
Recommended survey designs for occupancy modelling 
using motion-activated cameras: insights from empirical 
wildlife data

Motion-activated cameras are a versatile tool that wildlife biologists can use for sampling wild 

animal populations to estimate species occurrence. Occupancy modelling provides a flexible 

framework for the analysis of these data; explicitly recognizing that given a species occupies 

an area the probability of detecting it is often less than one. Despite the number of studies 

using camera data in an occupancy framework, there is only limited guidance from the 

scientific literature about survey design trade-offs when using motion-activated cameras. A 

fuller understanding of these trade-offs will allow researchers to maximise available 

resources and determine whether the objectives of a monitoring program or research study 

are achievable. We use an empirical dataset collected from 40 cameras deployed across 160 

km2 of the Western Slope of Colorado, USA to explore how survey effort (number of cameras 

deployed and the length of sampling period) affects the accuracy and precision (i.e. error) of 

the occupancy estimate for ten mammal and three virtual species. We do this using a 

simulation approach where species occupancy and detection parameters were informed by 

empirical data from motion-activated cameras. A total of 54 survey designs were considered 

by varying combinations of sites (10-120 cameras) and occasions (20-120 survey days). Our 

findings demonstrate that increasing total sampling effort generally decreases error 

associated with the occupancy estimate, but changing the number of sites or sampling 

duration can have very different results, depending on whether a species is spatially common 

or rare (occupancy = ) and easy or hard to detect when available (detection probability = p).ψ  

For rare species with a low probability of detection (i.e., raccoon and spotted skunk) the 

required survey effort includes maximizing the number of sites and the number of survey 

days, often to a level that may be logistically unrealistic for many studies. For common 

species with low detection (i.e., bobcat and coyote) the most efficient sampling approach was 

to increase the number of occasions (survey days). However, for common species that are 
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moderately detectable (i.e., cottontail rabbit and mule deer), occupancy could reliably be 

estimated with comparatively low numbers of cameras over a short sampling period. We 

provide general guidelines for reliably estimating occupancy across a range of terrestrial 

species (rare to common:  = 0.175-0.970, and low to moderate detectability: p = 0.003-ψ

0.200) using motion-activated cameras. Wildlife researchers/managers with limited 

knowledge of the relative abundance and likelihood of detection of a particular species can 

apply these guidelines regardless of location. We emphasize the importance of prior 

biological knowledge, defined objectives and detailed planning (e.g. simulating different 

