1			
2	CA comparative analysis of the complete chloroplast genome		
3	sequences of four peanut botanical typesvarieties		
4	Juan Wang ^{1*} , Chunjuan Li ^{1*} , Caixia Yan ¹ , Xiaobo Zhao ¹ , Shihua Shan ^{1#}		
5			
6			
7			
8	¹ Laboratory of Genetics and Breeding, Shandong Peanut Research Institute, Qingdao,		
9	China		
10			
11	*Juan Wang and Chunjuan Li have contributed equally to this work.		
12			
13	#corresponding author:		
14	Shihua Shan		
15			
16	E-mail: shansh1971@163.com		

17 Abstract 18 Background: Arachis hypogaea L. is an economically important -oilseed crop 19 worldwide and there are comprising six botanical varieties within the species. There are still limited chloroplast (cp) genomic resources available for this species... HereIn this 20 work, we investigated characterized the chloroplast (cp) genome sequences of the four 21 widely distributed peanut varieties.. The complete chloroplast (cp) genome sequences 22 23 of four representative botanical types were obtained by next generation sequencing (NGS); these sequences will provide useful genomic resources for further phylogeny 24 25 reconstruction. 26 Methods: The cp genome data of four widely distributed botanical varieties (var. 27 28 hypogaea. var. hirsuta, var. fastigiata and var. vulgaris) were obtained by next-29 generation sequencing (NGS). These high throughput sequencing data reads of the four studied A. hypogeae types (var. hypogaea. hirsuta, fastigiataand vulgari) were then 30 assembled, annotated and comparatively analyzed. 31 32 Results: The total cp genome lengths of -the studied A. hypogaea varieties were was 156,354_bp (for-var. hypogaea), 156,878_bp (for-var. hirsuta), 156,718_bp (for-var. 33 34 fastigiata-) and 156,399 bp (for-var. vulgaris), respectively. Comparative ep genome 35 sequence analysis of theses cp genome sequences of these four types revealed that their gene content, gene order and GC content were quite similar to each other highly 36 conserved, with only a total of 46 SNPs and 26 InDels identified among them. Most of 37 the variation is restricted to non-coding sequences, especially, the trnI-GAU intron 38 region. In addition, a was detected to be highly variable variable region (trnI-GAU 39 intron) was also detected which and will be useful for future evolutionary studies.-40 41 Discussion: These four cp genome sequences acquired here will provide valuable

genetic resources for distinguishing the four studied A. hypogaea botanical

varietiestypes and determining their evolutionary relationship.

45 Short title:-

42

43 44

46 Peanut cp genomes analysis

47 48 -Introduction Cultivated peanut (Arachis hypogaea L.) is one of the most important oilseed crops, 49 that is mainly planted mainly in China, India, the United States of America and 50 Argentina (Hammons 1994; Grabiele et al. 2012; Bertioli et al. 2016). Based on both 51 morphological (Gibbons et al. 1972, Krapovickas and Vanni, 1960; 2010) and 52 53 molecular (Gepts 1993; He & Prakash 2001) evidences, six-A. hypogaea botanical varieties of A. hypogaea have been identified: var. hypogaea, var. hirsuta, var. fastigiata, 54 55 var. vulgaris (Gibbons et al. 1972), as well as var. aequatoriana and var. peruviana; with the last two being region specific. Here, we investigated the chloroplast (ep) 56 genome sequences of the four widely distributed peanut varieties. 57 58 In land plants, the cp genome is circular and has a large single copy (LSC) region and 59 a small single copy (SSC) region that are separated by a pair of inverted repeats (IRs) 60 regions (Raubeson and Jansen 2005). The major role of the chloroplast (cp) is to 61 62 conduct photosynthesis, and apart from that; additionally, it is also involved in the biosynthesis of fatty acids, vitamins, pigments and amino acids (Prabhudas et al. 2016). 63 In land plants, the ep genome is circular and has a large single copy (LSC) region and 64 a small single copy (SSC) region that are separated by a pair of inverted repeats (IRs) 65 (Raubeson and Jansen 2005). Different from nuclear sequence, the cp genome DNA 66 has several advantages, including nonlow-recombination, nonlow-rec 67 maternal inheritance, making it-cp DNA an ideal target-tool for evolutionary studies 68 69 (Birky 2001; Wu and Ge 2012). For example, with the help of genetic markers that 70 includes non-coding cpDNA regions (trnTR-trnS and trnT-trnY),— Grabiele et al. (2012) 71 found out that the six peanut botanical varieties types to were very likely to have a single 72 genetic origin, however, the fine evolutionary relationship between these varieties remains to be resolved due to limited sequence information. 73 Now, tThe rapid progress of high-throughput sequencing technology development may 74 provide us a chance to do so has greatly facilitated the acquisition of cp genome data-75

