- 1 Title: Ornamentation of dermal bones of Metoposaurus krasiejowensis and
- 2 its ecological implications.
- 3 Mateusz Antczak¹, Adam Biodzioch²
- 4 ¹ Institute of Geology, Adam Mickiewicz University of Poznan, Poznan, Poland 5
 - ² Department of Biosystematics, University of Opole, Opole, Poland

6

9

16

17

20

21

22

25

26

27

28

29

30

11 Abstract:

12 Background. Amphibians are animals strongly dependent on environmental conditions, like

13 temperature, water accessibility, reservoir trophy. Thus, they can be used in modern

14 palaeoenvironmental analysis, reflecting ecological condition of the biotope

15 | Methods. To analyse the observed diversity of *Metoposaurus krasiejowensis* temnospondyl<u>s</u> from

the Late Triassic deposits in Krasiejów (Opole Voivodeship, Poland), the characteristics of the

ornamentation of 25 clavicles and 13 skulls (such as grooves, ridges, tubercules) were observed on

18 macro- and microscales, including the use of a scanning electron microscope for high magnification.

19 The characteristics of the ornamentation of these bones served for taxonomical and ecological

analysis (inter- vs intraspecific variation).

Results. Two distinct types of ornamentation (fine, regular and sparse, or coarse, irregular and

dense) were found, indicating either taxonomical, ecological, individual, or ontogenetic variation or

23 sexual dimorphism.

24 **Discussion.** Analogies with modern Anura and Urodela, previous studies on temnospondyl

amphibians and the geology of the Krasiejów site suggest that the differences found are rather not

individual variation. Sexual dimorphism and ontogeny cannot be undoubtedly excluded, but

ecological variation between populations of different environments or facultative neoteny

(paedomorphism) of part of the population (with types of ornamentations being adaptations to a

more aquatic or <u>a</u> more terrestrial lifestyle) <u>are the most plausible explanations</u>.

31 **Introduction**

Eliminado: amphibians

Eliminado: 21

Eliminado: it is r

Eliminado: the most probable explanation for differences in ornamentation within *Metoposaurus* individuals is the

Eliminado:,

40 The fossil assemblage from the Late Triassic deposits in Krasiejów (SW Poland, near the city of Opole) 41 is a unique discovery. Excavations carried out since 2000 have revealed new data concerning the 42 evolution of terrestrial Triassic faunas. In Krasiejów, although the remains of several groups of fish 43 and archosaurs were also found (e.g. Dzik et al., 2000; Dzik & Sulej, 2007, 2016; Brussate et al., 2009; 44 Piechowski & Dzik, 2010; Sulej, 2010; Skrzycki, 2015; Antczak, 2016), fossils of large temnospondyl 45 amphibians described as Metoposaurus krasiejowensis (Sulej, 2002; species name revised by Brusatte 46 et al., 2015) were the most abundant. 47 Despite many years of study, new data are still being collected and some aspects of the anatomy and 48 ecology of extinct animals are being reinterpreted (e.g. Konietzko-Meier, Bodzioch & Sander, 2012; 49 Konietzko-Meier & Klein, 2013; Konietzko-Meier & Sander, 2013), along with the age of bone 50 accumulations in Krasiejów (Racki & Szulc, 2015; Lucas, 2015; Szulc, Racki & Jewuła, 2015) and their 51 origin (Bodzioch & Kowal-Linka, 2012). One aspect not described in detail is the morphology of 52 metoposaurid dermal bone ornamentation, which was assumed to be randomly variable (Sulei, 2007) 53 <u>or similar</u> in all representatives of the species, as suggested by Witzmann et al. (2010). The aim of this 54 paper is to describe in detail, on macro- and microscales, the ornamentation of metoposaurid 55 clavicles and skull bones, in order to examine its variation and to test whether or not it is the same in 56 all specimens. A thorough probe of skeletal elements from one site shows that differences between 57 specimens are not random.

Eliminado: and the same

Material and methods

58 59

60

61

62

63

64

65

66

67

68

69

70

71

72

The size, number, shape, placement, and characteristics of the ornamentation elements of metoposaurid clavicles (and as a remark: skull bones) were analysed. The material derived from the 'Trias' site at Krasiejów (SW Poland; Fig. 1), The fine-grained (mudstones and claystones) Late Triassic (Carnian, according to Dzik & Sulej, 2007; Lucas, 2015; Norian, according to Szulc, 2005; 2007; Szulc, Racki & Jewuła, 2015;) deposits can be divided into three units (e.g. Gruszka & Zieliński, 2008), in which two bone-bearing horizons occur. The lower horizon, the product of a mudflow deposition that probably occurred during a heavy rainy season, is especially abundant in fossils, including Metoposaurus krasiejowensis. The upper horizon was described within massive claystones covering palaeochannels of low-energy meandering river. Within the upper horizon remains of Silesaurus and Polonosuchus were found (Dzik & Sulej, 2007).

Eliminado: . where a very rich accumulation of fossils was found

Eliminado: which

Eliminado: (Bodzioch & Kowal-Linka,

2012)

To test the diversity of dermal bone ornamentation in metoposaurids from Krasiejów, 25 clavicles (UOPB1152-1176) and 13 skulls (working numbers counting from the excavation site side: UO/PP01-

20) were analysed in detail (Tables 1–3). Morphometric measurements for skulls were also made (for 21 skulls — Table 4). The clavicles were removed during the excavation and are held in the Opole University collection, while the skulls were present, in situ in the palaeontological pavilion (also part of Opole University) at the digging site in Krasiejów; one of them is housed in the Faculty of Geographical and Geological Sciences Museum of Earth at the Adam Mickiewicz University in Poznań (uam/mz/586). As an outgroup skull and clavicle of Cyclotosaurus (ZPAL/AbIII/397) from Museum of evolution in Warsaw were examined.

All described specimens were found in the lower bone-bearing horizon.

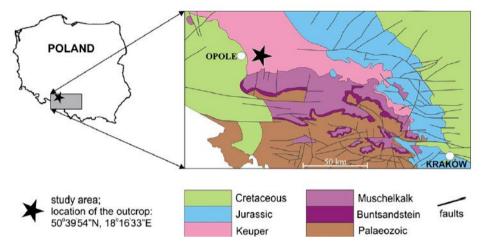


Fig. 1. Localization and geological map of Krasiejów (Bodzioch & Kowal-Linka, 2012).

The characteristics of the polygonal and radial structure of clavicles were described, using over 20 features, including some of the 12 used by Witzmann et al. (2010). Observations are shown in Table 1, which groups similar features and assigns them numerical values.

Observations were made macroscopically and microscopically using an Olympus SZ61 binocular microscope, a Zeiss SteREO microscope, and a DIGEYE digital microscope.

Fragments of 10 clavicles were analysed using a Hitachi S-3000N Scanning Electron Microscope. Samples were taken from the same parts of the clavicles: radial ornamentation in the posterior part of the bone, several centimetres behind the ossification centre. Samples were sprayed with gold and palladium and observed under a high vacuum at the Institute of Plant Protection – National Research Institute in Poznań. One sample was observed using a Hitachi S-3700N at the SEM-EDS Laboratory of Faculty of Geographical and Geological Science of Adam Mickiewicz University in Poznań.

Selected macroscopic features of skull bones were described only as a result of the fact that the presentation of bones *in situ* makes it impossible to describe micro- or sub-microscopic features. Not all such features were described. Dermal bone ornamentation can be divided into radial

ornamentation, composed of parallel or radial ridges without transverse ridges, and polygonal ornamentation, composed of short ridges connected to form polygons. The vertices of the polygons are called nodal points. The polygonal sculpture area is the ossification centre, the part of the bone that ossifies first. Near the ossification centre is an anterior appendix. Polygons may be hexagonal, pentagonal, rectangular, or irregular in shape. Polygons joined by means of a missing ridge are called multipolygons (Fig. 2). All measured features are listed in Table 1. SEM observations included features of the surface of the ridges, such as the number of foramina and degree of ridge roughness (Fig. 3). The possible relative individual ages of the clavicle specimens were determined using the method based on ornament development, presented by Witzmann et al. (2010) and improved by Zalecka (2012). The youngest specimens possessed no partition walls between radial ridges, An intermediate stage was represented by specimens with developing partition walls within radial ornaments, and the oldest specimens possessed many well-developed partition walls between radial ridges. Additionally, specimens described as the oldest, are the largest ones (UOPB1152 ~19,5cm x 9,7cm, UOPB1164 ~20cm x 9cm), while the youngest <u>are</u> usually of small size (UOPB1166 ~12cm x 6cm, UOPB1171 ~ 10cm x 5cm). For testing the significance of described variation statistical test were used. At first Shapiro-Wilk test

for testing normality of the data, then respectively test F, test T and test U. Test F was used if both

compared samples had normal distribution. Test F was used for testing the variance. If the difference

between variances were not significant, test T was used. If the variances were significantly different,

or samples not had normal distribution, test U was used. If the final test gave the p-value (probability

value) less than 0,05 it means that samples are significantly different.

Eliminado: ,

Eliminado: a

Eliminado: we

Eliminado: were

128 **Observations**

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126127

129

130

131

132

133

134

136

137

Diagnosis: Clavicles

Clavicles of metoposaurids from Krasiejów showed diversity in ornamentation, having fine, regular

and sparse, or coarse, irregular and dense sculpture. After this observation, the clavicles

ornamentation was examined in greater detail.

Some of the analysed features show random variation or none; however, most are distributed

bimodally. Therefore, in every specimen one or the other set of characteristics occur, and two types

of ornamentation can be distinguished (Tc1 and Tc2).

Specimens classified as type 1 (Tc1) are characterised by more regular ornamentation of the

clavicles: the borders of the ossification centre (polygonal sculpture) are easily recognised, the

138 polygonal sculpture field has a square shape, and the ornamentation is fine and sparse, moreover,

Eliminado: n

144 nodal points are more pronounced, being broader and higher than the ridges that connect them, 145 ridges are usually narrow, hexagons with a low level of size diversity dominate, multipolygons are 146 rare, clavicles, even when large, are relatively thin; the anterior process of the clavicle is usually flat 147 and small (Fig. 2); while specimens classified as type 2 (Tc2) posses_less regular ornamentation: the 148 borders of the ossification centre (polygonal sculpture) are difficult to recognise, the polygonal 149 sculpture field is characterised by a rectangular shape (elongated posteriorly), and the 150 ornamentation is thicker and denser, moreover, nodal points are only slightly broader and higher 151 than the ridges that connect them, ridges are wide or narrow, often rounded, polygons are more 152 often pentagonal or irregular, multipolygons are frequent, clavicles are relatively thick, 153 independently of their size or age, and the anterior process is usually round in cross section and 154 expanded (Fig. 2). 155 Both types of Metoposaurus dermal bones ornamentation are however distinct from Cyclotosaurus 156 sculpture (please, insert a reference here). Cyclotosaurus can be characterised by relatively large and 157 rhomboidal polygons (sometimes elongated pentagons). Radial ornament is very sparse (spaces 158 between ridges are wide). Ossification centre is large and posses distinct borders, but the polygon

number is low (25). Clavicle is thick. Ridges are round and thick (ZPAL/AbIII/397, pers. observ).

