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ABSTRACT 19 

Spiny lobsters have a protracted pelagic, oceanic larval phase. The final larval stage 20 

metamorphoses into a non-feeding postlarva (puerulus) that actively swims towards the coast to 21 

settle in shallow habitats and does not resume feeding until after the molt into the first-stage 22 

juvenile. Therefore, the body dimensions and nutritional condition of both settled pueruli and first 23 

juveniles are likely to vary over time, potentially playing a crucial role in the recruitment to the 24 

benthic population. We compared carapace length (CL), height (CH), and width (CW); total 25 

length (TL), and body weight (W) between pueruli and first juveniles of the Caribbean spiny 26 

lobster, Panulirus argus, as well as morphometric relationships between both developmental 27 

stages. Except for CL, all other dimensions were larger in first juveniles, but most markedly CH 28 

and W. The slopes of the CH vs CL, CW vs CL, and W vs CL regressions differed significantly 29 

between stages, and all log-transformed relationships showed isometry in both stages, except for 30 

the CH vs CL relationship, which showed positive allometry. These results reflect a 31 

morphological change from the flatter, more streamlined body of the puerulus, to the heavier, 32 

more cylindrical body of the juvenile. We also analyzed seasonal variations in CL, W, the W/CL 33 

index (a morphometric condition index), and a modified W/CL index (i.e. after controlling for a 34 

significant effect of CL) of both stages using individuals monthly collected over 12 consecutive 35 

seasons (Autumn 2010–Summer 2013). In both stages, all three variables exhibited significant 36 

seasonal variation. For pueruli, the modified W/CL index differed from average in only two 37 

seasons, winter 2011 (higher) and summer 2013 (lower), but showed great within-season 38 

variation (larger coefficients of variation, CVs), potentially reflecting variability in nutritional 39 

condition of larvae prior to metamorphosis and in the distances swum by individual pueruli to the 40 

settlement habitats. For first juveniles, the modified W/CL index was higher than average in 41 

winter and spring 2011, and lower in autumn 2011 and winter 2012, but showed less within-42 

season variation (smaller CVs), suggesting a combination of carry-over effects of puerulus 43 

condition and effects of local conditions (e.g. food availability and predation risk). These findings 44 

warrant further investigation into factors potentially decoupling settlement from recruitment 45 

processes. 46 

 47 

INTRODUCTION 48 

Spiny lobsters (family Palinuridae) are large decapod crustaceans that constitute valuable fishing 49 
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resources wherever they occur (Holthuis, 1991). Palinurids have a protracted oceanic larval phase 78 

that consists of multiple flattened, leaf-like larval stages (phyllosoma) morphologically very 79 

different from the adults (Phillips et al., 2006). The final phyllosoma stage metamorphoses into a 80 

highly transparent swimming postlarva (the puerulus), morphologically similar to the adult. This 81 

metamorphosis has been considered the most dramatic morphological transformation in a single 82 

molt across crustaceans (Gurney, 1942). The puerulus is a secondary lecithotrophic (i.e., non-83 

feeding) phase, consisting of a single stage that actively swims to the coast, where it settles in 84 

shallow habitats (Phillips et al., 2006). After settlement, the transparent postlarvae gradually 85 

become pigmented and the molt from puerulus to first-stage juvenile (hereafter “first juvenile”) 86 

occurs within days or weeks. The first juveniles resume feeding shortly after molting. 87 

During the post-settlement molt from puerulus to the first juvenile stage, the body of the 88 

lobster undergoes substantial changes that make it more suitable for a benthic existence. Most 89 

papers reporting on such changes have put emphasis on the development of the mouthparts and 90 

other external and internal structures (e.g., Lemmens & Knott, 1994; Nishida, Takahashi & 91 

Kittaka, 1995; Abrunhosa & Kittaka, 1997; Cox, Jeffs & Davis, 2008), but changes in 92 

morphometric dimensions and allometry have been much less explored (Grobler & Ndjaula, 93 

2001; Groeneveld et al., 2010; Anderson et al., 2013).  94 

The Caribbean spiny lobster, Panulirus argus (Latreille, 1804), occurs throughout the 95 

wider Caribbean region and is by far the most heavily fished of the 24 extant species of spiny 96 

lobsters (Phillips et al., 2013). The larval phase of P. argus comprises 10 phyllosoma stages 97 

(Goldstein et al., 2008) and metamorphosis occurs in oceanic waters. The puerulus swims to the 98 

coast and settles in shallow vegetated substrates (macroalgal beds, seagrass meadows, coastal 99 

mangroves), where the early benthic juveniles remain for a few months before shifting to coral 100 

reef habitats (Butler & Herrnkind, 2000). Lewis, Moore & Babis (1952) described the puerulus 101 

and first few juvenile stages of P. argus, and Anderson et al. (2013) examined allometric growth 102 

of defensive and reproductive structures through ontogeny in P. argus, but to our knowledge the 103 

relationships between weight and size dimensions and allometry in postlarvae and first juveniles 104 

of this species have not been explored. 105 

Artificial collectors mimicking the natural settlement habitats have been devised to 106 

monitor long-term levels of puerulus settlement (Phillips & Booth, 1994). In a few spiny lobster 107 

species from temperate or cold water regions, in which reproduction and postlarval settlement are 108 
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strongly seasonal, the settlement data have shown relationships with the commercial catch after a 118 

lag of several years, opening the possibility of developing catch predictive models (reviewed in 119 