The cp genomes, which are not only powerful for reconstructing interspecific

76

77 phylogeny (Jansen et al. 2007; Parks et al. 2009; Moore et al. 2010), but are also helpful 78 for investigating genome dynamic structure study at the subspecies level. For instance, 79 Zhao et al. (2015) reported compared the cp genomes of four Chinese Panax ginseng strains and found the minor allele sites, which indicated the cp genome was undergoing 80 dynamic change to fit different environments.suggested that their genome dynamic was 81 under selective pressure. 82 83 84 China has become the largest producer of cultivated peanuts in the world (Yu 2008), and the four A. hypogaea botanical types in this study, has been planted there for more 85 than 500 years. Although there are six botanical varieties within A. hypogaea that differ 86 at both the morphological and molecular levels (Ferguson et al. 2004), only very limited 87 88 A. hypogaea cp genome data are currently available (Prabhudas et al. 2016; Choi and Choi 2017). Here, we acquired and elosely examined the four complete cp genome 89 complete nucleotide sequences of the four main peanut botanical varieties the 90 availability of more peanut cp genomes will supply more molecular, providing valuable 91 92 genetic resources for further evolutionary studies resolutions. 93 94 **Materials & Methods** 95 DNA extraction and sequencing Four representative A. hypogaea botanical types varieties (var. hypogaea, var. hirsuta, 96 var. var. ffastigiata and var. vulgaris) were collected from Shandong Peanut Research 97

Institute, Qingdao, China. China has become the largest producer of cultivated peanut

in the world (Yu 2008), and these four main botanical varieties have been cultivated in

China for more than 500 years. The seedlings were grown using hydroponic methods.

The cp DNA was isolated from fresh leaves (> 5 g) collected from of 3-- to 4- week-

old seedlings using the Plant Chloroplast DNAOUT Kit (Bjbalb, China). The Quality

of cp_DNA samples were was detected checked by agarose gel electrophoresis with Super GelRed (US Everbright Inc, Suzhou, China). The IL ibraries with an average

length of 350 bp was were constructed using a the NexteraXT DNA Library Preparation