study-design scenarios) for designing effective monitoring programs and research studies.
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Abstract  1!
Motion-activated cameras are a versatile tool that wildlife biologists can use for sampling wild animal 2!
populations to estimate species occurrence. Occupancy modelling provides a flexible framework for 3!
the analysis of these data; explicitly recognizing that given a species occupies an area the probability of 4!
detecting it is often less than one. Despite the number of studies using camera data in an occupancy 5!
framework, there is only limited guidance from the scientific literature about survey design trade-offs 6!
when using motion-activated cameras. A fuller understanding of these trade-offs will allow researchers 7!
to maximise available resources and determine whether the objectives of a monitoring program or 8!
research study are achievable. We use an empirical dataset collected from 40 cameras deployed across 9!
160 km2 of the Western Slope of Colorado, USA to explore how survey effort (number of cameras 10!
deployed and the length of sampling period) affects the accuracy and precision (i.e. error) of the 11!
occupancy estimate for ten mammal and three virtual species. We do this using a simulation approach 12!
where species occupancy and detection parameters were informed by empirical data from motion-13!
activated cameras. A total of 54 survey designs were considered by varying combinations of sites (10-14!
120 cameras) and occasions (20-120 survey days). Our findings demonstrate that increasing total 15!
sampling effort generally decreases error associated with the occupancy estimate, but changing the 16!
number of sites or sampling duration can have very different results, depending on whether a species is 17!
spatially common or rare (occupancy = ψ) and easy or hard to detect when available (detection 18!
probability = p). For rare species with a low probability of detection (i.e., raccoon and spotted skunk) 19!
the required survey effort includes maximizing the number of sites and the number of survey days, 20!
often to a level that may be logistically unrealistic for many studies. For common species with low 21!
detection (i.e., bobcat and coyote) the most efficient sampling approach was to increase the number of 22!
occasions (survey days). However, for common species that are moderately detectable (i.e., cottontail 23!
rabbit and mule deer), occupancy could reliably be estimated with comparatively low numbers of 24!
cameras over a short sampling period. We provide general guidelines for reliably estimating occupancy 25!
across a range of terrestrial species (rare to common: ψ = 0.175-0.970, and low to moderate 26!
detectability: p = 0.003-0.200) using motion-activated cameras. Wildlife researchers/managers with 27!
limited knowledge of the relative abundance and likelihood of detection of a particular species can 28!
apply these guidelines regardless of location. We emphasize the importance of prior biological 29!
knowledge, defined objectives and detailed planning (e.g. simulating different study-design scenarios) 30!
for designing effective monitoring programs and research studies.  31!
 32!
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Introduction 1!
Estimating the distribution of a species or suite of species across the landscape provides wildlife 2!
biologists with crucial information for monitoring and conserving animal populations (Noon et al. 3!
2012). It is also a key criteria for global conservation initiatives such as the International 4!
Union for Conservation of Nature red list (http://www.iucnredlist.org/), which has been used to track 5!
the change in extinction risk of threatened species over time (Di Marco et al. 2014). Motion-activated 6!
cameras are one of the fastest growing techniques for surveying a wide range of terrestrial animals, 7!
particularly those that are rare, elusive or cryptic (O'Connell et al. 2011; Jamie 2012). The 8!
advancement of affordable and reliable digital camera technology in combination with infrared triggers 9!
and time delays has enabled biologists to deploy multiple cameras simultaneously to collect data in an 10!
efficient and minimally invasive manner. These data have allowed biologists to investigate a diversity 11!
of ecological and conservation driven questions, relating to species abundance (Gerber et al. 2010) and 12!
density (O’Brien & Kinnaird 2011), animal behaviour (Maffei et al. 2011), survival (Gardner et al. 13!
2010), temporal activity (Ridout & Linkie 2009), and landscape-level occurrence (Thorn et al. 2009). 14!
Cameras are typically more efficient than traditional sampling methods (e.g. direct observation, radio 15!
telemetry) as continuous data can simultaneously be collected on multiple species (e.g. large bodied 16!
carnivores; O’Brien & Kinnaird 2011). The field deployment can be standardised and readily 17!
replicated, enabling researchers to monitor whether there are changes in the occurrence of target 18!
indicator species over both time and space (Ahumada et al. 2011; Ahumada, Hurtado & Lizcano 2013).  19!
 Occupancy modelling, which uses detection/non-detection data to estimate species occurrence, 20!
offers a very useful analytical framework for analysing data collected from motion-activated cameras 21!
(O'Connell & Bailey 2011). Occupancy models explicitly recognize that given a species occurs in an 22!
area, the probability of detecting it on a single survey is often less than one. This potential source of 23!
bias is addressed by using repeat sampling across multiple sites, enabling detection probability to be 24!
calculated and incorporated in the occupancy estimate (MacKenzie et al. 2006). Among the key 25!
benefits of occupancy studies is that detection/non detection data can generally be collected with 26!
greater ease and cost effectiveness for a greater number of species than the more detailed demographic 27!
data that are commonly required for estimates of abundance and density (Jones 2011). As a result, 28!
occupancy modelling is increasingly used to evaluate species distribution (Long et al. 2010), habitat 29!
use (Betts et al. 2008) and population dynamics (MacKenzie et al. 2010). The results from these 30!
studies and monitoring programs have the potential to be used by wildlife managers and conservation 31!
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practitioners to determine changes in the distribution of key animal populations as well as 1!
strengthening future demographic predictions (Jones 2011; Noon et al. 2012). 2!

There are clear advantages to using motion-activated cameras in occupancy studies; 3!
nevertheless, in common with other survey techniques, the efficacy of these studies and monitoring 4!
programs relies on appropriate and detailed survey design. These considerations include deciding upon 5!
what time period to sample, the sampling length, and the number of cameras to deploy, which is 6!
dependent on the target species and the type of inference that is sought (MacKenzie et al. 2006). For 7!
community studies, it is important to recognize that an optimal survey for one species may not be so for 8!
another; designing a community-level occupancy study will likely incur trade-offs in efficiency and the 9!
scope of inference depending on how well the sampling period and duration coincides with a 10!
meaningful biological time frame for each species. Research studies and monitoring programs that are 11!
initiated without well-defined objectives and rigorous survey design increase the likelihood of returning 12!
results that are insufficient to make meaningful inference on the species or system of interest (Yoccoz, 13!
Nichols & Boulinier 2001; Kéry & Schmid 2004; Mattfeldt, Bailey & Grant 2009). Moreover, as 14!
conservation and research programs are often limited by the availability of funding, it is crucial that 15!
surveys are justified in terms of the costs and benefits of acquiring the data (Nichols & Williams 2006; 16!
McDonald-Madden et al. 2010).  17!