Phillips et al., 2013). However, this has not been the case for P. argus, suggesting that for 120 

tropical species characterized by year-long reproduction and postlarval settlement, a number of 121 

factors potentially mask or decouple the relationship between levels of settlement and abundance 122 

of subsequent benthic phases (Herrnkind & Butler, 1994; Briones-Fourzán, Candela & Lozano-123 

Álvarez, 2008). These factors may include quality of settlement habitat, food availability, and 124 

predation mortality, as well as variability in nutritional condition of settling pueruli.  125 

In crustaceans, the nutritional condition is the extent to which an individual has 126 

accumulated reserves of nutrients to allow normal physiological function and growth (Moore, 127 

Smith & Loneragan, 2000). Nutritional condition can be an indicator of past foraging success and 128 

ability to cope with environmental pressures, and can greatly affect population dynamics (Jakob, 129 

Marshall & Uetz, 1996). Because pueruli do not feed, their post-settlement nutritional condition 130 

will depend on the nutrient reserves accumulated prior to metamorphosis and the energetic cost 131 

of swimming to the coastal settlement habitats (McWilliam & Phillips, 1997; García-Echauri & 132 

Jeffs, in press). If pueruli settle with a very low nutritional condition, they may die before, 133 

during, or soon after molting into first juveniles, precluding their recruitment to the benthic 134 

populations (Lemmens, 1994; Jeffs, Nichols & Bruce, 2001; Fitzgibbon, Jeffs & Battaglene, 135 

2014). After molting, the first juveniles need to resume feeding to replenish their energy sources, 136 

but this may depend on local availability of food and predation risk (Smith & Herrnkind, 1992; 137 

Weiss, Lozano-Álvarez & Briones-Fourzán, 2008), which may further reduce the nutritional 138 

condition of first juveniles, potentially precluding their molt into second-stage juveniles 139 

(Espinosa-Magaña, Lozano-Álvarez & Briones-Fourzán, 2017). Therefore, monitoring the levels 140 

of nutritional condition of benthic pueruli and first juveniles may provide insight into the 141 

potential factors decoupling the relationships between the levels of settlement and the abundance 142 

of subsequent benthic phases of P. argus. 143 

Several studies have examined the use of nutrients (lipids, proteins, and carbohydrates) 144 

during the transition from phyllosoma to puerulus (e.g., Jeffs, Wilmott & Wells, 1999; Limbourn 145 

& Nichols, 2009; Espinosa-Magaña et al., 2018), or the contents of these nutrients as biochemical 146 

indicators of nutritional condition over time in settled pueruli and first juveniles (Limbourn et al., 147 

2009). However, this type of biochemical analyses destroys the animals and can be expensive and 148 
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time-consuming, making their use impractical to monitor condition over the long term. Other 170 

biochemical nutritional indices, such as blood refractive index, can be accurate but are strongly 171 

affected by the molt cycle (Oliver & MacDiarmid, 2001; Lorenzon, Martins & Ferrero, 2011). 172 

Alternative morphometric techniques avoid injuring the animals and can be more practical to use 173 

over the long term (Jakob, Marshall & Uetz, 1996). Some studies have found significant variation 174 

in the size of benthic (settled) pueruli over time (e.g., Booth & Tarring, 1986; Yeung et al., 2001, 175 

Groeneveld et al., 2010), but size alone is not a good reflection of nutritional condition.  176 

One of the simplest morphometric indices of condition is the “ratio index”, which has 177 

long been used to assess nutritional condition in fishes (Froese, 2006) and is calculated as body 178 

mass divided by a linear dimension of body size. The ratio index has also been used in 179 

crustaceans such as prawns and lobsters, in which this index is usually estimated as the total 180 

weight of the animal (W) divided by its carapace length (CL). CL is typically preferred over total 181 

length because, unlike the highly flexible abdomen, the rigid carapace can be measured with less 182 

error. Therefore, we herein refer to this index as the “W/CL index”. The W/CL index has been 183 

shown to reflect nutritional condition in shrimps (Araneda, Pérez & Gasca-Leyva, 2008), prawns 184 

(da Rocha et al., 2015), and spiny lobsters (Robertson, Butler & Dobbs, 2000; Oliver & 185 

MacDiarmid, 2001; Briones-Fourzán, Baeza-Martínez & Lozano-Álvarez, 2009; Lopeztegui-186 

Castillo, Capetillo-Pinar & Betanzos-Vega, 2012). This is because unlike the blood refraction 187 

index, the W/CL index is independent of the molt cycle and may be a more direct reflection of 188 

nutritional health (Oliver & MacDiarmid, 2001).  189 

The W/CL index is also useful for comparing the nutritional status between groups or 190 

populations (e.g. Robertson, Butler & Dobbs, 2001), although Briones-Fourzán, Baeza-Martínez 191 