Kit (Illumina, China). The quality of the libraries were tested was checked -by

98

99

100 101

102

103

104 105

106

Formatted: Font: Italic

Formatted: Font: Italic

107 GeneRead DNA QuantiMIZE Assay Kit (QIAGEN, Germany). Sequencing was 108 performed on the Illumina HiSeq Xten platform (Illumina, China), and the average length of the generated reads was 150 bp (Illumina, China).-109 110 Data assembly and annotation 111 112 The quality of the raw paired-end reads was assessed by FastQC v0.11.3 (Andrews 113 2014). All raw HiSeq data of for four— A. hypogaea varieties were filtered based on the following rules: 1) adapter trimming; 2) reads quality control with; each read has < 114 115 5% unidentified nucleotides and > 50% of its bases with a quality value of > 20. This 116 filtration was accomplished carried out using Cutadapt v1.7.1 (Martin 2011). The highquality data were then assembled into contigs using the de novo assembler SPAdes 117 118 v3.9.0 (Nurk et al. 2013), and these contigs were further assembled into complete cp 119 genomes by further connection using NOVOPlasty (Dierckxsens et al. 2016). The 120 assembled data were checked against the the published complete cp genome of A. 121 hypogaea var. Co7 (GenBank accession no. KX257487, Prabhudas et al. 2016). The 122 cp genes were annotated by using the DOGMA tool with the default parameters 123 (Wyman et al. 2004). The cp genome images were drawn with OGDraw v1.2 (Lohse et 124 al. 2007).-125 126 Variation detection of variation and analysis of evolutionary relationship analysis— 127 Multiple sequence alignment were was generated using VISTA and Mauve v2.3.1 software (Frazer et al. 2004; Darling et al. 2010) and were was checked manually when 128 129 necessary. All alignments and related information were visualized using the VISTA viewer program (Mayor et al. 2000). Single nucleotide polymorphisms (SNPs) were 130 131 detected identified by Mauve software v2.3.1. Insertions The insertions/deletions (InDels) were retrieved from the sequence alignment-sequences using the mVISTA 132 package. An InDels image including 10 bp up- and downstream was then generated. 133 Simple sequence repeats (SSRs) were isolated from all filtered InDels. Repeat 134 135 sequences with repeating units of 2-6 bp and that repeated no fewer than three times 136 were considered as SSRs. - DNA flexibility was used to target the regions of high DNA 137 helix flexibility within la DNA sequence calculated by the Graphs package of Unipro 138 UGENE (Okonechnikov et al. 2012). 139 Genetic The genetic relationship of the four peanut cp genomes together with two 140 available peanut cp genome sequences (GenBank accession no. KX257487 and KJ468094; Prabhudas et al. 2016; Choi and Choi 2017) were examined by constructing 141 142 a minimum evolutionary (ME) tree using MEGA v6 with default parameters (Tamura 143 et al. 2011). revealed based on the whole cp genome sequences of the peanut botanical 144 types and other related species. The cp genome sequences from four other related 145 species (Robinia pseudoacacia, Ceratonia siliqua, Leucaena trichandra and Senna tora) of Fabaceae were used as outgroups (CSI-BLAST E-value < 10.6). The closely related 146 species of the Fabaceae with a high similarity (E value <10-6) were considered 147 148 outgroups. A minimum evolutionary tree was constructed via the minimum evolution 149 (ME) algorithm in MEGA v6 with the default parameters (Tamura et al. 2011). 150 Results 151 152 ep genome assembly Assembly and validation of cp genomes High throughput sequencing based on the Illumina HiSeq Xten system generated raw 153 154 data (> 1Gb sequencing data per sample) More than 1 Gb raw sequencing data per 155 sample was generated from high-throughput sequencing. After cleaning and trimming, 156 22,511,400 (var. vulgaris-) to 62,087,400 (var. hirsuta) paired-end reads were acquired, which were then mapped separately to the reference cp genome, attaining coverage 157 amounts of 143× to 396×. After performing the de novo and reference-guided assembly 158 159 with minor modifications, we acquired four complete cp genome sequences that belong to, respectively for, A. hypogaea varieties var. hypogaea, var. hirsuta, var. fastigiata, 160 161 var. fastigiata and var. vulgaris (Figure 1; Table 1). 162 For each of the assembled cp genome sequences, a .sqn file that was generated using 163 by the sequin Sequin software —(https://www.ncbi.nlm.nih.gov/projects/Sequin/), 164 submitted to NCBI Genbank GenBank and acquired the following accession numbers: 165 MG814006 (for var. fastigiata), MG814007 (for var. hirsuta), MG814008 (for var.

hypogaea), and MG814009 for (var. vulgaris). Users can download the data for research

166

Formatted: Superscript

167 purposes only with quoting the when referencing this paper. 168 169 Genetic structure of the peanut cp genome 170 These four acquired peanut cp genomes were found to have the classical quadripartite 171 structure of land plant chloroplast genomes that comprises a LSC, a SSC and two IR 172 (A/B) regions. The sequence lengths among the four cp genomes ranged from 156,354 173 bp to 156,878 bp. The size varied from 85,900 bp (var. hirsuta) to 86,196 bp (var. fastigiata) in the LSC region, from 18,796 bp (var. hypogaea, var. hirsuta and var. 174 vulgaris) to 18,874 bp (var. fastigiata) in the SSC region and from 25,806 bp (var. 175 176 hypogaea) to 26,091 bp (var. hirsuta) in the IR (A/B) region (Table 1). A total of 110 177 unique genes in the cp genome contained were identified from the cp genome: four 178 ribosomal RNA (rRNA) genes, 76 protein-coding genes and 30 transfer RNA (tRNA) 179 genes (Table 2). Among the 110 identified genes, Six-six protein-coding genes, six 180 tRNA genes and four rRNA genes were distributed in the IR (A/B) regions. -The cp 181 genome consisted of 55.66% of coding regions and 44.34% of non-coding regions, 182 including both intergenic spacers and introns. The overall GC content of the cp genomic 183 sequences was 36.3~36.4%, and the GC contents in-of the LSC, SSC, and IR (A/B) 184 regions was were 33.8%, 30.2~30.3%, and 42.8~42.9%, —respectively (Figure 2; Table 185 2). 186 187 **DNA flexibility** The flexibility value of the peanut cp genome ranged from 9.87 to 12.21 (Figure 2). 188 189 Regions of higher flexibility (top 5%) with a maximum value of 12.21 were detected, 190 including the psbK accD intergenic spacer region (56,131-57,150 bp), trnL-UAAtrnT-191 UGU intron (14,201-15,280 bp) and ndhL (120,641-121,680 bp). These regions were 192 the start sites of the RNA polymerase complex or the transcription site for protein 193 complex recognition. Moreover, the regions of less flexibility (top 5%) with a minimum value of 9.85 comprised two 23S rRNA blocks (108,681-109,690 bp; 134,081-135,080 194 195 bp), perhaps because of the requirement for base pairing in the secondary structures of 196 the products.