The necessity of replication in occupancy studies generates a trade-off in survey effort between 18!
the number of sites to sample and the number of replicates to conduct at each site (MacKenzie et al. 19!
2002; 2003; Tyre et al. 2003; MacKenzie et al. 2006). A further consideration is that occupancy is 20!
assumed to be static during the designated sampling period (assumption of closure; MacKenzie et al. 21!
2002), and the length of this period may vary depending upon the species and biological timeframe of 22!
interest (e.g. the breeding season; Webber, Heath & Fischer 2013). There are a number of studies that 23!
provide theoretical background to study design using an occupancy-modelling framework, highlighting 24!
the importance of balancing temporal and spatial replication to most efficiently achieve defined 25!
objectives (MacKenzie & Royle 2005; Bailey et al. 2007; Guillera-Arroita, Ridout & Morgan 2010; 26!
Guillera-Arroita & Lahoz-Monfort 2012). However, there are few studies that have used empirical data 27!
from a suite of species to evaluate the effects of varying the number of sites and occasions on the 28!
accuracy and precision of occupancy estimates. Moreover, the majority of research exploring the 29!
effective use of motion-activated cameras has focussed on 1) comparing cameras with other sampling 30!
approaches (Rovero & Marshall 2009; Janečka et al. 2011), 2) investigating sampling efficiency as a 31!
function of biological parameters (e.g. species, sex, habitat, and season; Larrucea et al. 2007; Kelly & 32!
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Holub 2008), and 3) evaluating alternative approaches to species inventories (Tobler et al. 2008; Si, 1!
Kays & Ding 2014). However, a recent analyses conducted on a dataset of avian and mammalian 2!
scavengers in sub-arctic environments provided the first detailed discussion of guidelines to determine 3!
the optimal survey design for estimating occupancy using empirical data collected from time-triggered 4!
cameras (Hamel et al. 2013). 5!

We now build on previous research using an extensive dataset collected from motion-activated 6!
cameras to explore how survey design influences the accuracy and precision (i.e. error) of occupancy 7!
estimates across a range of mammal species. Our specific research objective is to evaluate how varying 8!
the number of sampling sites (10-120 cameras) in combination with the number of occasions (20-120 9!
survey days) influences the error associated with estimating occupancy for 10 mammal species and 10!
three ‘virtual’ species. These thirteen species characterize a range of comparatively rare-to-common 11!
species with low-to-moderate detection probability, which are typically encountered during camera 12!
sampling of terrestrial mammals. Using these results, we provide recommendations and general 13!
guidelines that can be used by wildlife practitioners to design and implement studies to evaluate 14!
mammal occurrence using motion-activated cameras. 15!
 16!
Methods 17!
Study Site 18!
The study site was located on the Western Slope (WS) of Colorado, USA on the Uncompahgre Plateau 19!
near the towns of Montrose and Ridgway (Figure 1). The area was characterized by mesas, canyons, 20!
and ravines, with elevations ranging from 1800 m to 2600 m and annual precipitation of 430 mm 21!
arriving primarily from winter snows and summer thunderstorms (NOAA National Climatic Data). The 22!
vegetation communities were dominated by pinyon pine (Pinus edulis) and juniper (Juniperus 23!
osteosperma), ponderosa pine (Pinus ponderosa), aspen (Populus tremuloides), gambel oak (Quercus 24!
gambelii), and big sagebrush (Artemesia tridentata). The WS had extensive areas of undeveloped 25!
natural habitat managed by the Bureau of Land Management, US Forest Service, and private 26!
landowners.  Paved and unimproved roads occurred throughout the WS. The WS has a history of 27!
ranching with some private ranches converted into exurban and rural housing developments.   28!
 29!
Study Design 30!
We deployed 40 motion-activated cameras across two survey grids totaling 160 km2, with individual 31!
camera sites spaced approximately 2 km apart. The sampling design was specifically focused on 32!
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surveying mountain lions (Puma concolor) and bobcats (Lynx rufus) with cameras placed along game 1!
trails, hiking trails, and secondary dirt roads. The placement of cameras along likely travel routes of 2!
mammals is common in camera studies and often leads to detecting a diverse assemblage of the 3!
mammalian community (O'Connell, Nichols & Karanth 2011). We checked cameras approximately 4!
every two weeks to replace memory cards and batteries if required. The sampling approach was passive 5!
in that we did not use attractants (i.e., sight, sound, scent) to lure animals to the camera location. 6!
Motion-activated cameras operated from August 21 to December 13, 2009. As the study involved non-7!
invasive sampling using motion-activated cameras there was no requirement for institutional review of 8!
the proposed research. Data collection was funded by a grant from the National Science Foundation 9!
(NSF EF-0723676). 10!
 11!
Data and statistical analyses 12!
We took a two-step approach in our analyses. First, the empirical data collected from motion-activated 13!
cameras were used to estimate daily detection probabilities and occupancy estimates for a range of 14!
terrestrial mammal species with closure assumed for the entire sampling period (i.e. no changes in 15!
occupancy). Second, this information was used in simulations to evaluate optimal survey design 16!
approaches for the different species. Photographic data were analysed for ten mammal species (see 17!
Figure 2; the number of photographs are provided in parentheses), raccoons (Procyon lotor: 8), spotted 18!
skunks (Spilogale putorius: 25), mountain lions (83), black bears (Ursus americanus: 96), gray foxes 19!
(Urocyon cinereoargenteus: 144), coyotes (Canis latrans: 192), elk (Cervus canadensis: 196), bobcats 20!
(225), cottontail rabbits (Sylvilagus nuttallii: 1267) and mule deer (Odocoileus hemionus: 1753). A 21!
sampling occasion was defined as a 24h period, which we refer to as a survey day. Species-specific 22!
detection histories were generated for each of the 40 cameras across the four-month sampling period 23!
(except black bears, where only the first two months of data were used due to animals hibernating in 24!
November and December).  For a given species, detection histories provide a record of whether the 25!
species was detected (1) or not detected (0) on each survey day for each camera location (40 detection 26!
histories for each species). These detection histories were then used to estimate a constant occupancy 27!
(ψi) and constant detection probability (pi) for each species i from i = 1, 2, …, 10 using the single-28!
species, single-season occupancy model (MacKenzie et al. 2002). In addition, we created three ‘virtual’ 29!
species that were not characterized by our empirical data, but that researchers might encounter, to 30!
provide examples where daily detection probability is relatively high (>0.1), while occupancy levels 31!
are low to moderate (≤0.6; Figure 3). We constructed models using the RMark package (Laake and 32!
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Rexstad 2013) in the R programming language (R Development Core Team 2013), which interfaces 1!
with Program MARK (White and Burnham 1999). The resulting 13 species provide a range of daily 2!
detection probabilities and occupancy estimates that are typical for mammals surveyed with motion-3!
activated cameras. The species are classified into seven distinct groups ranging from rare and hard to 4!
detect species (i.e., raccoon and spotted skunk) to common detectable species (i.e., cottontail rabbit and 5!
mule deer; see Figure 3).  6!
 7!
Simulation approach 8!
The occupancy and detection probabilities estimated from the empirical data were used to explore 54 9!
different scenarios for each individual species, using a combination of the number of survey days 10!
(occasions: S = (10, 20, 30, 40, 50, 60, 70, 80, 120)) and number of cameras (sites: N = (20, 40, 60, 80, 11!
100, 120)). For each species i, a detection history was created that is N x S, where each site j from j = 1, 12!
2,…N is considered to be occupied or not following a Bernoulli process with probability ψi.; we then 13!
determined whether a species was detected or not at occupied sites for each occasion t, from t = 1, 2, 14!
…, S, following a Bernoulli process with probability pi. In total, 1000 sets of detection histories were 15!
simulated for each species and each combination of S and N and error was calculated using root mean 16!
squared error (RMSE) as: 17!
 18!