& Lozano-Álvarez (2009) showed that its use for these purposes was only warranted when the 192 

size range of the groups was similar because the W/CL index increases with size. Given that 193 

pueruli and first juveniles have a small and similar size range, the W/CL index could be useful 194 

for long-term monitoring of their condition. Therefore, the aims of the present study were 195 

twofold: to compare several morphometric relationships between pueruli and first juveniles of P. 196 

argus and examine allometric changes during this ontogenetic transition, and to examine seasonal 197 

variations in size, weight, and the W/CL index of recently settled pueruli and first juveniles of P. 198 

argus. We predicted that both pueruli and first juveniles would exhibit significant variation in all 199 

three variables, the former because of the varying environmental conditions during their long 200 
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larval phase and the potential variation in the distance swum by different individuals, and the 217 

latter because of carry-over effects (Marshall & Morgan, 2011) in conjunction with local effects 218 

after the post-settlement molt (e.g., predation risk, changes in food availability).  219 

  220 

MATERIALS AND METHODS 221 

Sampling of organisms 222 

Settled pueruli (transparent and pigmented) and first juveniles of P. argus were obtained from 223 

GuSi-type postlarval collectors (Gutiérrez-Carbonell, Simonín-Díaz & Briones-Fourzán, 1992) 224 

that are used to monitor monthly postlarval settlement indices on the Caribbean coast of Mexico 225 

(eastern coast of the Yucatan peninsula) (Briones-Fourzán, Candela & Lozano-Álvarez, 2008). 226 

These collectors, in sets of six, were deployed leeward of the coral reef tract at two locations: 227 

Puerto Morelos (at 20° 50.9’ N, 86° 52.1’ W) and Bahía de la Ascensión (at 19° 49.8’ N, 87° 228 

27.1’W). The GuSi collectors simulate intricate marine vegetation and are colonized by very 229 

large numbers of small invertebrates (mostly less than 5 mm long), such as isopods, amphipods, 230 

shrimps, crabs, ostracods, harpacticoid copepods, small gastropods, nudibranchs, ophiuroids, and 231 

many types of worms (Mendoza-Barrera & Cabrera, 1999), thus providing abundant natural prey 232 

for the first juveniles after the post-settlement molt (Marx & Herrnkind, 1985; Lalana & Ortiz, 233 

1991). A permit for pueruli collection was issued by Comisión Nacional de Acuacultura y Pesca 234 

(DGOPA.06695.190612.1737). We had access to all samples taken from collectors at Puerto 235 

Morelos between November 2010 and September 2013, but only to samples taken from collectors 236 

at Bahía de la Ascensión between August 2012 and September 2013. Individuals were 237 

transported in aerated seawater to the laboratory within 1 to 3 h of collection, and categorized 238 

into transparent pueruli (which are completely transparent except for the eyes), pigmented pueruli 239 

(with dark stripes of coloration in the new cuticle, visible below the old, transparent cuticle), first 240 

juveniles (Fig. 1), and older juveniles. First juveniles were distinguished from older juveniles 241 

based on morphological differences described by Lewis, Moore & Babis (1952), mainly the 242 

length of the medial flagella (inner branch) of the antennules relative to the lateral flagella (outer 243 

branch), the appearance of the grooves in the abdominal tergites, and the degree of development 244 

of the pleopods. Older juveniles were not further considered in this study.  245 

Morphometric relationships and allometry  246 

Morphometric relationships allow testing the relationship between two variables and predicting 247 
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the value of one (Y) from the other (X), whereas allometry is useful to examine how one variable 279 

scales with another (Warton et al., 2006). To examine morphometric relationships and allometry, 280 

we used individuals collected from both locations between August 2012 and September 2013. 281 

For these individuals, we measured the following length dimensions: carapace length (CL, from 282 

between the rostral horns to the posterior edge of the cephalothorax), carapace height (CH, across 283 

the mid-point between the bases of the first pair of pereopods and the highest point in the 284 

cephalothorax), carapace width (CW, across the widest part of the cephalothorax), and total 285 

length (TL, from between the rostral horns to the posterior edge of the telson) with digital Vernier 286 

calipers (± 0.01 mm). All length dimensions were measured under a stereoscopic microscope to 287 

reduce measurement error. We also measured total wet weight (W) of individuals with a digital 288 

scale (± 0.001 g) after blotting excess moist. 289 

Exploratory analyses revealed that transparent and pigmented pueruli did not differ 290 

significantly in any of the body dimensions that we measured (Student’s t-tests, p > 0.05 in all 291 

cases); therefore, we pooled their data into one category (“pueruli”) for further analyses. Prior to 292 

regression analyses, we used separate general linear models (GLM) to test for potential effects of 293 

location (Puerto Morelos and Bahía de la Ascensión) and developmental stage (pueruli and first 294 

juveniles) on each body dimension. As the effect of location was not significant (see Results), we 295 

pooled the data from both locations and used ordinary least-squares regression (OLR) to examine 296 

morphometric relationships (Warton et al., 2006). For each stage, CH, CW, TL, and W were 297 

regressed against CL. For each relationship, the slopes of regressions were compared between 298 

stages with Student’s t-tests; if the slopes did not differ significantly, we compared the elevations 299 