159

160

Eliminado: ses

Eliminado:

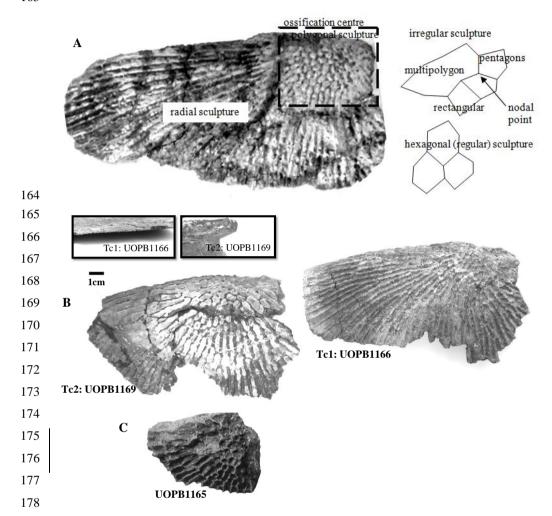


Fig. 2. Basic ornamentation features explanation (A). Clavicles assigned to two types of ornamentation (B). <u>UOBP1165</u>, partially incomplete specimen, not fitting to described types (C, Figs. 4-6).

The distribution of certain characteristics according to relative individual age or type assignment is presented on figures 3–7. All plots show bimodal distribution of the parameters, which are independent of estimated relative individual age of specimens. UOPB1165 (Fig. 2) specimen not fitting any of this types might be the representative of a different taxon, although it was the specimen with the largest part missing which may affect the result of its description. Some features were not described for this specimen i. e. borders and shape of the ossification centre or radial ridges

Eliminado: very interesting and important

character (Table 1). Estimated size of the complete specimen is small, but the ossification degree is high. Its possible assignment to species other than *M. krasiejowensis* would be difficult without other findings.

In table 5 results of conducted statistical test are presented – F and T or U, dependent on the data distribution. Considering described types as different groups, quantitative and qualitative data shows that they differ significantly ($\alpha = 0.05$).

197 198 199

201

202

203

191

192

193

194

195

196

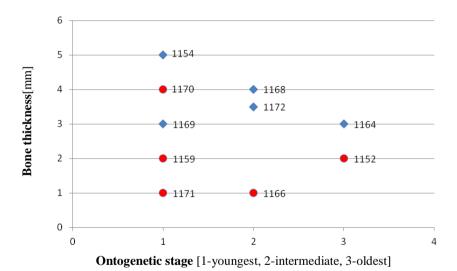
Explanations to figs 3-7:

200 • Tc1

•

♦ Tc2

Youngest


Intermediate

204 🛕 Oldest

Other species

206

205

207208

209

210

Fig. 3. Thickness of the bone in particular types and ontogenetic stages. Measurements made at the border of polygonal and radial ornamentation areas.

Eliminado:

Eliminado: ly

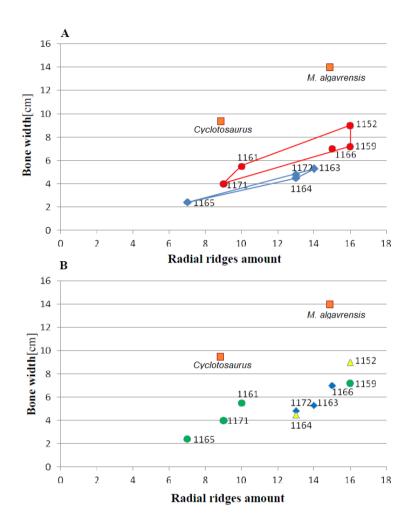
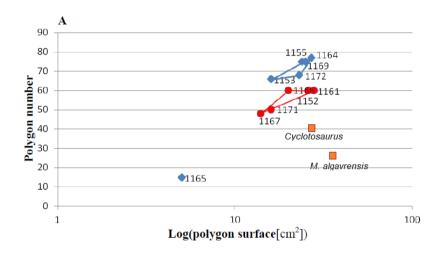



Fig. 4. Ratio of the bone width and amount of radial ridges (measurement taken 2,5 cm from ossification centre).

A: Considering appointed types, showing two subsets within metoposaurid data; B: Considering individual age, showing no subsets within metoposaurid data.

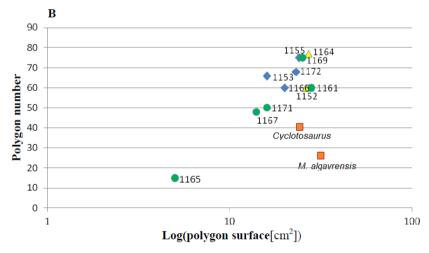


Fig. 5. Ratio of polygon number and surface.

A: Considering appointed types, showing two subsets within metoposaurid data; B: Considering individual age, showing no subsets within metoposaurid data.

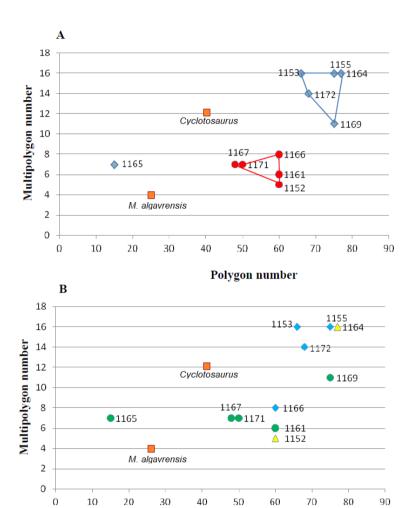
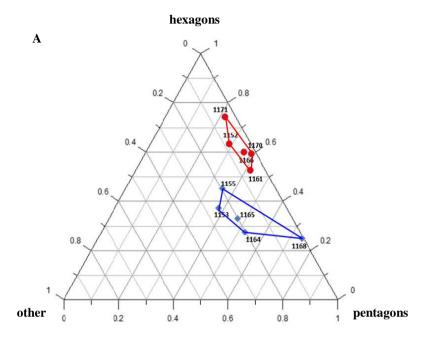



Fig. 6. Ratio of multipolygon and all polygons number.

Polygon number

A: Considering appointed types, showing two subsets within metoposaurid data; B: Considering individual age, showing no subsets within metoposaurid data.

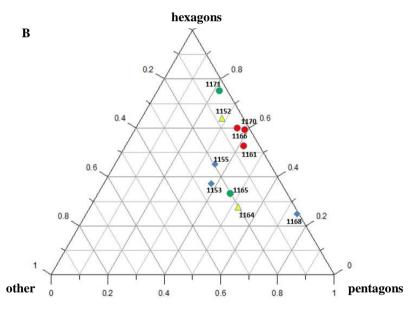


 Fig. 7. Percentage of hexagonal, pentagonal and other polygons.

A: Considering appointed types, showing two subsets within metoposaurid data; B: Considering individual age, showing no subsets within metoposaurid data.

Micro/nanoscale

Two types can also be distinguished according to the micromorphology of the ornamentation ridges and bone structure in cross-section. Clavicles assigned to type 1 do not possess striations (or striations, if present, are barely visible and sparse) and possess a low number of small capillary foramina at the slopes of the ridges (less than 7 per 100 µm²). Usually they also have less than one foramen per 1 mm of ridge length and no distinct bumps or roughness at the top of the ridge (Figs. 8-9, Table 2). In cross-section they possess growth marks in close proximity within poorly vascularised upper cortex (Fig. 8).

Clavicles assigned to type 2 possess striations on the ridges and a greater number of small foramina (more than 7 per 100 µm²). Usually they also have more than one foramen per 1 mm of ridge length and distinct bumps and roughness at the top of the ridge (Figs. 8-9, Table 2). In cross-section they possess growth marks separated by well-vascularised zones (Fig. 9). This difference in histological patterns is analogous to different growth strategies described on the example of long bones (Teschner, Sander & Konietzko-Meier, 2017).

Eliminado: are

Eliminado: in the ground

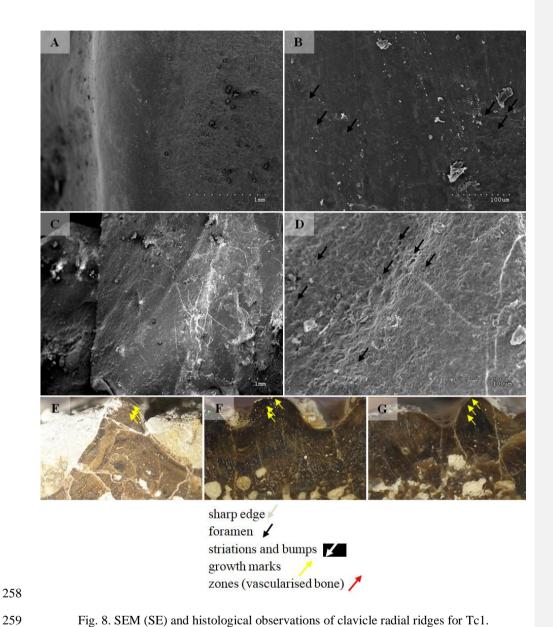


Fig. 8. SEM (SE) and histological observations of clavicle radial ridges for Tc1. A-B: UOPB1152; C-D: UOPB1161; E: UOPB1160; F: UOPB1167; G: UOPB1170.

