varieties   clustered into a monophyletic branch, while the four 229 

outgroup species were clustered into another branch. Among the six analyzed peanut 230 

cp genomes, var. hirsuta is relatively different from the rest and constitute a basal clade 231 

(Figure 4). Compared with other peanut types, var. hirsuta constituted a basal clade 232 

(Figure 5). Four peanut types were clustered together. Meanwhile, other species were 233 

grouped into the other group. The high support values (> 99%) were shown above the 234 

nodes.  235 

 236 

Discussion 237 

The chloroplast (cp) is an important plant cell organelle peculiar to plant cytoplasm 238 

originated from cyanobacteria (Alberts et al. 2002). The chloroplast cp genome usually 239 

lacks recombination and are is maternally inherited, as such, they represent an 240 

important reference for understanding the phylogenetic relationships andand is 241 

therefore very useful for distinguishing taxa and inferring evolutionary relationships. 242 

Here, we have studied the cp genomes of cultivated peanut (A. hypogaea) that is an 243 

economically important oilseed crop worldwide. A. hypogaea comprised six varieties 244 

that differ at both the morphological and molecular levels (Ferguson et al. 2004). So far, 245 

only very limited A. hypogaea cp genome data are available (Prabhudas et al. 2016).  246 

In the present study, we acquired and closely examined the whole cp genome sequences 247 

of four main peanut varieties. We found that the overall cp genome structures of the 248 

four botanical varieties were the same and displayed the classical quadripartite structure 249 

of land plant cp genome (Raubeson and Jansen 2005).we compared the whole cp 250 

genome sequences for var. hypogaea, hirsuta, fastigiata and vulgaris  based on NGS 251 

methods and revealed the variation within the entire cp genome.  No definitive 252 

genomic rearrangements or gene inversions were found among the four peanut cp 253 

genomes. The sequence variation among the four peanut cp genomes was also relatively 254 

limited, and most of them were restricted to the noncoding regions, especially the trnI-255 

GAU intron exhibited an outstanding level of variation (25 out of the entire 46 256 

Formatted: Font: Italic



identified SNPs), suggesting that the rapidly evolving nature of this intron. This trnI-257 

GAU intron has therefore a great potential for developing molecular markers that could 258 

be used in future phylogenetic studies.  259 

All four complete peanut cp genomes displayed the classic quadripartite structure. 260 

There were no definitive genomic rearrangements or gene inversions. A Comparison of 261 

the genomic sequences indicated that gene content and gene order among these four 262 

types were well-conserved, as expected.  263 

 264 

Non-synonymous variations 265 

The greatest frequency of variation (25 of 46 SNPs) was identified in the trnI-GAU 266 

intron region, which could provide useful information for the variety identification, and 267 

can be used to generate useful DNA barcodes for Arachis. Most substitutions and 268 

InDels were synonymous; only one substitution in psaA gene was involved in 269 

nonsynonymous mutation. The psaA gene is a fundamental protein-coding gene of 270 

photosystem I. The hydrophobic amino acid Tyr of the psaA gene in var. hypogaea, 271 

fastigiata and vulgaris  was replaced by a hydrophilic amino acid Asn in var.hirsuta, 272 

which indicated that hirsuta may have evolved a modified photosystem I to adjust their 273 

ability to adapt to the changing photosynthesis environment during its domestication 274 

process (Wu et al. 2017). In addition,  The ycf1 gene product has recently been re-275 

recognized as a crucial component of the cp translocon located at the inner envelope 276 

membrane (Kikuchi et al. 2013). The 63 bp-tail in fastigiata may have acquired 277 

additional function for the cp translocon. The ycf2 gene is the largest plastid gene in 278 

plants. Huang et al. (2010) reported that the ycf2 gene alone could provide a consistent 279 

and well-supported phylogenetic relationship instead of most gene combinations. In 280 

peanut, the cp genome-wide variationscould easily distinguish the botanical varieties. 281 

 282 

Genetic relationships among the botanical types 283 

TIn addition, a minimum-evolution tree of the four acquired peanut cp genomes 284 

together with two earlier published peanut cp genomes has been constructed to 285 

speculate their evolutionary relationships. he available cp genome sequences of six 286 
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peanut varieties and the additional cp genome resources of the Fabaceae were used into 287 

study evolutionary relationships. Our result showed that the six investigated peanut cp 288 

genomes form a monophyletic branch, and this agrees with earlier studies (Grabiele et 289 

al. 2012). In addition, our result also revealed that among the six studied peanut cp 290 

genomes, var. hirsuta was relatively more distantly related to the others and may 291 

constitute a basal branch, which was in line with the previous reports (Duan et al. 1995; 292 

Ferguson et al. 2004). Consistent with its suggested relationship between var. hirsuta 293 

and the other studied peanut varieties, var. hirsuta appeared to be the peanut variety 294 

found within the archeological remains along the Pacific coast of Perú (Bonavia) that 295 

may be the region of origin of cultivated peanut (Simpson et al 2001; Stalker et al. 296 

2017).The varieties belonging to subspecies hypogaea or fastigiata were mixed 297 

together. These four varieties were possibly closely related by the maternal transmission. 298 

Combined with their nuclear sequence information, these types could lead to a better 299 

understanding of the entire evolutionary process. However,  Our results suggested that, 300 

compared with other varieties, var. hirsuta constituted a basal branch, which was in 301 

good accordance with previous reports (Ferguson et al. 2004). var. hirsuta is the variety 302 

found in the most ancient archeological remains along the Pacific coast of Perú 303 

(Bonavia) (Simpson et al 2001; Stalker et al. 2017).  var. hirsuta was considered as 304 

the ancient cultivated type in China, where has become a secondary center of diversity 305 

(Duan et al. 1995). ). 306 

 307 

Conclusion 308 

Using Illumina sequencing methodsWith the help of high-throughput sequencing 309 

technology, we revealed the complete cp genomes of four main peanut botanical 310 

varietiestypes. The gene contents and gene orders of the cp genomes were highly 311 

conserved. We investigated the genetic variations among the four complete peanut cp 312 

genomes. The noncoding regions and the trnI-GAU intron region was considered to be 313 

rapidly-evolving regions that could be  potentially serve as molecular markers for in 314 

phylogenetic studies.  Moreover, our results provide more evidence to support the 315 

hypothesis that var. hirsuta is the relatively ancient  ancient botanical type. This study 316 



will provide more valuable cp genome genomic resources for the phylogeny 317 

reconstruction of A. hypogaeafuture exploitation. 318 
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