!"#$ = !!![(! − !)!] = !"# ! + !"#$(!,!) !
    (eqn 1) 19!

 20!
Given our simulation setting, the generating and estimating model are equivalent, such that bias 21!

will generally be low, except for cases of small-sample bias when survey effort is very low. Thus, the 22!
majority of error in RMSE across most scenarios is due to the variance, to the extent that the RMSE 23!
can often be considered equivalent to the SE(! ) (Guillera-Arroita et al. 2010; Gardner et al. 2010). For 24!
each scenario, the RMSE was plotted for the number of sites (cameras) and the length of the sampling 25!
period (days). This was repeated for each of the 13 species. To assess the optimal survey design 26!
approach, three different RMSE target values were selected representing differing levels of acceptable 27!
error; these included RMSE of 0.15, 0.10 and 0.075. For the purpose of our analysis, we weight 28!
occasions (days) and sites (cameras) equally to obtain an optimal solution (but see Table S1). The 29!
levels of error reflect thresholds used in the wildlife occupancy literature and are considered realistic 30!
for determining shifts in occupancy over time and space (MacKenzie & Royle 2005; Guillera-Arroita 31!
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et al. 2010). The optimal survey design (combination of cameras and number of survey days) was then 1!
selected as the minimum survey effort required for each species that enabled the estimate of occupancy 2!
to be calculated within the desired level of error. Ideally, the lowest level of RMSE is preferred, but 3!
this may be logistically unachievable for some species. 4!
 5!
Results 6!
Increasing survey effort generally reduced RMSE for all species (Figure 4). However, the optimal 7!
combination of the number of sites (motion-activated cameras) and occasions (survey days) varied 8!
widely across the 13 species. It was also commonly found that the reduction in RMSE as a result of 9!
either increasing the number of cameras or sampling duration would eventually stabilise and would 10!
offer limited benefit to further increases in survey effort. Overall, the minimum amount of sampling 11!
effort (combination of motion-activated cameras and survey days) required to obtain an acceptable 12!
level of error was reduced with increasing daily probability of detection. 13!