197

202

204205

206

207

212

214

215

198 <u>Variation among the cp genomes variations</u>
199 <u>Multiple alignments of the peanut cp genome sequences were performed. NAmong the</u>
200 four acquired peanut cp genome sequences, there waso regions in the four peanut

four acquired peanut cp genome sequences, there waso regions in the four peanut

botanical types presented no differed difference at the junction positions (Figure $3\underline{2}$).

203 the ep genomes (Figure 4). A total of 46 SNPs were found within the quadripartite

the ep genomes (Figure 4). A total of 46 SNPs were found within the quadripartite

WISTA based identity plots illustrated the hotspot regions of genetic variation among

<u>structural</u> region. <u>VISTA-based identity plots illustrated the hotspot regions of genetic</u>

variation among the cp genomes (Figure 43). As expected, non-coding regions

sequences exhibited more variation than did the coding sequences regions, and the

greater amounts of substitutions were found in the trnI-GAU intron (25 SNPs) and the

208 ycf3-psaA spacer (8 SNPs) regions. The only identified non-synonymous was located

within the psaA gene. The hydrophobic amino acid Tyr in var. hypogaea, var. fastigiata

and var. *yulgaris* was replaced by the hydrophilic amino acid Asn in var. *hirsuta*.

211 A total of 26 InDels were detected identified: 13 thirteen were located in spacers, 9-nine

were in introns, and 4-four were in genes; 15 were in the LSC region, 2-two were in the

213 SSC region, and 9-nine were in IR (A /–B) regions (Supplementary Figure S1). Among

the<u>se InDelsfour botanical varieties</u>, large InDels (>_50 bp) were found in the *psbK*-

trnQ intergenic spacer, the trnL intron-(an IR), and ycfI. Among those InDels, we

216 identified 6-six SSR regions with >7 repeat nucleotides whose (sequence identity was >

217 90%): 4-four A stretches and 4-one T stretches ranging from 7 bp to 16 bp, as well as 4

218 one with a CTAG-dinucleotide repeat motif. No C or G stretches were identified.

219 Moreover, InDels in the *ycf1* and the *ycf2* regions represent frameshift mutations:

Specifically, the 63 bp-insertion at the end of the ycfl gene led to a longer amino acid

sequence in var. fastigiata, while a 18 bp-deletions was found in the middle of IR (A

222 /B) ycf2 gene regions in var. hypogaea.

223

224

Genetic relationship analysis

225 The similarity results showed that Robinia pseudoacacia, Ceratonia silique, Leucaena

226 *trichandra* and *Senna tora* of the Fabaceaeserved as outgroups. Due to the low genetic

Formatted: Font: Italic

diversity, the whole cp genome sequences were used to construct an evolutionary tree based on ME algorithms. The results showed that the se peanut cp genomes sequences of the six peanut varieties—clustered into a monophyletic branch, while the four outgroup species were clustered into another branch. Among the six analyzed peanut cp genomes, var. hirsuta is relatively different from the rest and constitute a basal clade (Figure 4). Compared with other peanut types, var. hirsuta constituted a basal clade (Figure 5). Four peanut types were clustered together. Meanwhile, other species were

grouped into the other group. The high support values (> 99%) were shown above the

Formatted: Font: Italic

235236

237

238

239

240241

242

243244

245

246

247

248249

250

251

252253

254255

256

227

228

229

230

231 232

233

234

Discussion

nodes.