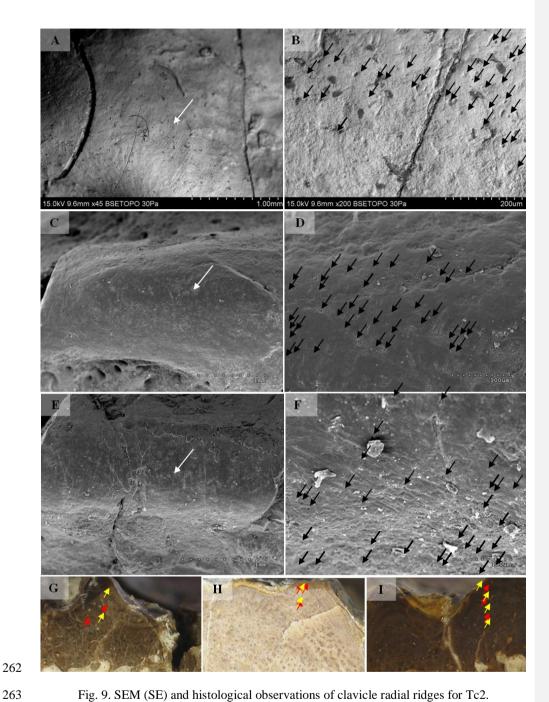


Fig. 9. SEM (SE) and histological observations of clavicle radial ridges for Tc2. A-B: uam/kng/02; C-D: UOBP1157; E-F: UOPB1163; G: UOPB1172; H: UOPB1158; I: UOPB1163.

Remarks on other dermal bones

Skulls

Bimodal differences were found also in skulls (Table 3), which have been divided in the Ts1 and Ts2 types. The main characteristic of ornamentation of ossifying centers resembles either Tc1 (large, hexagonal, sparse polygons, almost no multipolygons; 6 specimens; Ts1) or Tc2 (small, irregular and dense polygons with common multipolygons; 7 specimens; Ts2). There is also a visible difference in the spatial distribution of polygonal and radial ornamentations between Ts1 and Ts2 (Fig. 10). In the first type, radial pattern covers large areas of the skulls roof in their both preorbital and postorbital (postfrontal, postorbital, supratemporal bones) parts, while in the second it occupies much smaller areas.

An important fact is that the skulls classified as Ts2 <u>are relatively small</u> (averaging 28 cm in length) in contrast to Ts1 skulls (averaging 35 cm in length). However, this was not a rule. Among analysed skulls were two 35 cm in length (UO/PP04, 35 cm; UO/PP18, 35.4 cm) with different ornamentation types (Fig. 10, Tables 3, 4).

Eliminado: well

Eliminado: were

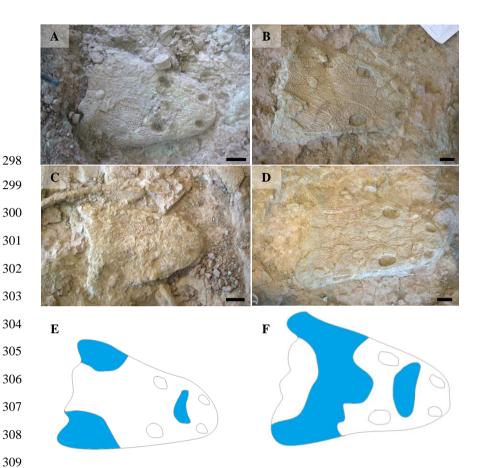


Fig. 10. Types of skulls ornamentation of metoposaurids from Krasiejów. Blue area represents surface covered with radial ornamentation.

A: UO/PP20; B: UO/PP13; C: UO/PP08; D: UO/PP09; E: Ts2 skull; F: Ts1 skull. Scale bar 5 cm.

Discussion

Reasons for the observed variation in dermal bone ornamentation

The presented diversity in the dermal bone ornamentation of *M. krasiejowensis* may be the result of species diversity, ontogenetic diversity, sexual dimorphism, individual variation, different habitats of two populations or facultative neoteny.

Species diversity. Given that no differences were found in axial and appendicular skeleton characteristics (i. e. Gądek; Konietzko-Meier & Klein, 2013; Konietzko-Meier & Sander, 2013; 2012 Teschner, Konietzko-Meier & Sander, 2017) or in dermal bone measurements, it is also

Comentario [GP1]: Could you please include the species that are represented?

Comentario [GP2]: What do you mean here? If there are no differences in axial and appendicular elements, how do you know that the clavicles that you studied belong to M. krasiejowensis?

unlikely that the described differences in the analysed material represent differences between two species. Shape and ornamentation pattern of the clavicles (both described types) is typical for *Metoposaurus krasiejowensis*; being strongly distinct from *M. algavrensis* or *Cyclotosaurus intermedius* (Figs. 4-6) (need to add a reference), Only the distinct character of the UOPB1165 specimen observed on the bivariate plots of countable features might suggests that this specimen does not belong to *M. Krasiejowensis*. The occurrence of some other taxon is possible because of the redeposited character of the fossils. Moreover, in skulls, the expansion angle of the sutures separating the parietal from the supratemporal varies between 19 and 26° which is characteristic of *M. krasiejowensis* instead of *M. diagnosticus* (around 13°) (Sulej, 2002). Also relatively narrow shape of the skulls and shape of the sutures (i. e. between frontals and narials or parietals) is typical of *M. krasiejowensis*, being distinct from *M. diagnosticus*, *M. algavrensis* (Brusatte et al., 2015) or *Cyclotosaurus* (ZPAL/Ablii/397). According to this, all skull specimens belong to *Metoposaurus krasiejowensis*, As well as all clavicles with possibly one exception – UOPB1165.

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

2. Ontogenetic diversity. According to Witzmann et al. (2010), all described specimens belongs to adult individuals, as they all can be assigned to the last stage of sculpture development (Witzmann et al., 2010: fig. 6E). Although singular features may be connected with the age of the specimen, the method of determination of relative age (youngest, intermediate, and oldest stages) based on the number of partition walls within the radial ornament shows that most of the analysed features, along with bone thickness, are not connected in this way. Unfortunately the histology of dermal bones cannot be used to determine the exact individual age, as different cross sections of the same bone reveals different stage of remodelling and counting the growth marks is unreliable (Gruntmejer, pers. comm.; Konietzko-Meier et al., 2018; Figs. 8-9). The diversity of skull sizes assigned to different types also argues against ontogenetic diversity. Relatively small skulls possess more polygonal (adult; Witzmann et al., 2010) ornament than the largest skulls. In addition, there are no differences in the ratio of skull portions according to size, whereas in the metoposaurids, in the younger specimens, the orbits are placed further back on the skull relative to its length (Davidow-Henry, 1989), i.e. the area between orbits grew faster in temnospondyls than the orbits themselves. Polygon characteristics also indicate the adult stage in all skull specimens. Rinehart et al. (2008) and Heckert et al. (2010) also suggests that all individuals are adults. Sulej (2002) suggests that size of the clavicle depends on the age and considered several clavicles of different size as ontogenetic sequence. Considering this ontogeny cannot be used to explain ornamentation variety, as two types of sculpture occur in smaller and larger specimen. The differentiation is also not the same as in the Rotten Hill, where age

Comentario [GP3]: You need to add a

Eliminado: (ZPAL/AbIII/397: Cyclotosaurus possess distinctly larger, rhomboidal and elongated polygons, large ossification centre but with few polygons, thick and rounded radial ridges)

Eliminado

Eliminado: Howe

Eliminado: y

Eliminado:

Eliminado: arietal character

Comentario [GP4]: Why? Why they belong to *M. krasiejowensis*. You need to explain

Eliminado: species

Eliminado:

Eliminado: in prep

Eliminado: s

Eliminado: once again

differences were proposed (Lucas et al., 2016). There are no size classes that can be correlated with sculpture variety in clavicles. In skulls, specimens assigned to type 2 are usually smaller, with exception of UO/PP18 (Table 4).

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

- 3. Sexual dimorphism. In the described material there is lack of dimorphism in the shape of the skulls (Urban & Berman, 2007), clavicles or dentition (Kupfer, 2007). The location of clavicles (under the skin and on the ventral side of the body) and discussed function of the ornamentation excludes its role as 'display structures' in mating rituals (Kupfer, 2007) in contrast to i. e. Zatrachys serratus were spinescence and shape of the skull (rostrum) were considered as sexual dimorphism (Urban & Berman, 2007). Different growth strategy seen in clavicles (Figs. 8-9), skulls (Gruntmejer, pers. comm.) and long bones (Teschner, Sander & Konietzko-Meier, 2017) ("seasonal" growth marks separated by vascularised zones or slower growth with growth marks in close proximity within poorly vascularised bone) rather do not indicate different sexes, but was ecologically controlled.
- 4. Individual variation. The existence of two distinct types with no intermediate forms (Fig. 3-7) contradicts the possibility of individual variation, therefore there is low probability that individual variation is the main cause of the described variety.
- 5. Different habitats. Morphology of the dermal sculpture and vascularisation are not separable. Regularity of the ornamentation reflects the mode of life of temnospondyls to a certain degree. The coarser ornament, more pronounced ridges and irregularity is characteristic of rather terrestrial taxa (i. e. Seymouria, Eryops, see: Witzmann et al., 2010) __ T2, while irregular sculpture represents rather aquatic animals (Witzmann et al., 2010) - T1. The variety seen within M. krasiejowensis allow to expand this conclusion, showing that the ecological difference (listed features) can be observed within one species.

Metamorphosis is a hormonally induced and controlled process; thus, its results might be morphologically unequal even in closely-related taxa (Fritzsch, 1990; Norris, 1999) or within taxa (Rafiński & Babik, 2000; Pogodziński, 2015). Because of this and the fact that amphibians, as animals very closely connected with the environment, are phenotypically plastic (examples below), the morphological diversity of the analysed material may be a result of differences between ecologically separated populations (geographic separation). Ecological separation of animals the remains of which are deposited in one bone-bed is possible, because of the bone-bed character (material partially redeposited, possibly from a large area, and partially local). Redeposition from different environments is suggested by the variant infill succession in the pore system and trace elements contents in the individual remains (Bodzioch & Kowal-Linka, 2012; Bodzioch, 2015). The more aquatic population might have lived at a different site - fossils are redeposited and material might be Eliminado: but there are exceptions

Eliminado: Although it cannot be undoubtedly denied the lack of differences in the morphometry and shape of the skulls (Urban & Berman, 2007) or clavicles as well as a lack of differences in dentition and postcranial material contradicts this hypothesis (Kupfer, 2007).

Eliminado: of

Eliminado: evidence

Eliminado: s

Eliminado: this interpretation can be rejected

Eliminado: which

transported even from Variscian Upland according to isotopic analysis of Konieczna, Belka and Dopieralska (2015). Thus, geographical separation is probable explanation, because different ecological character of specimens means that two population did not interbreed with each other. The more terrestrial population probably lived at the site, where environment resembles modern Gilgai relief of Texas or Australia (Szulc et al., 2015) while more aquatic populations lived at some distance in larger reservoir(s).