(Zar, 1999). We then used the log-transformed data of all dimensions to test for allometry, which 300 

involves testing if the slope equals a specific value (i.e., isometry: b = 1 for length-length 301 

relationships and b = 3 for length-weight relationships) (Hartnoll, 1982). The appropriate method 302 

to estimate slopes for this purpose is the reduced major axis regression (RMA, also known as 303 

standardized major axis regression) (Warton et al., 2006). Slopes were then tested for departures 304 

from isometry with Student’s t-tests. 305 

Seasonal variation in CL, W, and W/CL index 306 

To examine seasonal variation in size, weight, and the W/CL index, we used samples from Puerto 307 

Morelos only, as this location was sampled uninterruptedly for three years. Given that the 308 

monthly catch of the different stages tends to be low or even zero (Briones-Fourzán, Candela & 309 
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Lozano-Álvarez, 2008), we pooled the data by astronomical season (spring: March 20 to June 20; 314 

summer: June 21 to September 21; autumn: September 22 to December 20; winter: December 21 315 

to March 19) based on the day of the month when the collectors were sampled. This procedure 316 

resulted in data from 12 consecutive seasons.  317 

We used separate GLMs to examine the potential effects of season (12 levels) and stage 318 

(2 levels, pueruli and first juveniles) on each variable (CL, W, and W/CL). However, because the 319 

W/CL index is affected by size (Briones-Fourzán, Baeza-Martínez & Lozano-Álvarez, 2009), the 320 

seasonal variation in the W/CL index was further evaluated with an analysis of covariance 321 

(ANCOVA), using CL as a covariate to control for its significant effect. Least squares means and 322 

confidence intervals for seasonal W/CL were then computed for covariates at their means, 323 

yielding a modified W/CL index. For each stage and season, the coefficient of variation (�� =324 

� ��
��	
� × 100) was estimated as a measure of within-seasonal variability. 325 

Statistical analyses were done with the software Statistica v.10 (StatSoft Inc., 2011) 326 

except for the OLS and RMA regression analyses, which were done with the software PAST 327 

v.3.20 (Hammer, Harper & Ryan, 2001). In all cases, results were considered significant if p < 328 

0.05.  329 

 330 

RESULTS 331 

Size distribution, morphometric relationships, and allometry 332 

Between August 2012 and September 2013, we obtained 606 individuals, 380 pueruli (278 from 333 

Puerto Morelos and 102 from Bahía de la Ascensión) and 226 first juveniles (154 from Puerto 334 

Morelos and 72 from Bahía de la Ascensión). Size ranges of pueruli and first juveniles were 335 

5.01–6.90 mm CL and 5.31–6.98 mm CL, respectively (Fig. 2). Results from the GLMs 336 

examining the effects of location and developmental stage on body dimensions (Table 1) 337 

indicated that, except for CL, which did not differ significantly between pueruli and first 338 

juveniles, all other body dimensions were significantly affected by stage, but not by location, and 339 

the interaction term was also not significant. Therefore, the data from both locations were pooled 340 

prior to regression analyses. 341 

In general, morphometric relationships of pueruli exhibited a greater dispersion of data 342 

around the OLS regression line (Fig. 3A-D), resulting in lower coefficients of determination than 343 

for first-stage juveniles (Table 2). In the TL vs CL relationship, the slopes of the OLS regressions 344 
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did not differ significantly between pueruli and first juveniles, but the elevations did (Fig. 3A, 495 

Table 2). The slopes of all other regressions differed significantly between both stages (Table 2). 496 

In particular, W (Fig. 3B) and CH (Fig. 3C) increased more steeply with increasing CL in 497 

juveniles compared to pueruli. Results of RMA regressions revealed that for both stages, all 498 

relationships with log-transformed data exhibited isometry, except for the Ln CH vs Ln CL 499 

relationship in both stages and the Ln CW vs Ln CL relationship in pueruli, which showed 500 

positive allometry (Table 3).  501 

Seasonal variation in CL, W, W/CL, and corrected W/L index 502 

Between 20 and 45 pueruli per season, and between 12 and 35 first juveniles per season were 503 

obtained from samples at Puerto Morelos between autumn 2010 and summer 2013. Results of 504 

GLMs on these data showed a significant effect of both main factors (stage and season) but not of 505 

their interaction, on CL, W and W/CL (Table 4). First juveniles had higher mean values of all 506 

three variables than pueruli, with a similar trend for both developmental stages over the sampling 507 

period (Fig. 4). For both stages, all three variables were low in summer 2011 and tended to 508 

decrease between spring 2012 and summer 2013 (Fig. 4). Results of ANCOVA showed that, for 509 

each developmental stage, the effect of season on W/CL remained significant after controlling for 510 

the significant effect of CL (the covariate) (Table 5). However, the modified W/CL index of 511 

pueruli only differed significantly from the average value in two seasons: winter 2011 (higher), 512 

and summer 2013 (lower) (Fig. 5A), whereas within-season variability (seasonal CVs) ranged 513 

from 10.1% to 11.6%. For first juveniles, the modified W/CL index was more variable over time, 514 

with higher than average values in winter and spring 2011, and lower than average values in 515 

autumn 2011 and winter 2012 (Fig. 5B), whereas within-season variability ranged from 6.7% to 516 