The chloroplast (cp) is an important plant cell organelle peculiar to plant cytoplasm originated from cyanobacteria (Alberts et al. 2002). The chloroplast cp genome usually lacks recombination and are is maternally inherited, as such, they represent an important reference for understanding the phylogenetic relationships and and is therefore very useful for distinguishing taxa and inferring evolutionary relationships. Here, we have studied the cp genomes of cultivated peanut (A. hypogaea) that is an economically important oilseed crop worldwide. A. hypogaea comprised six varieties that differ at both the morphological and molecular levels (Ferguson et al. 2004). So far, only very limited A. hypogaea cp genome data are available (Prabhudas et al. 2016). In the present study, we acquired and closely examined the whole cp genome sequences of four main peanut varieties. We found that the overall cp genome structures of the four botanical varieties were the same and displayed the classical quadripartite structure of land plant cp genome (Raubeson and Jansen 2005). we compared the whole cp genome sequences for var. hypogaea, hirsuta, fastigiata and vulgaris based on NGS methods and revealed the variation within the entire cp genome. No definitive genomic rearrangements or gene inversions were found among the four peanut cp genomes. The sequence variation among the four peanut cp genomes was also relatively limited, and most of them were restricted to the noncoding regions, especially the trnI-GAU intron exhibited an outstanding level of variation (25 out of the entire 46 257 identified SNPs), suggesting that the rapidly evolving nature of this intron. This trnI-258 GAU intron has therefore a great potential for developing molecular markers that could 259 be used in future phylogenetic studies. All four complete peanut cp genomes displayed the classic quadripartite structure. 260 261 There were no definitive genomic rearrangements or gene inversions. A Comparison of 262 the genomic sequences indicated that gene content and gene order among these four 263 types were well conserved, as expected. 264 265 Non-synonymous variations 266 The greatest frequency of variation (25 of 46 SNPs) was identified in the trnI GAU intron region, which could provide useful information for the variety identification, and 267 268 can be used to generate useful DNA barcodes for Arachis. Most substitutions and 269 InDels were synonymous; only one substitution in psaA gene was involved in 270 nonsynonymous mutation. The psaA gene is a fundamental protein-coding gene of 271 photosystem I. The hydrophobic amino acid Tyr of the psaA gene in var. hypogaea, 272 fastigiata and vulgaris was replaced by a hydrophilic amino acid Asn in var.hirsuta, which indicated that hirsuta may have evolved a modified photosystem I to adjust their 273 274 ability to adapt to the changing photosynthesis environment during its domestication 275 process (Wu et al. 2017). In addition, The yefl gene product has recently been re-276 recognized as a crucial component of the cp translocon located at the inner envelope membrane (Kikuchi et al. 2013). The 63 bp tail in fastigiata may have acquired 277 additional function for the cp translocon. The ycf2 gene is the largest plastid gene in 278 279 plants. Huang et al. (2010) reported that the ycf2 gene alone could provide a consistent and well-supported phylogenetic relationship instead of most gene combinations. In 280

Genetic relationships among the botanical types

281

282 283

284 285

286

<u>TIn</u> addition, a minimum-evolution tree of the four acquired peanut cp genomes together with two earlier published peanut cp genomes has been constructed to speculate their evolutionary relationships. he available cp genome sequences of six

peanut, the cp genome-wide variations could easily distinguish the botanical varieties.

Formatted: Font: Font color: Red

peanut varieties and the additional cp genome resources of the Fabaceae were used into study evolutionary relationships. Our result showed that the six investigated peanut cp genomes form a monophyletic branch, and this agrees with earlier studies (Grabiele et al. 2012). In addition, our result also revealed that among the six studied peanut cp genomes, var. hirsuta was relatively more distantly related to the others and may constitute a basal branch, which was in line with the previous reports (Duan et al. 1995; Ferguson et al. 2004). Consistent with its suggested relationship between var. hirsuta and the other studied peanut varieties, var. hirsuta appeared to be the peanut variety found within the archeological remains along the Pacific coast of Perú (Bonavia) that may be the region of origin of cultivated peanut (Simpson et al 2001; Stalker et al. 2017). The varieties belonging to subspecies hypogaea or fastigiata were mixed together. These four varieties were possibly closely related by the maternal transmission. Combined with their nuclear sequence information, these types could lead to a better understanding of the entire evolutionary process. However, Our results suggested that, compared with other varieties, var. hirsuta constituted a basal branch, which was in good accordance with previous reports (Ferguson et al. 2004). var. hirsuta is the variety found in the most ancient archeological remains along the Pacific coast of Perú (Bonavia) (Simpson et al 2001; Stalker et al. 2017). var. hirsuta was considered as the ancient cultivated type in China, where has become a secondary center of diversity (Duan et al. 1995).).