Of the species of interest, raccoons had the lowest levels of occupancy coupled with extremely 14!
low levels of detection – representing a very rare and hard to detect species in our study area (Figure 3). 15!
Even the maximum survey effort (120 motion-activated cameras operating over 120 days) totaling 16!
14400 survey days could not guarantee a reliable occupancy estimate for raccoons; approximately 40% 17!
of the simulations failed to numerically converge at a maximum-likelihood estimate due to a lack of 18!
data. Spotted skunks were also rare and difficult to detect (Figure 3), however intensive sampling was 19!
able to reliably estimate occupancy, requiring 2000 survey days (e.g. a sampling period of 100 days 20!
with 20 cameras) for the highest level of acceptable error (RMSE = 0.15) and 5000 survey days for the 21!
lowest threshold of error (RMSE = 0.075). These results demonstrate the substantial effort that is 22!
required to accurately document the presence of rare and elusive species (Figure 4 and Table 1).  23!

Species that were fairly common with intermediate levels of occupancy but with low detection 24!
probabilities (i.e., elk and mountain lion; Figure 3) also required intensive sampling that maximized the 25!
number of sites and occasions. When the number of occasions increased from 20 to approximately 80 26!
survey days there was a substantial decrease in RMSE for mountain lion and elk, while estimation error 27!
was only further improved by including additional sites to the study design (Table 1 & Figure 4).  28!

For those species with high occupancy (>0.8) and relatively low levels of detection (i.e., coyote 29!
and bobcat; Figure 3), the overall survey effort required to achieve a desired level of error is 30!
significantly reduced (compared to spotted skunk, mountain lion and elk). Indeed, increasing the 31!
number of occasions at comparatively few sites returns a reliable estimate (Table 1 & Figure 4). For 32!
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example, 10 motion-activated cameras proved sufficient to achieve the desired RMSE of 0.15, 0.10 and 1!
0.075 for bobcats, with the reduction in error achieved by including a greater number of survey days 2!
(Table 1). As detection probability increases for more common species (i.e., black bear and gray fox), 3!
sampling periods over 40 survey days provide no substantial reduction in associated error and argue 4!
against continuing the survey. We found the optimal approach for these common species is to sample 5!
between 30-50 sites (cameras) over a period of 40 survey days depending upon the level of error that is 6!
acceptable (see Table 1).  7!

For species with comparatively high levels of daily detection (≥0.12; mule deer, cottontail 8!
rabbit and virtual species 1-3), there is only a limited reduction in error associated with lengthening the 9!
survey beyond approximately 30 days, particularly for species with moderate to high estimates of 10!
occupancy (i.e., virtual species 2, mule deer and cottontail rabbit; Figure 3). Precise occupancy 11!
estimates for these species can be achieved with relatively few cameras (see Table 1). Nonetheless, 12!
improving upon these estimates generally requires adding additional sites (cameras) rather than more 13!
survey days (Table 1 & Figure 4). For example, a RMSE of 0.085 can be achieved for cottontail rabbits 14!
using only 10 cameras and 20 days of sampling. Further reductions in error cannot be achieved by 15!
lengthening the sampling period, with 120 survey days returning an RSME of 0.083 (Figure 4); 16!
however error can be substantially reduced by deploying additional cameras (Figure 4).  17!

Virtual species 1 and 3 both have low occupancy estimates but comparatively high probabilities 18!
of detection (Figure 3). An intermediate level of survey effort is required in order to achieve the most 19!
efficient sampling approach, which depending upon the desired level of precision, balances the number 20!
of cameras (20-50) with survey days (20-60; Table 1). 21!

In general reducing RMSE by increasing sampling length depends on the probability of 22!
detecting the species at an occupied site at least once over the entire sampling duration. We calculated 23!
this probability as p*  (p* = 1 – (1 – p)s), where p is the daily detection probability and S is the number 24!
sampling occasions. When p* is greater than 0.9 there was very little reduction in RMSE by further 25!
increasing the number of sampling occasions (see Table 2).  26!

Our simulation results reveal broad patterns in survey design when using motion-activated 27!
cameras that depend upon how easy a species is to detect and how common it is across the landscape 28!
(Figure 5). Rare species with low detection require an intensive sampling approach that combines 29!
multiple camera sites and occasions to reliably calculate an occupancy estimate, whereas the best 30!
strategy for more common species with low levels of detection involves increasing the number of 31!
survey days (occasions) at comparatively few sites (≤30 cameras). As detection probability increases, 32!
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the overall survey effort required to achieve an acceptable level of precision in occupancy is reduced. 1!
Species that are detectable but comparatively rare generally require an intermediate number of cameras 2!
and greater survey lengths to improve precision, compared with common and detectable species that 3!
can be surveyed precisely with relatively few sites and short sampling periods (Figure 5).  4!