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

Although the presence of some large skulls with no abrasion or weathering does not support transport from a distant area, a brief transport however is plausible as the teeth in the mandibles and upper jaws are usually lost (Heckert et al., 2010).

Other possibility is temporal diversity – gradually changing conditions of environment and amphibian morphology/behaviour, however some intermediate forms should have been noticed in this case – see 'individual variation'.

6. **Facultative neoteny (paedomorphism).** Explanation assuming the same environmental differences between described morphotypes, but within a single population.

The Late Triassic Krasiejów environmental conditions (dry and rainy season with possible periodic lack of food) may have even contributed to the formation of a neotenic population (Duellman & Trueb, 1986; Safi et al., 2004; Frobisch & Schoch, 2009). However, evidence of larval structures (i.e. branchial ossicles) in adult metoposaurids from Krasiejów is lacking. Nevertheless, facultative neoteny is possible (Motyl, 2008), as shown by the more radial (juvenile) sculpture on the large skulls of Ts1 (Witzmann et al. 2010). Facultative neoteny can be observed in several extant i. e. Ambystoma talpoideum with aquatic paedomorphic adults and terrestrial metamorphic adults (Whiteman, Krenz & Semlitsch, 2005). Breeding between such morphs is less common than within morphs, because paedomorphic adults begin to breed earlier (Krenz & Sever, 1995; Whiteman and Semlitsch, 2005). In this case M. Krasiejowensis Type 2 (Tc2, Ts2) reflects metamorphic adults that transform into somewhat terrestrial, while Type 1 (Tc1, Ts1) reflects (partially) paedomorphic aquatic adults. This is possible because larval development is dependent on the environmental conditions. In Late Triassic Krasiejów <u>dry</u> and <u>rainy</u> seasons occurred <u>which is known thanks to versicolor nature</u> of claystone and faunal composition with i. e. dipnoans (Szulc, 2005; 2007). Associated with these changes in water-level, food availability, living space, competition (Ghioca-Robrecht, Smith & Densmore, 2009) may influence the preferred lifestyle. Metamorphosis into terrestrial or paedomorphic aquatic form is in this case the response to the individual expected success in the environment (Wilbur & Collins, 1973; Whiteman, 1994; Michimae & Wakahara, 2002) controlled by endocrine signals (Pfennig, 1992). Facultative neoteny in metoposaurids may occur in a single population (no geographical separation is needed) -

Eliminado: sings impeach

Eliminado: the

Eliminado: . B

Eliminado: rainy

Eliminado: dry

Eliminado: this

spatial separation of morphs may occur instead, with the paedomorphic concentrating in deeper habitats (Whiteman & Semlitsch, 2005).

Ornamentation and lifestyle

The environmental differentiation is the most likely explanation regardless of whether caused by facultative neoteny or existence of two ecological types. Thus, described ornamentation types reflect more aquatic (Type 1) and more terrestrial (Type 2) morph of *Metoposaurus krasiejowensis*. In modern limbless serpentine amphibians (Gymnophonia: Apoda) and lizard-like salamanders (Caudata: Urodela), larvae resemble miniature adult specimens. Metamorphosis is gradual and there is little reorganisation of body plan (Zug, 1993). In fossil amphibians, body plan reorganisation was also minimal and rather gradual (Boy, 1974, 1988, 1990; Schoch, 2002, 2004), although its rate (trajectory: Schoch 2010) might differ between taxa depending on their habitat (Schoch, 2009). This is also the cause that there are no other features suggesting more aquatic or more terrestrial lifestyle. Such changes, like differences in lateral line morphology, requires more 'evolutionary effort', while changes in ornamentation are probably fast, reversible and do not require genetic changes (Rafiński & Babik, 2000; Babik & Rafiński, 2000).

Typically aquatic taxa are characterised by slow changes (low trajectory), sometimes with incomplete ossification of the pelvic region and limbs (last stages of ontogenetic trajectory). Terrestrial taxa are characterised by faster metamorphosis (high trajectory, with particular phases condensed within a short period of time), including final phases (limb ossification) enabling locomotion on land. The trajectory of semi-aquatic taxa lies between the two above-mentioned types.

This is an example of heterochrony. The length and composition of the ontogenetic trajectory of temnospondyls is ecologically controlled (Schoch, 2010). Metamorphosis in this case might be described as extreme heterochrony, because many phases are condensed within a short time span (Alberch, 1989).

Ontogenetic trajectory and the morphology of adult specimens and their sizes may differ between various environments inhabited by representatives of the same taxon (Schoch, 2010). There are several examples of such diversity, such as differences observed in the length of the hind limbs of modern frogs (Rafiński & Babik, 2000; Emerson, 1986; Emerson, Travis & Blouin, 1988; Dubois, 1982;

Eiselt & Schmidtler, 1971; Schmidt, 1938; Emerson, 1986; Emerson, Travis & Blouin, 1988) and the morphology of extinct temnospondyls: the ontogenetic rate and dentition of *Apaeton* (Schoch, 1995); the size of *Micromelerpeton* (Boy, 2005; Boy & Suess, 2000; Schoch, 2010); the morphology of

Schoephalus (Schoch, 2010); branchiosaurids (Wernerburg, 1991, 2002; Wernerburg, Ronchi & Schneider, 2007); and the plasticity of the plagiosaurid Gerrothorax (Schoch & Witzmann, 2012;

Eliminado: geographical separation

Eliminado: s

Sanchez & Schoch, 2013). Polyphenism (environmentally controlled polymorphism) exists in a wide range of extant taxa (Roff, 1996) in adults (Whiteman, Krenz & Semlitsch, 2005) and tadpoles (Collins & Cheek, 1983; Pfennig, 1990; 1992; Walls, Belanger & Blaustein, 1993; Nyman, Wilinson & Hutcherson, 1993; Michimae & Wakahara, 2002; Pfennig & McGee, 2010).

Dimorphism in bone characteristics of metoposaurids from Krasiejów can be seen in dermal bones as well as non-dermal skeletal elements from Krasiejów. Two types connected with growth trajectory were seen in histological observations of metoposaur skulls (Gruntmejer, personal communication), humeri (Teschner, Sander & Konietzko-Meier, 2017), and the morphology of femora (Konietzko-Meier & Klein, 2013

New facts about metoposaurids from Krasiejów show that they were not fully aquatic animals. 3D computational biomechanics analysis of the skull of *Metoposaurus* show that it was capable of biting prey in the same manner as semi-aquatic and terrestrial animals like *Cyclotosaurus* or modern crocodiles (Gruntmejer, Konietzko-Meier & Bodzioch, 2016; Fortuny, Marcé-Nogué & Konietzko-Meier, 2017; Konietzko-Meier et al., 2018).

The described diversity is consistent with the experiment of Schoch (1995) and the results of Wernerburg (2002) and Schoch (2010). One of the *Metoposaurus* ornamentation types from Krasiejów (T2) thus represents a more terrestrial form (associated with the more variable and unstable environment of a river or a small lake or the metamorphic adult form of facultative neotenic population), while the other represents forms more closely related to water (a large lake habitat or partially paedomorphic aquatic adults) (T1) (ecological populations – as stated by Witzmann et al., 2010; but described as species-specific; neoteny as described by Whiteman, Krenz & Semlitsch, 2005).

The adaptations in T2 favouring a more terrestrial lifestyle are:

- a) The increased mechanical strength of the bones (Rinehart & Lucas, 2013) (coarser, denser, irregular sculpture, thicker clavicles);
- Protection for a greater number of blood vessels, improving thermoregulation (Gądek, 2012)
 (denser sculpture, more numerous polygons and radial rows, more numerous microforamina);
- c) Stronger integration of bone and skin, which is thicker in terrestrial amphibians and exfoliates (Zug, 1993; Schoch, 2001) (coarser, denser sculpture, microstriations);
- d) Stronger connection of the pectoral girdle elements and, potentially, limbs (expanded anterior projection of the clavicle);
- e) Faster growth revealed by histological structure (growth marks separated by zones of highly vascularised bone).

Eliminado: Sutures in

Eliminado: to

Eliminado: , which suggests semi-aquatic lifestyle

Eliminado:

The more terrestrial character of one of the population may also be proved by:

- f) Faster (at younger age) metamorphosis revealed by smaller skulls;
- g) The length of limb bones not correlated with individual age (Teschner, Sander & Konietzko-Meier, 2017) or a slender or robust femur (Konietzko-Meier & Klein, 2013); 10% elongation of limbs in Anura distinctly increases migration capabilities (Pogodziński, 2015; personal communication).

The dimorphic character of clavicles described herein and the two growth patterns of dermal and long bones (humeri) (Teschner, Sander & Konietzko-Meier, 2017) suggest, that the ontogeny of specimens assigned to *Metoposaurus krasiejowensis* could have proceeded via a different growth rate and time span of metamorphosis, caused by differing environmental conditions. The similar number of specimens from both populations (Tc1/Tc2 – 44%/56% and Ts1/Ts2 – 53%/47%) suggests stable populations.

Apart from dermal bone ornamentation, the degree of ossification and variation in skull sizes divides metoposaurids into two groups. Smaller skulls occur in the more terrestrial type, <u>as in</u> *Micromelerpeton* from Germany, where smaller specimens represent an unstable lake environment (Boy & Sues, 2000). The described type T2 reflects a more terrestrial or riparian habitat, where environmental conditions are variable and amphibians are forced to change their dwellings more

often (migration between watercourses or 'stream-type' small, drying lakes; Wernerburg, Ronchi & Schneider, 2007). It does not mean that 'more terrestrial/stream' metoposaurids moved efficiently on land. Modern salamanders can migrate between rivers and lakes by 'pond-hopping' (Zug, 1993).

The first type reflects a more stable habitat, possibly a large lake, where animals are not forced to

migrate ('pond-type'; Wernerburg, 2007).

Geological, sedimentological, and other analysis of the Krasiejów site shows that both of these habitats – episodic rivers and ponds at the excavation site and a large reservoir in close proximity – may have occurred there (redeposited charophytes and Unionidae bivalves; Szulc 2005, 2007), and that conditions changed over time (Dzik & Sulej, 2007; Gruszka & Zieliński, 2008; Bodzioch & Kowal-Linka, 2012). Differences in dermal bone ornamentation constitute an adaptative answer to changes in the environment (temperature, water level, food availability) over time or to geographical differentiation of habitats, i. e. faster metamorphosis (at smaller size) as an answer to higher temperatures; or metamorphosis into terrestrial adult vs. transformation into aquatic paedomorphic individuals.