308 Conclusion

287

288

289

290

291 292

293

294

295296

297

298 299

300 301

302

303

304

305

306 307

309

310

311

312

313

314

315

316

Using Illumina sequencing methods With the help of high-throughput sequencing technology, we revealed the complete cp genomes of four main peanut botanical varieties types. The gene contents and gene orders of the cp genomes were highly conserved. We investigated the genetic variations among the four complete peanut cp genomes. The noncoding regions and the trnI-GAU intron region was considered to be rapidly-evolving regions that could be—potentially serve as molecular markers for in phylogenetic studies. Moreover, our results provide more evidence to support the hypothesis that var. hirsuta is the relatively ancient—ancient botanical type. This study

317	will provide more valuable cp genome genomic resources for the phylogeny	
318	reconstruction of A. hypogaea future exploitation.	
319		
320	Acknowledgements	
321	The authors would like to acknowledge Dr. Yuan Li from Lund University in Sweden	
322	and Dr. Dachuan Shi from the Qingdao Academy of Agricultural Science in China for	
323	the <u>ir</u> excellent advices on this paper.	
324		
325	References	
326	Alberts B, Johnson A, Lewis J, Raff M, Roberts K, and Watson JD. 2002. Molecular	
327	Biology of the Cell. 4th edition. Chapter 14: Chloroplasts and photosynthesis.	
328	New York: Garland Science.	
329	9 Andrews S. 2014. FastQC: a quality control tool for high throughput sequence data.	
330	https://doi.org/citeulike-article-id:11583827	
331	Bertioli DJ, Cannon SB, Froenicke L, Huang G, Farmer AD, Cannon EK, Liu X, Gao	
332	D, Clevenger J, Dash S, Ren L, Moretzsohn MC, Shirasawa K, Huang W,	
333	Vidigal B, Abernathy B, Chu Y, Niederhuth CE, Umale P, Araujo AC, Kozik A,	
334	Kim KD, Burow MD, Varshney RK, Wang X, Zhang X, Barkley N, Guimaraes	
335	PM, Isobe S, Guo B, Liao B, Stalker HT, Schmitz RJ, Scheffler BE, Leal-	
336	Bertioli SC, Xun X, Jackson SA, Michelmore R, and Ozias-Akins P. 2016. The	
337	genome sequences of Arachis duranensis and Arachis ipaensis, the diploid	
338	ancestors of cultivated peanut. Nature Genetics 48:438-446. 10.1038/ng.3517	
339	Birky CW. 2001. The inheritance of genes in mitochondria and chloroplasts: laws,	
340	mechanisms, and models. Annual Review of Genetics 35:125-148.	
341	Choi IS, and Choi BH. 2017. The distinct plastid genome structure of <i>Maackia fauriei</i>	
342	(Fabaceae: Papilionoideae) and its systematic implications for genistoids and	
343	tribe Sophoreae. PLoS One 12(4):e0173766. doi:10.1371/journal.pone.0173766	
344	Darling AE, Mau B, and Perna NT. 2010. Progressive Mauve: multiple genome	
345	alignment with gene gain, loss and rearrangement. PLoS One 5:e11147.	
346	10.1371/journal.pone.0011147	