7.7%. 517 

 518 

DISCUSSION 519 

We compared several body dimensions and morphometric relationships between pueruli and first 520 

juveniles of Panulirus argus, and examined seasonal variation in a morphometric condition index 521 

in both stages. When comparing data from Puerto Morelos and Bahía de la Ascensión, location 522 

had no effect on any of the measured body dimensions. Stage significantly affected all 523 

dimensions with the exception of CL, which remained virtually unchanged after the post-524 

settlement molt, as previously reported by Lewis, Moore & Babis (1952). In contrast, Abrunhosa 525 
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corrected W/CL index of benthic pueruli 
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values in summer 2011 and spring-summer 
2013 (Fig. 4A). The corrected W/CL index 
of first juveniles also varied significantly 
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significant effect of CL, with higher than 
average values in autumn 2010, and winter-
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in autumn 2011 and winter 2012 (Fig. 4B).¶
Morphometric relationships¶
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& Kittaka (1997) reported an increase in mean CL of 7.2% between the puerulus and first 670 

juvenile of P. cygnus, and Groeneveld et al. (2010) reported an increase in mean CL of 4–16% in 671 

Jasus lalandii. Although CW and TL were larger in first juveniles than in pueruli, the main 672 

differences between the two stages were an increase in CH and in W after the post-settlement 673 

molt. The increase in CH reflects the change from the relatively flattened body of the puerulus, 674 

which provides a more streamlined form for this forward-swimming stage, to the more 675 

cylindrical body of the benthic juveniles, which lose the ability to swim forward. This 676 

ontogenetic change was previously observed by Grobler & Ndjaula (2001) and Groeneveld et al. 677 

(2010) in J. lalandii. The increase in weight is greatly due to the uptake and incorporation of 678 

minerals into the cuticle of the first juveniles, which becomes thicker and heavier (Lemmens, 679 

1995), and also potentially to the development of internal structures (Lemmens & Knott, 1994). 680 

In the morphometric analyses, all dimensions increased linearly with CL and the slopes of 681 

all OLS regressions differed between stages with the exception of the TL vs CL regression, in 682 

which the intercepts differed significantly. Although the relationship W vs CL is typically 683 

described with a power function in spiny lobsters (e.g., Zetina-Moguel, Ríos-Lara & Cervera-684 

Cervera, 1996; Cruz et al., 2007), we used a linear function for this relationship because of the 685 

small range in size and weight of pueruli and first juveniles. The small measured range gave rise 686 

to wide variability in most relationships (values of r² < 0.7), as was also the case for W vs CL 687 

relationships in pueruli of J. lalandii (Grobler & Ndjaula, 2001; Groeneveld et al., 2010). 688 

Because allometry was examined for each stage, we expected relationships between log-689 

transformed variables to be isometric. This was the case for all relationships except for Ln CH vs 690 

Ln CL, which exhibited positive allometry in both stages, and Ln CW vs Ln CL, which exhibited 691 

positive allometry in pueruli. These results suggest that larger pueruli emerge from 692 

metamorphosis with a proportionally broader carapace than smaller pueruli, potentially reflecting 693 

individual heterogeneity among phyllosomata. 694 

Morphometric changes between the puerulus and the first juvenile could be considered as 695 

subtle compared with the dramatic morphological change from phyllosoma to puerulus, but the 696 

post-settlement molt does involve considerable structural and morphological changes (Lewis, 697 

Moore & Babis, 1952; Lemmens & Knott, 1994; Nishida, Takahashi & Kittaka, 1995; Abrunhosa 698 

& Kittaka, 1997; Jeffs, Nichols & Bruce, 2001) not necessarily evident in the body dimensions 699 

that we measured. Interestingly, Ventura et al. (2015) found that the genes expressed during the 700 
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molt between puerulus and first juvenile in Sagmariasus verreauxi are the same genes expressed 716 

during metamorphosis in other crustaceans, whereas the more dramatic phyllosoma-puerulus 717 

morphological shift relies on a different, yet to be identified metamorphic mechanism. 718 

Temporal variations in carapace length (CL) of pueruli have been previously documented 719 

in spiny lobsters (e.g., J. edwardsii: Booth & Tarring, 1986; J. lalandii: Grobler & Ndjaula, 2001; 720 

Groeneveld et al., 2010; P. interruptus: Guzmán del Próo et al., 1996; P. argus: Yeung et al., 721 

2001). In New Zealand, pueruli of J. edwardsii were larger in winter than during the rest of the 722 

seasons (Booth & Tarring, 1986), whereas in Namibia (Grobler & Ndjaula, 2001) and South 723 