 5!
Discussion 6!
Reliable indicators that track changes in landscape-to-regional biodiversity are urgently needed, given 7!
the global extinction crisis ( Mace & Baillie 2007; Butchart et al. 2010). Motion-activated cameras can 8!
provide scientists and wildlife managers with a very powerful tool for documenting changes in 9!
occupancy across a diverse range of species (O'Connell & Bailey 2011; Ahumada, Hurtado & Lizcano 10!
2013), particularly given the advances in storage, reliability and battery life of the latest devices (Jamie 11!
2012). Nevertheless, in common with other ecological monitoring and research programs, successful 12!
sampling strategies rely on detailed study design. Indeed, pursuing an optimal survey design allows 13!
available time and resources to be maximized, while also providing guidance as to whether the 14!
objectives are achievable and justified given potential funding constraints (McDonald-Madden et al. 15!
2010). We found substantial differences in optimal survey designs across mammal species from our 16!
study area. As MacKenzie & Royle (2005) highlighted, surveying as many sites as possible is not the 17!
most efficient approach to reducing overall occupancy estimation error. Instead, obtaining a reliable 18!
and efficient occupancy estimate requires tailoring the study design to the species of interest.  19!

The most challenging taxa to develop an appropriate survey design for were the rare and hard to 20!
detect species (e.g. raccoons). Even with considerable survey effort it was challenging, if not 21!
impossible, to reliably estimate occupancy based on our criteria of RMSE. If the goal of a study is to 22!
estimate the occupancy of a rare species that is difficult to detect, it may be necessary to reposition the 23!
cameras to target specific taxa or employ multiple methods (e.g., cameras, sign surveys). Even if each 24!
method individually has a low probability of detection, the combined effect of all methods incorporated 25!
together will be greater, and thus potentially lead to a reliable occupancy estimate. Such an approach 26!
can be carried out using multi-scale occupancy models, which allow data to be incorporated from 27!
multiple detection methods while permitting estimation of occupancy across different spatial scales 28!
(Nichols et al. 2008).  29!

Alternatively, for threatened and endangered species it may be more appropriate to forego 30!
estimating species occurrence and simply try to determine if the species is present in the area of interest 31!
(MacKenzie et al. 2006; Si et al. 2014). Researchers can evaluate the probability of photographing a 32!
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species at least once over a given number of sampling occasions and sites using p**  (! ∗∗= 1−1!
1− !ψ 1− 1− p ! !). For example for a very rare and hard to detect species!(ψ = 0.05 and p = 2!

0.05), the optimal sampling design would be 60 cameras over a sampling period of 80 days to achieve a 3!
minimum p** of 0.95. Assuming each camera is $250 and a survey occasion costs $10, a budget of 4!
$15,800 would be required to have a 95% probability of detecting the species once (see Table S2). In 5!
such situations, active baiting or luring may also be useful (Magoun et al. 2011; Hamel et al. 2013). 6!

For common and highly detectable species (e.g., cottontail rabbits and mule deer), relatively 7!
few motion-activated cameras and survey days are necessary to provide accurate and precise 8!
occupancy estimates. As such, rapid assessment surveys could be routinely used to monitor these 9!
species relatively inexpensively, while taxa that are comparatively rare across the landscape but yet 10!
remain highly detectable (e.g., virtual species 1) require greater survey effort, and are therefore best 11!
sampled using an intermediate number of sites and survey days.  12!