Rapid changes in the <u>ornamentation</u> morphology in one population (or part of the population, when conditions favours such solution) are possible because they are the effects of hormonally induced metamorphosis. The water temperature in which larvae live strongly affects ectothermic animals. The growth of amphibians and larval development both depend on external environmental factors.

Eliminado: ;

Eliminado: s

Eliminado: like

Eliminado: of ornamentation

Eliminado: weather

At higher temperatures, not only metabolic rate but also development rate increases (Motyl, 2008). Low temperatures reduce development rates to a greater extent than they reduce growth rate, as a result of which amphibians metamorphose after achieving larger size (Wilbur & Collins, 1973) (Ts1 skulls are usually larger than Ts2 skulls). Prey abundance might exert some influence as well (Motyl, 2008), but probably not as much (Blouin & Loeb, 1990).

The Krasiejów ecosystem changed over time. The <u>Late</u> Triassic climate favoured evolution of freshwater environments. In Krasiejów, small periodic reservoirs, probably also inhabited (as in the environments of the Saar-Nahe Basin), occurred along with large<u>r more</u> stable ones (Szulc, 2005; 2007; Gruszka & Zieliński, 2008; Szulc, Racki & Jewuła, 2015). Small reservoirs (and potentially <u>with</u> higher temperature) or periodic rivers forced earlier metamorphosis, dwelling on land, or migration between lakes and watercourses. On the other hand, large<u>r</u> lakes or the proximity of a large reservoir enabled the development of a fully aquatic (Szulc, 2005), possible neotenic population.

Large reservoirs, stable over long periods of time, enable the development of a fully aquatic (neotenic?) ecotype T1 (Tc1, Ts1), reducing the need to dwell on land by virtue of providing:

- enough room for numerous large specimens;
- shelter from mainland carnivores;
- stable, invariable conditions;

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

potential lower temperatures.

The ontogenetic trajectories of the two metoposaurid ecotypes from Krasiejów cannot differ on a large scale, because they are assigned to the same semi-aquatic species. However, between types there was clearly some deflection into a more aquatic or more terrestrial form. In the case of a more terrestrial (stream-type) ecomorph, the trajectory would be more condensed (Schoch, 2001).

According to the described observations, it is possible to introduce an argument about the function of temnospondyl ornamentation into the discussion. There are several hypotheses as to the function of the ornamentation, which may have been:

- 1. mechanical strengthening of the bone (Coldiron, 1974; Rinehart & Lucas, 2013);
- 2. water-loss reduction (Seibert et al., 1974);
- 3. integration of the bone and skin (Romer, 1947; Bossy & Milner, 1998);
- 4. improvement of dermal respiration (Bystrow, 1974);
- 5. thermoregulation (Seidel, 1979; Grigg & Seebacher, 2001);
- 6. acting as a metamorphosis marker (Boy & Suess, 2000);
- 510 7. buffering of acidosis and lactic acid build-up in tissues due to anaerobic activity (Janis et al.,511 2012).

Eliminado: late

Eliminado: population

Eliminado: i

Eliminado: More aquatic population would have lived at different site – fossils are redeposited and material might be transported even from variscian upland according to isotopic analysis of Konjeczna. Belka and Dopieralska (2015). Thus, geographical separation is probable explanation, because different ecological character of specimens means that two population not interpreed with each other. More terrestrial population probably live at the site, where environment resembles modern Gilgai relief of Texas or Australia (Szulc et al., 2015) while more aquatic populations live in some distance in larger reservoir(s) (Szulc, 2005; Konieczna, Bełka & Dopieralska, 2015). The other possibility is partially neotenic population, where remains of aquatic (paedomorphic) and terrestrial (metamorphic) individuals were transported to the site.¶

Eliminado:

Eliminado:

Eliminado: ly

Eliminado: Distinguishing more-aquatic and more-terrestrial ecotypes does not mean that the metoposaurids assigned to T2 (Tc2, Ts2) were animals that moved efficiently on land. (Modern salamanders described as belonging to a 'stream' ecotype may migrate between watercourses on a large scale by pondhopping.)

The microstructural observations described in this manuscript support two hypotheses. Ornamentation increases the surface area of the bone (Rinehart & Lucas, 2013) and thus improves its thermoregulatory abilities and probably its integration with the skin, as histological thin sections show many Sharpey's fibres residing deep in the ridges (Gądek, 2012). Moreover SEM photographs presented herein show more or less numerous striations (skin and bone contact) and vascular foramina.

The hypothesis put forward by Janis et al. (2012) of dermal bone ornamentation developed in primitive tetrapods for the purpose of buffering acidosis and lactic acid build-up in their tissues due to anaerobic activity is also plausible. This would enable the amphibians to spend longer times on land and thus better exploit the terrestrial environment. This statement is in agreement with a study by Witzmann et al. (2010), who stated that terrestrial forms (according to species or population) show more pronounced sculpture than aquatic forms.

660 661

662 663

648

649

650 651

652

653

654

655

656

657

658

659

Summary

664 The diversity of metoposaurid material from the 'Trias' site at Krasiejów (SW Poland) includes the 665 character of ornamentation of clavicles and remarks of the ornamentation of skulls (although histological character suggests that all types of bones possess two types of bone growth). Similar 666 667 differences in dermal bone ornamentation in Temnospondyli were cited as ecologically dependent by 668 Witzmann et al. (2010); however, these differences were assigned to particular taxa. Detailed 669 analysis of large probes from one species shows that ecologically induced ornamentation differences 670 can be observed within one species (from a single site). 671 Except for UOPB1165 specimen the taxonomical variety of the material was excluded. Observed 672 differences in polygon shape, area, sculpture density, regularity and others (Table 1, Table 6) could 673 be the result of individual, ontogenetic, sexual or ecological variation. Although some sort of sexual 674 dimorphism or ontogenetic changes cannot be excluded, the most probable explanation for the 675 described variation is ecological difference between two populations as stated by Witzmann et al. 676 (2010); or existence of facultatively neotenic population. Described ornamentation types within one 677 semi-aquatic species possess characteristic of either more-terrestrial or more-aquatic taxa. 678 Assuming that the more-terrestrial or 'stream-type' form can be distinguished by its smaller size 679 (earlier metamorphosis), coarser and more complicated sculpture, more numerous ridges for 680 protection of more numerous blood vessels, and a stronger connection between bones and skin for 681 <u>increasing</u> mechanical strength for land-dwelling, the more-aquatic or 'pond-type' form is Eliminado: presented herein

Eliminado: separated geographically

Eliminado: expanded herein or the ecological difference between two morphs

Eliminado:

Eliminado: this

Eliminado: increased

Eliminado: . T

characterised by greater size (later metamorphosis) and sparser, more regular ornamentation. Comparable differences in ontogenetic trajectories were described in *Sclerocephalus* by Schoch (2010).

This ecological diversity corresponds with the geological description of Triassic Krasiejów, which includes redeposited material after flash floods, an environment with periodic rivers and ponds, and a large, more stable reservoir in close proximity, as described by Szulc (2005, 2007), Gruszka & Zieliński (2008), Bodzioch & Kowal-Linka (2012), and Szulc, Racki, & Jewuła (2015). The palaeoenvironment of the site, similar to modern Gilgai relief (Szulc, 2005; 2007; Szulc, Racki & Jewuła, 2015) could be the habitat of more terrestrial population, while the more aquatic one could have lived at some distance (closer – Heckert et al., 2010; or further – Konieczna, Belka & Dopieralska, 2015) One population with aquatic (paedomorphic) and terrestrial (metamorphic) individuals is also possible. In this case all metoposaurids could have lived in the same area with the paedomorphic concentrating in deeper habitats (Whiteman & Semlitsch, 2005) and metamorphic being more terrestrial (moving between shallow ponds and streams).

The isotopic (or REE) analysis in the future may confirm the most probable explanation for metoposaurid ornamentation diversity and provide valuable insight into the mechanism between it. More information about possible ornamentation character diversity can be obtained in the future considering distribution of shape (geometric morphometrics), possibly in all of the Metoposauridae,

Acknowledgements

 We wish to express sincere thanks to the reviewers: Spencer Lucas, Michael Buchwitz, third anonymous reviewer, and the editor Graciela Piñeiro, who kindly improved language, added many important remarks and comments to an earlier versions of the typescript. We also would like to thank Tomasz Sulej for sharing access to the *Cyclotosaurus* material from the Museum of Evolution in Warsaw and Maciej Ruciński for his help in skull measurements.

Comentario [GP5]: SO, THEY ARE ONTOGENETIC DIFFERENCES OR CHARACTERIZE TWO POPULATIONS?

Eliminado: AT

Eliminado: cloaser

Eliminado: live

Eliminado: even at the Variscan Upland (according to Konieczna, Belka & Dopieralska, 2015 isotope analysis).

Eliminado:

Eliminado: family

Eliminado:

- 728 Literature
- 729 **Alberch, P. 1989**. Development and the evolution of amphibian metamorphosis. *Fortschritte der*
- 730 Zoologie, 35: 163-173.
- 731 Antczak, M. 2016. Late Triassic aetosaur (Archosauria) from Krasiejów (SW Poland): new species or
- an example of individual variation? Geological Journal, **51**: 779-788.
- 733 Babik, W., Rafiński, J. 2000. Morphometric differentiation of the moor frog (*Rana arvalis* Nilss.) in
- 734 Central Europe. *Journal of Zoological Systematics and Evolutionary Research*, **38:** 239-247.
- 735 Blouin, M. S., Loeb M. L. G. 1990. Effects of environmentally induced development-rate variation of
- 736 the head and limb morphology in the green tree frog, Hyla cinerea. The American Naturalists, 138 (3):
- 737 717–728.
- 738 Bodzioch, A., Kowal-Linka, M. 2012. Unraveling the origin of the Late Triassic multitaxic bone
- 739 accumulation at Krasiejów (S Poland) by diagenetic analysis. Palaeogeography, Palaeoclimatology,
- 740 *Palaeoecology*, **346-347**: 25–36.
- 741 Bodzioch, A. 2015. Idealized model of mineral infillings in bones of fossil freshwater animals, on the
- 742 example of Late Triassic metoposaurs from Krasiejów (Poland). Austin Journal of Earth Science, 2:
- 743 1–6.
- 744 Bossy, K. A., Milner, A. C. 1998. Order Nectridea Miall 1875. W: Wellnhofer, P. (red.). Handbuch
- 745 der pala "oherpetologie, 1. Mu "nchen: Verlag Dr. Friedrich Pfeil: 73–131.
- Boy, J. A. 1974. Die Larven der rhachitomen Amphibien (Amphibia: Temnospondyli; Karbon-Trias).
- 747 Paläontologische Zeitschrift, **48**: 236–268.
- 748 **Boy, J. A. 1988**. Über einige Vertrteter der Eryopoidea (Amphibia: Temnospondyli) aus dem
- 749 europäischen Rotliegend (? höchstes Karbon-Perm). 1. Sclerocephalus. Paläontologische Zeitschrift,
- 750 **62**: 107–132.
- 751 **Boy, J. A. 1990**. Über einige Vertreter der Eryopoidea (Amphibia: Temnospondyli) aus dem
- 752 europäischen Rotliegend (?höchstesKarbon Perm). 3. Onchiodon. Paläontologische Zeitschrift,
- 753 **64**:287–312.
- 754 Boy, J. A., Sues, H. D. 2000. Branchiosaurs: Larvae, Metamorphosis and Heterochrony in
- $755 \qquad \text{Temnospondyls and Seymouriamorphs. In: Heatwole, H., Carroll, R. L. (red.). Amphibian Biology 4.}$
- Palaeontology. Chipping Norton: Surrey Beatty: 1150–1197.
- 757 Brusatte S. L, Butler R. J., Mateus O., Steyer J. S. 2015. A new species of *Metoposaurus* from the
- 758 Late Triassic of Portugal and comments on the systematics and biogeography of metoposaurid
- temnospondyls. Journal of Vertebrate Paleontology, **DOI**: 10.1080/02724634.2014.912988.
- 760 **Bystrow, A. P. 1947.** Hydrophilous and xerophilous labyrinthodonts. Acta Zoologica (Stockholm),
- **761 28**: 137190–274164.

- 762 Chaterjee, S. 1986. The Late Triassic Dockum vertebrates: their stratigraphic and paleobiologic
- 763 significance. In: Padian, K. ed. The beginning of the age of dinosaurs: 140-150. New York,
- 764 Cambridge University Press.
- 765 Coldiron, R. W. 1974. Possible functions of ornament in labyrinthodont amphibians. Occasional
- Papers of the Museum of Natural History of Lawrence, 33: 1–19.
- 767 Collins, J. P., Cheek, J. E. 1983. Effect of food and density on development of typical and
- 768 cannibalistic salamander larvae in Ambystoma tigrinum nebulosum. American Zoologist, 23: 77–84.
- 769 Davidow-Henry, B. R. 1989. Small metoposaurid amphibians from the Triassic of western North
- 770 America and their significance. In: Lucas, S. G., Hunt, A. P. (eds). Dawn of the age of dinosaurs in the
- 771 American southwest: 278-292. New Mexico Museum of Natural History, Albuquerque.
- 772 **Dubois, A., 1982.** Notes sur les grenouilles brunes (groupe de Ranatemporaria) I. Introduction.
- 773 *Alytes*, **1**: 56–70.
- 774 Duellman, W., Trueb, L. 1986. Biology of Amphibians. Mc Graw-Hill Book Comp. New York, St.
- 775 Louis, San Francisco, pp. 1–670.
- 776 **Dzik, J., Sulej, T. 2007.** A review of the early Late Triassic Krasiejów biota from Silesia, Poland.
- 777 Palaeontologia Polonica, **64**: 3–27.
- 778 Dzik, J., Sulej, T. 2016. An early Late Triassic long-necked reptile with a bony pectoral shield and
- gracile appendages. Acta Palaeontologica Polonica, 61(4), **DOI**: 10.4202/app.00276.2016
- 780 **Emerson, S. B. 1986.** Heterochrony and frogs: the relationship of a life history trait to morphological
- 781 form. *American Naturalist*, **127**: 67–183.
- 782 **Emerson, S. B., Travis, J., Blouin, M. 1988**. Evaluating a hypothesis about heterochrony: larval life
- history traits and juvenile hind-limb morphology in *Hyla crucifer*. Evolution, **42**: 68–78.
- 784 Fortuny, J., Marcé-Nogué, J., Konietzko-Meier, D. 2017. Feeding biomechanics of Late Triassic
- 785 metoposaurids (Amphibia: Temnospondyli): a 3D finite analysis approach. Journal of anatomy, DOI:
- 786 <u>10.1111/joa.12605</u>
- 787 **Fritzsch, B. 1990.** The evolution of metamorphosis in amphibians. *Journal of Neurobiology*, **21**:
- 788 1011–1021.
- 789 **Frobisch, N. B., Schoch, R. R. 2009**. The largest specimen of *Apateon* and the life history path way
- of neoteny in the Paleozoic temnospondyl family Branchiosauridae. Fossil Record, 12(1): 83–90.
- 791 Gadek, K. 2012. Palaeohistology of ribs and clavicle of Metoposaurus diagnosticus from Krasiejów
- 792 (Upper Silesia, Poland). Opole Scientific Society Natural Journal, 45: 39–42.
- 793 Ghioca-Robrecht, D. M., Smith, L. M., Densmore, L. D. 2009. Ecological correlates of trophic
- 794 polyphenism in spadefoot tadpoles inhabiting playas. Canadian Journal of Zoology, 87: 229–238.
- 795 **Grigg, G., Seebacher, F. 2001.** Crocodilian thermal relations. W: Grigg, G. C., Seebacher, F.,
- 796 Franklin, C.E., (red.). Crocodilian biology and evolution, Chipping Norton: Surrey Beatty: 297–309.

798 799	krasiejowensis (Amphibia, Temnospondyli) from the Late Triassic of Poland. PeerJ 4:e2685 https://doi.org/10.7717/peerj.2685.
800 801	Gruszka, B., Zieliński, T.2008 . Evidence for a very low-energy fluvial system: a case study from the dinosaur-bearing Upper Triassic rocks of Southern Poland. <i>Geological Quarterly</i> , 52 : 139–252.
802 803 804	Janis, C.M., Devlin, K., Warren, D.E. and Witzmann, F. , 2012, Dermal bone in early tetrapods: A paleophysiological hypothesis of adaptation for terrestrial acidosis. <i>Proceedings of the Royal Society B – Biological Sciences</i> , 279 : 3035–3040.
805 806 807	Konieczna, N., Belka, Z., Dopieralska, J., 2015. Nd and Sr isotopic evidence for provenance of clastic material of the Upper Triassic rocks of Silesia, Poland. Annales Societatis Geologorum Poloniae, 85 : 675–684.
808 809 810	Konietzko-Meier, D., Klein, N. 2013. Unique growth pattern of <i>Metoposaurus diagnosticus krasiejowensis</i> (Amphibia, Temnospondyli) from the Upper Triassic of Krasiejów, Poland. <i>Palaeogeography, Palaeoclimatology, Palaeoecology,</i> 370 : 145-157.
811	Konietzko-Meier, D., Sander, P. M. 2013. Long bone histology of <i>Metoposaurus diagnosticus</i>
812	(Temnospondyli) from the Late Triassic of Krasiejów (Poland) and its palaeobiological implicatios.
813	Journal of Palaeontology, 33: 1003–1018 Konietzko-Meier, D, Gruntmejer, K., Marcé-Nogué, J.,
814	Bodzioch, A., Fortuny, J. 2018. Merging cranial histology and 3D-computational biomechanics: a
815	review of the feeding ecology of a Late Triassic temnospondyl amphibian. PeerJ, 6:e4426; DOI:
816	10.7717/peerj.4426
817	
818 819	Krenz, J. D., Sever, D. M. 1995. Mating and oviposition in paedomorphic <i>Ambystoma talpoideum</i> precedes the arrival of terrestrial males. <i>Journal of Herpetology</i> , 51 : 387–393.
820	Kupfer, A. 2007. Sexual size dimorphism in amphibians: an overview. Chapter 5. In: Fairbairn, D. J.,
821	Blanckenhorn, In. U., Szekely, T. (eds.). Sex, size and gender roles: evolutionary studies of sexual size
822	dimorphism: 50–59, Oxford University Press.
823	
824	Lucas, S. G. 2015. Age and correlation of Late Triassic tetrapods from southern Poland. Annales
825	Societatis Geologorum Poloniae, 85 : 627–635.
826	
827	Lucas, S. G., Rinehart, L. F., Heckert, A. B., Hunt, A. P., Spielmann, J. 2016. Rotten Hill: a Late
828	Triassic bone-bed in the Texas Panhandle, USA. New Mexico Museum of Natural History and
829	Science Bulletin, 72 : 1–97.
830 831	Michimae, H., Wakahara, M. 2002. A tadpole-induced polyphenism in the salamander <i>Hynobius retardatus</i> . <i>Evolution</i> , 56 : 2029–2038.
832 833	Motyl, M. 2008 . Od czego zależy metamorfoza [What determines the metamorphosis]. [amphibia.org.pl].

Norris, D. 1999. Thyroid hormones, in subavian vertebrates. In: Encyclopedia of Reproduction

(Knobil, E., Neill J. D. eds), 4: 807-812. Academic Press, New York.