Africa (Groenveld et al., 2010), pueruli of J. lalandii were larger in late summer. In all these 724 

cases, the authors offered as possible explanations that phyllosomata metamorphosing in that 725 

particular season either found more favorable feeding conditions or had more time to feed and 726 

grow, or that pueruli arriving to the settlement habitats in different seasons may have originated 727 

from different adult populations. 728 

In the present study, the mean CL and W of pueruli of P. argus varied throughout the 729 

study period, with the lowest values in summer 2011 and in spring-summer 2013. In pueruli of P. 730 

argus collected between June 1997 and June 1999 in Florida, the smaller mean CL values also 731 

occurred during the summer (Yeung et al., 2001), a result that was ascribed to variable seawater 732 

temperatures and nutritional conditions during larval growth. Espinosa-Magaña et al. (2018) 733 

collected nektonic pueruli of P. argus offshore of the Mexican Caribbean coast in autumn 2012 734 

and spring 2013, and found that the pueruli were larger and contained more lipid reserves in 735 

spring than in autumn. These differences were ascribed to a greater availability of basal food 736 

resources (phytoplankton) across the western Caribbean between October and March than during 737 

April to September, as reported by Melo-González et al. (2000), and/or to the higher water 738 

temperatures during the summer, which may reduce the metabolic efficiency and the increase in 739 

size at molt of late-stage phyllosomata (e.g., Matsuda & Yamakawa, 1997), potentially resulting 740 

in smaller pueruli during the summer months. Indeed, in laboratory experiments, Fitzgibbon & 741 

Battaglene (2012) found a downward shift in the optimum temperature for late-stage 742 

phyllosomata compared to early- and mid-stage phyllosomata of S. verrauxi. This shift involves 743 

changes in feeding and energy metabolism, resulting in larger pueruli at lower temperatures. 744 

Limbourn et al. (2009) found a significant spatial and temporal variation in total lipid 745 

content and fatty acid composition of pueruli and first juveniles of P. cygnus in western 746 
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Australia, but to the best of our knowledge, the present study is the first to examine temporal 777 

variability in a morphometric condition factor for pueruli and first juveniles of any spiny lobster 778 

species. Robertson, Butler & Dobbs (2000) experimentally demonstrated that the W/CL index 779 

reflected the nutritional condition of early benthic juveniles of P. argus, which is why we chose 780 

this index. However, as the W/CL index increases with size (Briones-Fourzán, Baeza-Martínez & 781 

Lozano-Álvarez, 2009), we modified this index by controlling for the significant effect of size. 782 

The modified W/CL index of pueruli was higher than average in winter 2011 and lower than 783 

average in summer 2013, yet compared with values for first juveniles, values for pueruli changed 784 

relatively less between seasons but exhibited greater within-season variability. This result would 785 

be consistent with variations in nutritional condition of late stage phyllosomata prior to 786 

metamorphosis in oceanic waters and in the distances potentially swum by individual pueruli to 787 

the settlement habitats (Espinosa-Magaña et al., 2018). Genetic variability could also account for 788 

some of this variation, as the northern portion of the Mexican Caribbean has been identified as a 789 

sink area potentially receiving postlarvae of P. argus from multiple Caribbean locations 790 

(Briones-Fourzán, Candela & Lozano-Álvarez, 2008;  Kough, Paris & Buter, 2013). Another 791 

factor possibly involved in the variability in the W/CL index of benthic pueruli is the seasonal 792 

variation in the strength of the Yucatan current, which runs very close to the eastern coast of the 793 

Yucatan peninsula. This current is one of the swiftest western boundary currents in the world, but 794 

exhibits greater velocities in spring-summer than in autumn-winter (Cetina et al., 2006; Carrillo 795 

et al., 2015). As the nektonic pueruli would need to cross this current in order to arrive to our 796 

sampling locations, this may result in a greater expense of energy resources when the current is 797 

stronger (Espinosa-Magaña et al., 2018).  798 

  In contrast with pueruli, the modified W/CL index of first juveniles exhibited more 799 

between- and less within-season variability. Because first juveniles need to resume feeding after 800 

the post-settlement molt to restore energy reserves, these results suggest that their nutritional 801 

condition depends to some extent on variation of local conditions of the settlement habitat, such 802 

as food availability and predation mortality.  In particular, although small juveniles invest more 803 

in defensive structures, including disruptive coloration, than larger conspecifics (Anderson et al., 804 

2013), the risk of predation is ever present and may reduce foraging activity of small juveniles 805 

(Smith & Herrnkind, 1992; Weiss, Lozano-Álvarez & Briones-Fourzán, 2008) even if food is 806 

readily available, as it is in pueruli collectors. Yet, first juveniles of P. argus can starve for up to 807 
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12 days and still be able to molt if they can resume feeding after this period (Espinosa-Magaña, 842 

Lozano-Álvarez & Briones-Fourzán, 2017).  In addition to the potential effect of local conditions, 843 

there might be a meaningful carry-over effect of the previous condition after the post-settlement 844 

molt. This is an important issue to consider because conspecific individuals can differ widely in 845 

their metabolic phenotype (i.e. their rate of energy metabolism) (Burton et al., 2011), and this 846 

phenotypic variation can be more important than variation in larval supply in regulating marine 847 

populations (Marshall & Morgan, 2011).  848 

  849 

CONCLUSIONS 850 

Pueruli and first juveniles of P. argus had a similar range in CL, but the latter were heavier and 851 

had a greater CH than the former. As predicted, there was significant seasonal variation in CL, 852 