Since survey effort involves a trade-off between cameras and sampling length, it is important to 13!
note that the financial costs associated with these different scenarios may vary considerably. For 14!
example, surveying additional sites may require purchasing more cameras, while increasing the survey 15!
duration may require personnel to make additional site visits to keep the cameras functioning properly. 16!
The purchasing of additional cameras will likely exceed that of sampling for more days, unless the cost 17!
of checking cameras is considerable due to difficulty accessing the study site. Under certain scenarios 18!
where the number of sites is limiting the accuracy/precision of the estimate and there is sufficient time 19!
for two surveys to be conducted within a designated season, cameras can be set for the necessary period 20!
and then moved (e.g., Karanth & Nichols 2002). The number of sites would be doubled with the only 21!
extra cost involving the logistics for redeployment rather than equipment purchase. Interestingly, this 22!
has also proved an efficient method for measuring species richness (Si et al. 2014). It is important to 23!
bear in mind that the optimal solution will depend upon the costs associated with camera operation and 24!
maintenance versus the costs of procuring cameras (see Table S1, which calculates the optimal 25!
approach based on survey cost, where cameras = $250 and surveying an occasion = $10). We report 26!
detection probabilities of species relative to 24-hour periods. However, values of detection probability 27!
are dependent upon the length of the sampling occasion and researchers will often employ sampling 28!
occasions that are measured in weeks rather than days (Ellis, Ivan & Schwartz 2013). Thus if the daily 29!
detection probability is 0.03, we can recalculate p using the p* formula (p* = 1 – (1 – p)s) such that at 1 30!
week p = 0.19, 2 weeks = 0.35, etc. Furthermore, p* can be used to understand when it is not beneficial 31!
to further increase occasions as illustrated in Table 2 (see also Gerber et al. 2014). 32!
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 The species included in our study cover a diverse range of daily detection probabilities and 1!
occupancy estimates representing a broad spectrum of mammals. The findings can therefore be applied 2!
to other taxa and ecosystems where cameras are being used to study small to large terrestrial mammals. 3!
To determine an optimal study design, we suggest that researchers first investigate the occupancy (i.e. 4!
common, moderately common, rare) and detection (i.e. low, moderate, high) characteristics of their 5!
target species. Table 1 and Figure 5 can then be used to guide the required sampling effort (number of 6!
sites and survey days) for an acceptable level of error. For many mammals, there may already be 7!
published literature in which species occupancy and detection probabilities could be obtained. If no 8!
prior information is available, short pilot studies can be very effective in obtaining values for 9!
occupancy and detection probability, particularly as these values are often highly site specific, or 10!
species experts could be consulted to give a rough estimate regarding occupancy and detection 11!
probabilities, depending on body size, behaviour and ranging patterns.  12!
 It is important to consider that surveying for extended periods to estimate occupancy for species 13!
with moderate to high detection probability may not reduce error despite continued survey effort, while 14!
also potentially leading to issues associated with the violation of closure (MacKenzie et al. 2006). 15!
Indeed, deriving a biologically meaningful sampling period (e.g. season) during which occupancy 16!
status is assumed not to change may vary depending upon the target species and research question, and 17!
is therefore a fundamental consideration for survey design (see Gerber, Williams & Bailey in press). 18!
Additionally, trade-offs in survey approach will likely be necessary for community-level research, as it 19!
is unlikely that a single design will be most efficient for all species. One potential way forward is to 20!
initially define the season (timing and scope of inference), and then consider all the species of interest 21!
that can be reasonably detected and use the optimum survey effort required to detect all of these taxa 22!
(Si et al. 2014). 23!

In conclusion, our study investigates the optimal survey effort (sites vs. occasions) required for 24!
determining occupancy with a desired level of error across a range of mammalian species using 25!
empirical data from motion-activated cameras. The results of our simulation approach clearly highlight 26!
that simply increasing survey effort is not the most efficient strategy for obtaining a reliable occupancy 27!
estimate. The guidelines presented in the paper are based on the analysis of an empirical dataset 28!
collected from a North American study area to provide a real world example that does not solely rely 29!
on the simulation of virtual data, while still being directly applicable to research and monitoring 30!
programs conducted in other terrestrial ecosystems. We emphasize the use of biological knowledge of 31!
the target species coupled with clearly defined a-priori objectives that link monitoring or research 32!
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effort with defined ecological questions or conservation actions (Martin et al. 2009). Structured 1!
decision theory can be used to formally connect monitoring to decisions that meet objectives outlined 2!
by stakeholders in a statistically robust and coherent conservation plan (Conroy et al. 2008). Our study 3!
also illustrates the value of data simulation approaches for assessing methods and study design before 4!
embarking on empirical data collection (Zurell et al. 2010; Ellis, Ivan & Schwartz 2013). However, it is 5!
not always feasible for practitioners to carry out their own simulation exercises. Thus, research such as 6!
ours that can provide broad guidelines when a species of interest can be generally classified as rare or 7!
common and easily or difficult to detect will be of great utility to designing effective studies. 8!
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 1!
Figure 1.  Location of the study site on the Western Slope, Colorado, USA.  The camera survey was 2!

completed in 2009 across 40 grid cells across 2 grid areas. 3!
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 1!
Figure 2. Motion-activated camera images of mammal species included in the study (low to high 2!
detection probability). From top left: raccoon, spotted skunk, elk, mountain lion, coyote, bobcat, gray 3!
fox, black bear, mule deer and cottontail rabbit. 4!
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 1!
Figure 3. Occupancy estimates and detection probability for 10-mammals and three virtual species that 2!
we use to investigate sampling design trade-offs in a simulation exercise. The species are grouped 3!
according to common characteristics: A) = low occurrence and low detection probability, B) = 4!
moderate occurrence and low detection probability, C) = high occurrence and low detection 5!
probability, D) = moderate occurrence and moderate detection probability, E) = low occurrence and 6!
high detection probability, F) = moderate occurrence and high detection probability, G) = high 7!
occurrence and high detection probability. 8!
 9!
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Figure 4. 1!
The influence of survey effort on the error associated with the occupancy estimate (RMSE, root mean 2!
squared error), as a function of number of sites (10-120 cameras) occasions (20-120 survey days) and 3!
species. Species are presented in order of increasing detection probability (from the top left), with the 4!
scale of the y-axis varying between taxa. Raccoons are absent as a reliable estimate could not be 5!
achieved due to the lack of data.6!
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1!