Gruntmejer, K., Konietzko-Meier, D., Bodzioch, A. 2016. Cranial bone histology of Metoposaurus

797

834

835

Eliminado: ¶

- 837 Nyman, S., Wilinson, R. F., Hutcherson, J. E. 1993. Cannibalism and size relations in a cohort of
- larval ringed salamanders (Ambystoma annulatum). Journal of Herpetology, 27: 78–84.
- Piechowski, R., Dzik, J. 2010. The axial skeleton of Silesaurus opolensis. *Journal of Vertebrate*
- 840 *Palaeontology*, **30**: 1127-1141.
- 841 **Pfennig, D.W. 1990.** The adaptive significance of an environmentally-cued developmental switch in
- an anuran tadpole. *Oecologia*, **85**: 101–107.
- 843 **Pfennig, D. W. 1992.** Polyphenism in spadefoot toad tadpoles as a locally-adjusted evolutionarily
- 844 stable strategy. *Evolution*, **46**: 1408–1420.
- Pfennig, D. W., McGee, M. 2010. Resource polyphenism increases species richness: a test of the
- 846 hypothesis. *Philosophical Transactions of the Royal Society B*, **365**: 577–591.
- 847 Rafiński, J., Babik, W. 2000. Genetic differentiation among northern and southern populations of the
- 848 moor frog *Rana arvalis* Nilsson in Central Europe. *Heredity*, **84**: 610–618.
- 849 Rinehart, L. F., Lucas, S. G., Heckert, A. B., Hunt, A. P. 2008. Preliminary analysis of
- 850 growth and age structure of *Buettneria* (Amphibia: Metoposauridae) assemblages from the
- 851 Upper Triassic of West Texas and New Mexico. New Mexico Geology, 30: 56.
- Rinehart, L. F., Lucas, G. L. 2013. The functional morphology of dermal bone ornamentation in
- temnospondyl amphibians. In: Tanner, L.H., Spielmann, J.A., Lucas, S.G., eds., 2013, The Triassic
- 854 System. New Mexico Museum of Natural History and Science, Bulletin, 61.
- 855 **Roff, D. E. 1996.** The evolution of threshold traits in animals. *Quarterly Review of Biology*, **71**: 3–35
- 856 Romer, A. S. 1947. Review of the Labyrinthodontia. Bulletin of the Museum of Comparative Zoology
- 857 at Harvard, 99: 1–368.
- 858 Safi, R., Bertrands, S., Marchand, O., Duffraisse, M., Luze, A., Vanacker, J., Maraninchi, M.,
- 859 Margotat, A., Demeneix, B., Laudet, V. 2014. The axolotl (Ambystoma mexicanum), a Neotenic
- Amphibian, Express Functional Thyroid Hormone Receptors. *Endochrynology*, **154**: 760–722.
- 861 Sanchez, S., Schoch, R. R. 2013. Bone Histology Reveals a High Environmental and Metabolic
- Plasticity as a Successful Evolutionary Strategy in a Long-Lived Homeostatic Triassic Temnospondyl.
- 863 Evolutionary Biology, **DOI**: 10.1007/s11692-013-9238-3.
- Schmidt, K. P. 1938. A geographic variation gradient in frogs. Field Museum of Natural History.
- 865 Zoological series, Chicago 20: 377–382.
- Schoch, R. R. 1995. Heterochrony in the evolution of the amphibian head: 107–124. In: McNamara
- K., ed. Evolutionary change and heterochrony. Wiley, Chichester, U.K.
- 868 Schoch, R. R. 2001. Can metamorphosis be recognized in Paleozoic amphibians? *Neues Jahrbuch für*
- 869 Geologie und Paläontologie Abhandlungen **220(3)**: 335–367.
- 870 **Schoch, R. R. 2002**. The evolution of metamorphosis in temnospondyls. *Lethaia*, **35**: 309–327.

- 871 Schoch, R. R. 2004. Skeleton formation in the Branchiosauridae: a case study in comparing
- ontogenetic trajectories. *Journal of Vertebrate Paleontology*, **24:** 309–319.
- 873 Schoch, R. R. 2009. Life-cycle evolution as response to diverse lake habitats in Paleozoic amphibians.
- 874 Evolution, **63**: 2738–2749.
- 875 Schoch, R. R. 2010. Heterochrony: the interplay between development and ecology exemplified by a
- 876 Paleozoic amphibian clade. *Paleobiology*, **36(2)**: 318–334
- 877 Schoch, R. R., Witzmann, F. 2012. Cranial morphology of the plagiosaurid Gerrothorax
- pulcherrimus as an extreme example of evolutionary stasis. Lethaia, 45: 371–385.
- 879 **Seidel, M. R. 1979.** The osteoderms of the American Alligator and their functional significance.
- 880 *Herpetologica*, **35**: 375–380.
- 881
- 882 Seibert, E. A., Lillywhite, H. B., Wassersug, R. J. 1974. Cranial co-ossification in frogs: relation483
- ship to rate of evaporite water loss. *Physiological Zoology*, **47**: 261–265.
- 884
- 885 Skrzycki, P., 2015. New species of lungfish (Sarcopterygii, Dipnoi) from the Late Triassic Krasiejów
- site in Poland, with remarks on the ontogeny of Triassic dipnoan tooth plates. *Journal of Vertebrate*
- 887 *Palaeontology*, **35 (5), DOI**: 10.1080/02724634.2015.964357
- 888
- 889 Sulej, T. 2002. Species discrimination of the Late Triassic temnospondyli amphibian Metoposaurus
- 890 diagnosticus. Acta Palaeontologica Polonica, 47: 535–546.
- 891 Szulc, J. 2007. Stop I.4. Krasiejów—inactive clay pit and tetrapod exposition. In: Szulc, J., Becker, A.
- 892 eds.. International Workshop on the Triassic of Southern Poland. Polish Geological Institute and
- Institute of Geological Sciences, Jagiellonian University, Cracow, 53–55.
- 894 Szulc, J., Racki, G., Jewula, K. 2015. Key aspects of the stratigraphy of the Upper Silesian middle
- Keuper, southern Poland. Annales Societatis Geologorum Poloniae, 85: 557–586.
- 896 Teschner E. M., Sander, P., Konietzko-Meier, D. 2017. Variability of growth pattern observed in
- 897 Metoposaurus Krasiejowensis humeri and its biological meaning. Journal of Iberian Geology, DOI:
- 898 10.1007/s41513-017-0038-y.
- Walls, S. C., Belanger, S. S., Blaustein, A. R. 1993. Morphological variation in a larval salamander:
- 900 dietary induction of plasticity in head shape. *Oecologia*, **96**: 162–168.
- 901 Werneburg, R., 1991. Die Branchiosaurier aus dem Unterrotliegend des Döhlener Beckens bei
- 902 Dresden. Veröff. Naturhistorisches Museum Schloss Bertholdsburg Schleusingen, 6: 75–99.
- 903 Werneburg, R., 2002. Apateon dracyiensis eine frühe Pionierform der Branchiosaurier aus dem
- 904 Europäischen Rotliegend, Teil 2: Paläoökologie. Veröff. Naturhistorisches Museum Schloss
- 905 Bertholdsburg Schleusingen, 17: 17–32.
- 906 Werneburg, R., Ronchi, A., Schneider, J. W. 2007. The Early Permian Branchiosaurids (Amphibia)
- 907 of Sardinia (Italy): Systematic Palaeontology, Palaeoecology, Biostratigraphy and
- Palaeobiogeographic Problems. *Palaeogeography, Palaeoclimatology, Palaeoecology*, **252**: 383-404.

909 910 911	Wilbur, H. M., Collins, J. P. 1973. Ecological Aspects of Amphibian Metamorphosis: Nonnormal distributions of competitive ability reflect selection for facultative metamorphosis. <i>Science</i> , 182 (4119) 1305–1314.
912 913 914	Witzmann, F., Henning, S., Muller, J., Kardjilov N. 2010 . Sculpture and vascularization of dermal bones, and the implications for the physiology of basal tetrapods. <i>Zoological Journal of Linnean Society</i> , 160 : 302–340.
915 916	Whiteman, H. H. 1994. Evolution of facultative paedomorphosis in salamanders. <i>Quarterly Review of Biology</i> , 69 : 205–221.
917 918 919	Whiteman, H. H., Krenz, J. D., Semlitsch, R. D. 2005. Intermorph breeding and the potential for reproductive isolation in polymorphic mole salamanders (<i>Ambystoma talpoideum</i>). <i>Behavioral Ecology and Sociobiology</i> , DOI 10.1007/s00265-005-0139-z.
920 921	Whiteman, H. H., Semlitsch, R. D. 2005. Asymmetric reproductive isolation among polymorphic salamanders. <i>Biological Journal of the Linnean Society</i> , 86 : 265–28.
922 923 924	Zalecka K. 2012 . Międzyobojczyk Metoposaurus diagnosticus krasiejowensis (Amphibia, Temnospondyli) ze stanowiska dokumentacyjnego "Trias" w Krasiejowie. Unpublished Master Thesis. Opole University, pp. 81.
925 926 927	Zug, G. R. 1993. Herpetology. An introductory biology of amphibians and reptiles. Academic Press Limited, London. ISBN 0-12-782620-3.
928 929	
930	Figure captions
931	Fig. 1. Localization and geological map of Krasiejów (Bodzioch & Kowal-Linka, 2012).
932	Fig. 2. Basic ornamentation features explanation (A). Clavicles assigned to two types of
933	ornamentation (B).
934	Fig. 3. Thickness of the bone in particular types and ontogenetic stages. Measurements made at the
935	border of polygonal and radial ornamentation areas.
936	Fig. 4. Ratio of the bone width and amount of radial ridges (measurement taken 2,5 cm from
937	ossification centre). A: Considering appointed types, showing two subsets within metoposaurid data;
938	B: Considering individual age, showing no subsets within metoposaurid data.
939	Fig. 5. Ratio of polygon number and surface. A: Considering appointed types, showing two subsets
940	within metoposaurid data ;B: Considering individual age, showing no subsets within metoposaurid
941	data

942	Fig. 6. Ratio of multipolygon and all polygons number. A: Considering appointed types, showing two
943	subsets within metoposaurid data (;B: Considering individual age, showing no subsets within
944	metoposaurid data.
945	Fig. 7. Percentage of hexagonal, pentagonal and other polygons. A: Considering appointed types,
946	showing two subsets within metoposaurid data ;B: Considering individual age, showing no subsets
947	within metoposaurid data.
948	Fig. 8. SEM (SE) and histological observations of clavicle radial ridges for Tc1.
949	Fig. 9. SEM (SE) and histological observations of clavicle radial ridges for Tc2.
950	Fig. 10. Types of skulls ornamentation of metoposaurids from Krasiejów. Blue area represents surface
951	covered with radial ornamentation. Size of the skulls in Table 4.
952	

953	Tables
954	
955	
956	Types numerical codes:
957	
958	
959	Metoposaurus 1(aquatic, pond-type): 1 1 1 2 1 1 3 1 1 1 1 1 1 1 1 1 1 2 1 1 1 ?
960	<i>Metoposaurus 2(terrestrial, stream-type)</i> : 2 2 2 1 3 2 2 2 1 2 2 2 2 2 2 1 2 2 1 1 ?