W, and the W/CL index (a morphometric condition factor) of both stages. However, within-853 

season variation in the modified W/CL index was greater for pueruli than for first juveniles, 854 

potentially reflecting variability in the condition of larvae prior to metamorphosis and in the 855 

distances swum by individual pueruli to the settlement habitat, whereas between-season variation 856 

was greater for first juveniles than for pueruli, suggesting a combination of carry-over effects and 857 

variation in the effects of local factors (e.g. predation risk and food availability). Whether such 858 

differences have any impact on survival of these stages of P. argus remains to be determined. For 859 

example, validating the results of W/CL index of pueruli and first juveniles with biochemical 860 

analyses (lipid and protein contents) would support their continued use to monitor nutritional 861 

condition of these stages over the long term, whereas experimental studies could help determine 862 

how the condition factor of first juveniles varies in the presence/absence of predation risk at 863 

different levels of food availability. These and other investigations are necessary to unravel the 864 

complexity of linkages between factors potentially decoupling settlement from recruitment 865 

processes. 866 
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FIGURE LEGENDS 1221 

Figure 1. Developmental stages of Panulirus argus considered in the present study. 1222 

From left to right: transparent puerulus, pigmented puerulus, and first-stage juvenile of the 1223 

Caribbean spiny lobster Panulirus argus. The term “pueruli” in the text refers to transparent + 1224 

pigmented pueruli. (Photo: F Negrete-Soto, with permission). 1225 

 1226 

Figure 2. Size distribution of organisms. 1227 

Size (carapace length) distribution of the sample of pueruli (red columns, N = 380) and first-stage 1228 

juveniles (blue columns, N = 226) of Panulirus argus collected at Puerto Morelos and Bahía de 1229 

la Ascensión, Mexico, between August 2012 and September 2013. 1230 

 1231 

Figure 3. Morphometric relationships of pueruli and first juveniles. 1232 

Relationships between (A) total length and carapace length (CL), (B) weight and CL, (C) 1233 

carapace height and CL, and (D) carapace width and CL, with ordinary least-squares regression 1234 

lines, in pueruli (red dots and continuous lines, N = 380) and first juveniles (blue dots and dashed 1235 

lines, N = 226) of Panulirus argus collected at Puerto Morelos and Bahía de la Ascensión, 1236 

Mexico, between August 2012 and September 2013. 1237 

 1238 

Figure 3. Seasonal variation in size (CL), weight (W), and W/CL. 1239 

Seasonal variation in (A) size (carapace length, CL), (B) total weight (W) and (C) the W/CL ratio 1240 

of pueruli (red dots and lines) and first juveniles (blue dots and lines) of Panulirus argus 1241 

collected at Puerto Morelos, Mexico, between autumn 2010 and summer 2013. Error bars are 1242 

95% confidence intervals. Seasonal Ns for benthic pueruli: 20–45; for first juveniles: 12–35. 1243 

 1244 

Figure 4. Seasonal variation of modified condition factor (W/CL index). 1245 

Seasonal variation of the modified condition factor (W/CL index) after controlling for the 1246 

significant effect of size (CL, covariate) in (A) pueruli and (B) first juveniles of Panulirus argus 1247 

collected at Puerto Morelos, Mexico, between autumn 2010 and summer 2013. Error bars are 1248 

95% confidence intervals (CI). In each panel, the overall mean modified W/CL index and its 95% 1249 

CI are denoted by the black continuous and dashed lines, respectively. Seasonal Ns for pueruli: 1250 

20–45; for first juveniles: 12–35. 1251 
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To examine seasonal variation in size, weight, and the W/CL index, we used 

exclusively the samples from Puerto Morelos, which amounted to 12 consecutive calendar 

seasons. For these individuals, we measured the carapace length (CL, from between the 

rostral horns to the posterior edge of the cephalothorax) with digital Vernier calipers (± 0.1 

mm) and the total wet weight (W) with a digital scale (± 1 mg) after blotting excess moist. 

These dimensions allowed for the estimation of the W/CL index. For the morphometric 

relationships, we used all the samples taken between August 2012 and September 2013, from 

both Puerto Morelos and Bahía de la Ascensión. For these individuals, in addition to CL and 

W, we measured carapace height (CH, across the mid-point between the bases of the first pair 

of pereopods and the highest point in the cephalothorax), carapace width (CW, across the 

widest part of the cephalothorax), and total length (TL, from between the rostral horns to the 

posterior edge of the telson). All length dimensions were measured under a stereoscopic 

microscope to reduce measurement error.  