347	Dierckxsens N, Mardulyn P, and Smits G. 2017. NOVOPlasty: de novo assembly of	
348	organelle genomes from whole genome data. Nucleic Acids Research 45: e18	
349	10.1093/nar/gkw955	
350	Duan NX, Jiang HF, Liao BS, and Zhou R. 1995. var. hirsuta in China: the origin and	
351	spread (in Chinese). Chinese Journal of Oil Crop Sciences 17 (2): 68-71.	
352	Ferguson ME, Bramel PJ, and Chandra S. 2004. Gene Diversity among Botanical	
353	Varieties in Peanut (L.). Crop Science 44 (5): 1847-1854.	
354	Frazer KA, Pachter L, Poliakov A, Rubin EM, and Dubchak I. 2004. VISTA:	
355	computational tools for comparative genomics. Nucleic Acids Research	
356	32:W273-279. 10.1093/nar/gkh458	
357	Gepts P. 1993. The use of molecular and biochemical markers in crop evolution studies	
358	Evolutionary Biology-New York 27:51-94.	
359	Gibbons RW, Bunting AH, and Smartt J. 1972. The classification of varieties o	
360	groundnut (Arachis hypogaea L.). Euphytica 21(1):78-85.	
361	Grabiele M, Chalup L, Robledo G, and Seijo G. 2012. Genetic and geographic origin	
362	of domesticated peanut as evidenced by 5S rDNA and chloroplast DNA	
363	sequences. Plant Systematics and Evolution 298:1151-1165.	
364	Hammous RO. 1994. The origin and history of the groundnut. In: The groundnut crop:	
365	a scientific basis for improvement. Chapman and Hall, New York. 10.1007/978-	
366	94-011-0733-4_2	
367	He G, and Prakash C. 2001. Evaluation of genetic relationships among botanical	
368	varieties of cultivated peanut (Arachis hypogaea L.) using AFLP markers.	
369	Genetic Resources and Crop Evolution 48:347-352. 10.1023/a:1012019600318	
370	Huang J, Sun G, and Zhang D. 2010. Molecular evolution and phylogeny of the	
371	angiosperm ycf2 gene. Journal of Systematics and Evolution 48:240-248.	
372	$Jansen\ RK,\ Cai\ Z,\ Raubeson\ LA,\ Daniell\ H,\ Depamphilis\ CW,\ Leebens-Mack\ J,\ Muller$	
373	KF, Guisinger-Bellian M, Haberle RC, Hansen AK, Chumley TW, Lee SB,	
374	Peery R, McNeal JR, Kuehl JV, and Boore JL. 2007. Analysis of 81 genes from	
375	64 plastid genomes resolves relationships in angiosperms and identifies	
376	genome-scale evolutionary patterns. Proceedings of the National Academy of	

377	Sciences of the United States of America 104:19369-19374.		
378	10.1073/pnas.0709121104		
379	Kikuchi S, Bedard J, Hirano M, Hirabayashi Y, Oishi M, Imai M, Takase M, Ide T, and		
380	Nakai M. 2013. Uncovering the protein translocon at the chloroplast inner		
881	envelope membrane. Science 339:571-574.		
382			
383			
384	Krapovickas A, and Rigoni VA. 1960. La nomenclatura de las subespecies y variedades		
385	de Arachis hypogaea L. Revista De Investigaciones Agricolas "Alberto		
386	Boerger" 14: 198–228.		
887	Krapovickas A. and Gregory WC. 1994. Taxonomia del énero Arachis (Leguminosae).		
888	Bonplandia 8: 1–186. 10.2307/41941177.		
889	Krapovickas A ₂₇ and Gregory WC. 2007. Taxonomy of the genus Arachis		
390	(Leguminosae). Bonplandia. 16: 7-205.		
391	Lohse M, Drechsel O, and Bock R. 2007. OrganellarGenomeDRAW (OGDRAW): a		
392	tool for the easy generation of high-quality custom graphical maps of plastid		
393	and mitochondrial genomes. Current Genetics 52:267-274. 10.1007/s00294-		
394	007-0161-y		
395	Katoh $K_{\underline{\ }}$ and Standley DM. 2013. MAFFT multiple sequence alignment software		
396	version 7: improvements in performance and usability. Molecular Biology &		
397	Evolution. 30(4):772-780.		
398	Martin M. 2011. Cutadapt removes adapter sequences from high-throughput		
399	sequencing reads. Embnet Journal 17(1). 10.14806/ej.17.1.200 pp. 10-12		
100	Mayor C, Brudno M, Schwartz JR, Poliakov A, Rubin EM, Frazer KA, Pachter LS, and		
101	Dubchak I. 2000. VISTA: visualizing global DNA sequence alignments of		
102	arbitrary length. Bioinformatics 16:1046-1047.		
103	Moore MJ, Soltis PS, Bell CD, Burleigh JG, and Soltis DE. 2010. Phylogenetic analysis		
104	of 83 plastid genes further resolves the early diversification of eudicots.		
105	Proceedings of the National Academy of Sciences of the United States of		
106	America 107:4623-4628, 10.1073/pnas,0907801107		

Formatted: Portuguese (Portugal)