Figure 5. Broad recom
m

endations on survey design for studies exploring occupancy using m
otion-activated cam

eras. The sym
bols indicate high (+), 

2!
interm

ediate (O
) and low

 (—
) am

ounts of effort, for the relative num
ber of cam

eras and survey days to achieve an optim
al survey design. From

 the 
3!

upper-right to the low
er-left, an increasing am

ount of survey effort is required to reliably estim
ate occupancy. 

4!
!

5!
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Table 1. O
ptim

al survey design for estim
ating occupancy w

ith three levels of acceptable error, defined by the root m
ean squared error (RM

SE). For the 
1!

purposes of this exam
ple w

e considered the w
eighting of cam

eras versus survey days to have the sam
e cost. 

2!
 

 
 

R
M

SE
 0.15 

R
M

SE
 0.10 

R
M

SE
 0.075 

Species 
Ψ

 
P 

Sites 1 x 

occasions 

Total Survey 

effort  

Sites 1 x 

occasions 

Total Survey 

effort  

Sites 1 x 

occasions 

Total Survey 

effort  

Spotted Skunk 
0.245 

0.023 
20 x 100 

2000 
30 x 100 

3000 
50 x 100 

5000 

E
lk 

0.585 
0.024 

20 x 80 
1600 

30 x 120 
3600 

60 x 100 
6000 

M
ountain L

ion 
0.600 

0.030 
20 x 80 

1600 
30 x 100 

3000 
60 x 80 

4800 

C
oyote 

0.861 
0.031 

10 x 60 
600 

20 x 80 
1600 

30 x 80 
2400 

B
obcat 

0.970 
0.040 

10 x 40 
400 

10 x 60 
600 

10 x 80 
800 

G
ray Fox 

0.400 
0.063 

20 x 40 
800 

30 x 40 
1200 

50 x 40 
2000 

B
lack B

ear 
0.504 

0.072 
20 x 40 

800 
30 x 40 

1200 
50 x 40 

2000 

V
irtual sp. 1 

0.200 
0.120 

20 x 20 
400 

20 x 40 
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1800 
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irtual sp. 2 
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30 x 20 
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V
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M
ule D

eer 
0.925 

0.141 
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200 
10 x 20 

200 
20 x 20 

400 

C
ottontail R

abbit 
0.925 

0.190 
10 x 20!

200 
10 x 20 

200 
20 x 20 

400 
1 Sites are the num

ber of cam
eras and occasions are the num

ber of survey days at each site. 
3!
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5!

 
6!

 
7!

!
8!

 
9!

 
10!

 
11!
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24!

Table 2. The probability (p*) of detecting a given species at an occupied site at least once over sam
pling periods of different durations (10-120 

1!
occasions). The shading highlights the num

ber of occasions w
here p* ≥ 0.9, and there is only lim

ited im
provem

ents in precision to be gained by 
2!

sam
pling over longer periods. 

3!
 

4!
Species 

 
N

um
ber of sam

pling occasions 

 
10 

20 
40 

60 
80 

100 
120 

R
accoon 

0.03 
0.06 

0.11 
0.16 

0.21 
0.26 

0.30 

Spotted Skunk 
0.21 

0.37 
0.61 

0.75 
0.84 

0.90 
0.94 

E
lk 

0.22 
0.38 

0.62 
0.77 

0.86 
0.91 

0.95 

M
ountain L

ion 
0.26 

0.46 
0.70 

0.84 
0.91 

0.95 
0.97 

C
oyote 

0.27 
0.47 

0.72 
0.85 

0.92 
0.96 

0.98 

B
obcat 

0.34 
0.56 

0.80 
0.91 

0.96 
0.98 

0.99 

G
ray Fox 

0.48 
0.73 

0.93 
0.98 

0.99 
1.00 

1.00 

B
lack B

ear 
0.53 

0.78 
0.95 

0.99 
1.00 

1.00 
1.00 

V
irtual sp. 1 

0.72 
0.92 

0.99 
1.00 

1.00 
1.00 

1.00 

V
irtual sp. 2 

0.72 
0.92 

0.99 
1.00 

1.00 
1.00 

1.00 

V
irtual sp. 3 

0.83 
0.97 

1.00 
1.00 

1.00 
1.00 

1.00 

M
ule D

eer 
0.78 

0.95 
1.00 

1.00 
1.00 

1.00 
1.00 

C
ottontail R

abbit 
0.88 

0.99 
1.00 

1.00 
1.00 

1.00 
1.00 

!
5!

!
6!
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