Statistical analyses 

Because the main monthly settlement pulse occurs during the dark phase of the moon 

but the collectors are checked the day after the third quarter lunar phase, the monthly catch is 

typically dominated by pigmented pueruli and first juveniles, whereas transparent pueruli are 

scarce or altogether absent (Briones-Fourzán, 1994). However, as exploratory analyses 

revealed no significant differences in body dimensions between transparent and pigmented 

pueruli (see Results), the data from all pueruli were pooled as “benthic pueruli” for further 

comparisons. 

Seasonal variation in CL, W and the W/CL index.  Because the monthly catch 

from collectors tends to be rather low (e.g., some months the catch can be zero, Briones-

Fourzán, Candela & Lozano-Álvarez, 2008), we pooled the monthly data for the entire 

sampling period from Puerto Morelos by calendar season to examine seasonal variation in 

CL, W, and the WL index for benthic pueruli and first juveniles. These data were subjected to 

factorial analyses of variance (ANOVAs) with two (fixed) categorical factors: season (12 

levels, from autumn 2010 to summer 2013) and developmental stage (2 levels, benthic 

pueruli and first juveniles). However, because the W/CL index is affected by size (Briones-

Fourzán, Baeza-Martínez & Lozano-Álvarez, 2009), the seasonal variation in the W/CL 

index was further evaluated with an analysis of covariance (ANCOVA) using CL as a 

covariant, to control for its significant effect. This variable is hereafter referred as “corrected 



W/CL index” In all cases, results were considered significant if p < 0.05.  

Morphometric relationships. Regression analyses were used to examine 

morphometric relationships with data obtained from Puerto Morelos and Bahía de la 

Ascensión between August 2012 and September 2013. First, we tested for a potential effect 

of location (with two levels, Puerto Morelos and Bahía de la Ascensión) and developmental 

stage (with two levels, benthic pueruli and first-stage juveniles) on each variable (CL, CH, 

CW, TL, and W) with separate factorial analyses of variance (ANOVA). As the effect of 

location was not significant (see Results), the data from both locations were pooled. Then, for 

each developmental stage, the variables CH, CW, TL, and W were regressed against CL, as 

this variable can be measured with less error than TL. For each relationship, the slopes of 

regressions were compared between developmental stages with Student’s t-tests; if the slopes 

did not differ significantly, we then compared the elevations (Zar, 1999). Finally, using the 

log-transformed data of all dimensions, we also tested departures from isometry (b = 1 for 

log-transformed length-length relationships, and b = 3 for length-weight relationships) 

(Hartnoll, 1982), also with t -tests (Zar, 1999). 
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The analyses of seasonal variation in CL, W, and the W/CL index encompassed 12 

consecutive seasons, from November (autumn) 2010 to September (summer) 2013. During 

this period, we obtained 329 benthic pueruli and 252 first-stage juveniles at Puerto Morelos. 

Results of ANOVAs showed a significant effect of both main factors (Developmental stage 

and Season), but not of their interaction, on each of the three variables (Table 1). First 

juveniles had higher mean values of all three variables than benthic pueruli, with a similar 

trend for both developmental stages over the sampling period (Fig. 3). For both stages, all 

three variables were low in summer 2011 and also tended to decrease between spring 2012 

and summer 2013 (Fig. 3). However, results of ANCOVA showed that, after controlling for 

the significant effect of CL (the covariant), the corrected W/CL index of benthic pueruli 

varied significantly with season, with higher than average values in autumn 2010 and winter 

of 2011, and lower than average values in summer 2011 and spring-summer 2013 (Fig. 4A). 

The corrected W/CL index of first juveniles also varied significantly with season after 

controlling for the significant effect of CL, with higher than average values in autumn 2010, 

and winter-spring 2011, and lower than average values in autumn 2011 and winter 2012 (Fig. 

4B). 

Morphometric relationships 

Results from the factorial ANOVAs examining the effects of location and 



developmental stage on body dimensions (Table 2) indicated that, except for CL, which did 

not differ significantly between benthic pueruli and first juveniles, all other body dimensions 

were significantly affected by developmental stage, but not by location, and the interaction 

term was also not significant. Therefore, the data from both locations were pooled prior to 

regression analyses. 

In general, compared with first juveniles, morphometric relationships of benthic 

pueruli exhibited a greater dispersion of data around the regression line, resulting in lower 

coefficients of determination than for first-stage juveniles (Fig. 5). In the TL vs CL 

relationship, the slopes of the regressions did not differ between benthic pueruli and first 

juveniles, but the elevations did (Fig. 5A, Table 3). The slopes of all other regressions 

differed significantly between both developmental stages (Table 3). The most evident 

morphometric changes between pueruli and first juveniles were an increase in weight (Fig. 

5B) and carapace height (Fig. 5C) relative to CL in juveniles, with weight increasing more 

steeply with increasing CL in juveniles. In contrast, changes in total length (Fig. 5A) and 

carapace width (Fig. 5D) relative to CL, although significant as well, were less marked. For 

both developmental stages, all regressions with log-transformed length dimensions exhibited 

negative allometry (i.e., slope was significantly lower than 1), except for the relationship 

carapace height vs CL, which exhibited isometry (Table 3). The slopes of the W vs CL 

relationships also differed significantly from 3 in both stages, showing negative allometry 

(Table 3). 

 
 

 