407	Nurk S, Bankevich A, Antipov D, Gurevich A, Korobeynikov A, Lapidus A, Prjibelsky	
408	A, Pyshkin A, Sirotkin A, Sirotkin Y, Stepanauskas R, McLean J, Lasken R,	
409	Clingenpeel SR, Woyke T, Tesler G, Alekseyev MA, and Pevzner PA. 2013.	
410	Assembling genomes and mini-metagenomes from highly chimeric reads.	
411	International Conference on Research in Computational Molecular Biology	
412	(Vol. 7821, pp.158-170). Springer, Berlin, Heidelberg.	
413	Ohyama K, Fukuzawa H, Kohchi T, Shirai H, Sano T, Sano S, Umesono K, Shiki Y,	
414	Takeuchi M, and Chang Z. 1986. Chloroplast gene organization deduced from	
415	complete sequence of liverwort Marchantia polymorpha chloroplast DNA.	Formatted: Font: Italic
416	Nature 322:572-574.	
417	Okonechnikov K, Golosova O, and Fursov M, the UGENE team. 2012. Unipro UGENE:	
418	a unified bioinformatics toolkit. <i>Bioinformatics</i> 28: 1166-1167.	
419	10.1093/bioinformatics/bts091	
420	Parks M, Cronn R, and Liston A. 2009. Increasing phylogenetic resolution at low	
421	taxonomic levels using massively parallel sequencing of chloroplast genomes.	
422	BMC Biology 7:84-84.	
423	Prabhudas SK, Prayaga S, Madasamy P. and Natarajan P. 2016. Shallow whole genome	
424	sequencing for the assembly of complete chloroplast genome sequence of	
425	Arachis hypogaea L. Frontier in Plant Science 7:1106.	
426	10.3389/fpls.2016.01106	
427	Raubeson LA, and Jansen RK. 2005. Chloroplast genomes of plants," in <i>Plant diversity</i>	
428	and evolution: genotypic and phenotypic variation in higher plants, ed Henry	
429	RJ. (Wallingford, CT: CABI), 45-68.	
430	Shinozaki K, Ohme M, Tanaka M, Wakasugi T, Hayshida N, Matsubayasha T, Zaita N,	
431	Chunwongse J, Obokata J, and Yamaguchishinozaki K. 1986. The complete	
432	nucleotide sequence of the tobacco chloroplast genome. Plant Molecular	
433	Biology Reporter 4:111-148.	
434	Simpson CE. 2001. Use of wild Arachis species/ introgression of genes in to A.	Formatted: Font: Italic
435	hypogaea L. Peanut Science 28(2): 114-116.	Formatted: Font: Italic
	-	Formatted: Font: Italia
436	Stalker HT. 2017. Utilizing wild species for peanut improvement. <i>Crop Science</i> 57(3):	Formatted: Font: Italic

437	1102-1120. 10.2135/cropsci2016.09.0824
438	Tamura K, Peterson D, Peterson N, Stecher G, Nei M, and Kumar S. 2011. MEGA5:
439	molecular evolutionary genetics analysis using maximum likelihood,
440	evolutionary distance, and maximum parsimony methods. Molecular Biology
441	and Evolution 28:2731-2739. 10.1093/molbev/msr121
442	Wyman SK, Jansen RK, and Boore JL. 2004. Automatic annotation of organellar
443	genomes with DOGMA. <i>Bioinformatics</i> 20:3252-3255.
444	10.1093/bioinformatics/bth352
445	Wu ZQ, and Ge S. 2012. Phylogeny of the BEP clade in grasses revisited: evidence
446	from whole genome sequences of chloroplast. Molecular Phylogenetics and
447	Evolution 62: 578–578. doi: 10.1016/j.ympev.2011.10.019
448	Wu XP, Sen L, Chen N, Zhang X, Ma ZX, Zhang QY. 2017. Study on the molecular
449	evolution of the psaA gene from ferns. Plant Science Journal 35(2): 177-185.
450	10. 11913 /PSJ. 2095-0837.
451	Yin D, Wang Y, Zhang X, Ma X, He X, and Zhang J. 2017. Development of chloroplast
452	genome resources for peanut (Arachis hypogaea L.) and other species of
453	Arachis. Scientific Reports 7:11649. 10.1038/s41598-017-12026-x
454	Yu SL. 2008. Peanut varieties and their genealogy in China. Shanghai Science and
455	Technology Press.
456	Zhao Y, Yin J, Guo H, Zhang Y, Xiao W, Sun CM, Wu J, Qu X, Yu J, and Wang X.
457	2015. The complete chloroplast genome provides insight into the evolution and
458	polymorphism of Panax ginseng. Frontiers in Plant Science 5:696-696.
459	4
•	