	Table 1. Clavicles ornamentation.	ZPAL AbIII 397	UOPB 1152	UOPB 1153	UOPB 1154	UOPB 1155	UOPB 1156	UOPB 1157	UOPB 1158	UOPB 1159		UOPB 1161	UOPB 1162	UOPB 1163	UOPB 1164	UOPB 1165		UOPB 1167	UOPB 1168	UOPB 1169	UOPB 1170	UOPB 1171	UOPB 1172	UOPB 1173	UOPB 1174	UOPB 1175	UOPB 1176
I		Cyclo.	T1	T2	T2	T2	T2	T2	T1	T1	T1	T1	T1	T2	T2	T2	T1	T1	T2	T2	T1	T1	T2	T1	T1	T2	T1
1	Age (Zalecka 2012): juvenile (J), intermediate (I), adult (A)		A	I	J	J				J	J/I				A	J/I	I	J	I	J	J	I	I	I	I	A	J
1	Regular (1), irregular (2)	<u>1</u>	1	2	2	2	2	2	1		1	1	1		2	2	1	1	2	2	1	1	2	1	1	2	1
1	Very fine (0), fine (1), coarse (2), very coarse (3)	<u>3</u>	1	1	2	2	2	2	1	1	1	2	2		1	2	1	0	2	2	0	1	2	1	1	2	1
1	Very sparse (0), sparse (1), dense (2)	<u>0</u>	1	2	2	2	1	2	1	1	1	1	1		2	2	1	2	2	2	2	1	1	2	1	2	1
	Av. polygon diameter/av. ridge width [<4 (1), >4 (2), >6 (3)]	<u>3</u>	2	1		1	1	1	2		2	2	2		1	1	2	1		1	1	1	1				
I	Distinct borders of polygonal field (1), borders partially hard to recognize (2), hard to recognize (3)	<u>3</u>	1	2		3					1	1	1		3		1	1		2	1	1	3	1		3	1
1	Ridge quantity/bone width [measurement 2,5cm from polygon border]: >2,3 (2), <2,3 (1), <2 (0)	<u>0</u>	1	2	2					1		1	1		2	2	1		2	2	1	1					
1	Nodal points slightly wider than ridges (1); some nodal points distinctly wider than ridges (2); nodal points distinctly wider than ridges (3) [Witzmann et al. 2010]	<u>3</u>	3	2	1	1	1	1	3		3	3	2		2	2	3	3	1	1	3	3	1	1	3	1	3
1	Ridges edged (1); round or edged (2); round (3) [Witzmann et al. 2010]	<u>3</u>	1	2	3	3	3	2	1	2	2	2	2	3	2		1	1	3	3	2	2	2	2			
I	Deep polygons (1),deep or shallow polygons (2); shallow polygons (3)	1	1	1	3	3	3	3	1		1	1	2		2	1	1	1	2			1	2				
I	Polygon shape:>50% hexagons (1), <50% hexagons (2), >50% quadrangle (3)	<u>3</u>	1	2	2	2	2	2	1		1	1	1		2	2	1	1	2	2	1	2	2	1	1	2	1
I	Polygon size: usually small (1), usually large (2), very large (3) [large: >0,4mm diameter].	<u>3</u>	1	2	2	2	2	2	1		1	1	1		2	1	1	1	2	2	2	1	2	1	1	2	1
I	Multipolygons: several or none (1), numerous(2) [more than 11]	<u>1</u>	1	2	2	2	1	2	1		1	1	1		2	2	1	1	2	2	1	1	2	1	1	2	1
	Polygon field shape: square (1), rectangular (2), elongated (3)	<u>3</u>	1	2		2			1			1			2		1	1		2		1	2	1			1
l	Ridge height: lower than nodal points (1), almost equal to nodal points (2)		1	2	2	2	2	2	1		1	1	2	2	2	1	1	2	1	2	1	1	2	1		2	
1	Ossification degree: low (1), high (thick bones) (2)	<u>2</u>	1	2	2	2	2			1	1	2	1		2	2	1	2	2	2	2	1	2		2	2	1
I	Anterior clavicle projection: small and flat (1), round and expanded (2), more than 45 deg. (3)	<u>3</u>	1	2	2	2	2				1	1			2	2		1	2	2	2	1	2	2			

	More ramificatios: opening (1), closing (2)		1	1	1	1			2						1							
	Shape of the radial ridges: undulated (1), straight (2)	<u>2</u>	2	2	2	2				2			2	2	2	2						
]	Ridge surface (macroscale): bumps (1), large cuts (2), small cuts (3)		1	2	2	3		2	3	3	3	3			1							
	Ridge width <half of="" polygon<br="" the="">diameter: yes (1), no (2) (Witzmann et al. 2010)</half>		1	1		2	1	1	1			1	1		1	1						
l	Radial ridges constrictions and height differences: distinct (1), not distinct (2)		1	1	2	2	2			1	1	1	2	1	1	1	1	2	2	2	2	1
1	Shape of the clavicle (angle) > 100° (1), < 100° (2)	<u>2</u>	1		2	2						1			2		1		1		2	

Table 3. Skulls ornamentation characteristcs.

		UO/PP01	UO/PP02	UO/PP04	UO/PP06	UO/PP08	UO/PP09	UO/PP12	UO/PP13	UO/PP14	UO/PP16	UO/PP17	UO/PP18	UO/PP20	uam/mz/586
Parietal- supratemporal ornament	Mostly: polygons (2), radial ridges (1)		2	1	1	2	1	2	1	1	2	1	2	2	1
Postfrontal- postorbital ornament	Mostly: polygons (3), Polygons and radial ridges (2),		3	2	1	3	2	3	2		2	2	3	3	2
Squamosal	radial ridges (1) Mostly:														
ornament	polygons (2), radial ridges (1)	1	1	1			1	1	1		1	1			1
Multipolygons Polygon shape	Occurs (2), not occur (1) Irregular (2),		2	1				2	1		2	2			1
Polygon snape	mostly hexagonal (1)	2	2	1		2	1	2	1	1	2	1	2	2	1
Polygon size	Small (2), large (1)		2	2		2	1	2	1	2	2	1	2	2	2
Polygon den sity	Sparse (1), dense (2)		2	1		2	1	2	1	х	2	x	2	2	1

UOPB 1152	UOPB 1153	UOPB 1155	UOPB 1157	UOPB 1160	UOPB 1161	UOPB 1163	UOPB 1164	UOPB 1167	UOPB 1168	UOPB 1169
X	v	V	v	V	V	V	V	X	V	v
X	V	v	v	X	X	V		X	V	V
x	v	v	v	X	X	v	v	X	v	v
X	X	v	v	X	v	V	v	X	V	X
	x x x	x v x x v x x v	1152 1153 1155 x v V x v v x v v	x v V x v v x v v x v v x v v	x v V v v x v v v v x v v v v x v v v v	x v V v v x v v v v x v v v v x v v v v x x v v v v x	x v v v v v x v v v v v x v v v v v x v v v v x v	1152 1153 1155 1157 1160 1161 1163 1164 x v v v v v v v x v v v x x v v x v v v x x v v	1152 1153 1155 1157 1160 1161 1163 1164 1167 x v v v v v v x x v v v x v x x v v v x v v x	1152 1153 1155 1157 1160 1161 1163 1164 1167 1168 x v v v v v v v v x v v v x v x v x v v v x v v v

Eliminado: Roughness¶
[v – distinct¶
x – not distinct]

Table 4. Skull measurements [in cm].

	UO/PP01	UO/PP02	UO/PP03	UO/PP04	UO/PP05	UO/PP06	UO/PP07	UO/PP08	UO/PP09	UO/PP10	UO/PP11	UO/PP12	UO/PP13	UO/PP14	UO/PP15	UO/PP16	UO/PP17	UO/PP18	UO/PP19	UO/PP20
Skull roof																				
SL	25,2	28,4		35		34		28,8	43,1			28	42,7	28,5		30,3	34,1	35,4	32,7	33
SW	21	24,5		28,6		31		~23	36,8			~25,8	37	26,7		26,5	~26	27,2	28,6	~29
IN						5		4,7	6			~4,5	6	~4				4,4	4,1	5
IOL	7,5	7,6		9,1		8,4		8,5	12			7,8	12,1	8		9	9	8,8	9	9
AOL	10					14,2		13	13,5			9,4	13,7	8,9		10	10,3	11,1	10,1	10,5
POL	16,8	16		18,3		14,9		15,9	25,8			16,4	21,4	13,8		18,4	19,2	17,9	17,4	18
SE	5	7,2				6,8		6,2	10			6,4	10,7	8,1		8,2	8,5	8,8	7,5	8,3
ME	7	8,5		9,6		8,8		9	11,5				13,8	9,8		11	11,6	11	9,7	11,5
NL						2,6		2,1	3,6				3,9			3,1	3,2	3,4	~2,8	2,2
I(L)	2	2		1,7		1,6		1,8	2,5			1,8	2,3	1,9		2	1,9	2,3	2,3	2
I (P)	2	2		2,2		2,2		2,2	3			2	3	1,9		1,9	2,3	2	2	
M		4,3				3,9		3	4				3	3,1			4	3,8	3,4	4,2
NO	6,1	6,3		7,9		7,4			9,8			6,5	9	6,7		6,4	7,2	7,5	7,4	7,5
LO	2,8	4		4,6		4		3,7	5,6			3,9	5,6	36		4	4	4,6	4,3	3,4
MW		16		19,4		18,6		18	24			15,7	23,5	17,2		19	19,1	19	18,5	19
Palate																				
LP			30		30,3					32,1	33,4				30					
NP.			9,9		10										7,9					
Y			15,4		15,1		14			14	16				14,7					
R			10,6		11,2		11,4			14,1	13,2				11,6					
В			23,5		~27		20,4			26,7	29				~24					
O															4,4					
E			6												4,4					
G			4.6																	

Table 5. Sta	atistical tests.	p-va	lue			
		T1	T2			
av. polygon	Shapiro-Wilk Test	0,55655	0,24746			
diameter/av. ridge	Test F	0,321	792			
width	Test T	0,00	106			
multipolygon	Shapiro-Wilk Test	0,146977	0,04937			
number	Test U	0,001676				
ridge	Shapiro-Wilk Test	0,0703221	0,010253			
number/bone width	Test U	0,0355	56232			
qualitative data	Shapiro-Wilk Test	2,587E-07 0,5411				
	Test U	0,000194				

Table 6. Diagnosis and remarks on two populations of *M. krasiejowensis*.

		Type 1	Type 2
		Less numerous radial ridges	More numerous radial ridges
		Smaller ossification degree	Higher ossification degree
	10 n	Regular and fine ornamentation	Irregular and coarse ornamentation
	Diagnosis – clavicie ornamentation	Sparse ornamentation	Gęsta ornamentacja kości skórnych
	Ĕ	Mostly hexagonal polygons	Mostly pentagonal (and other) polygons
	Ë	Few multipolygons	Numerous multipolygons
	e o	Distinct border of ossification centre,	Border of ossification centre difficult to
•	avic avic	square ossification centre	distinct, elongated ossification centre
-	<u> </u>	Polygonal ornamentation covering	Polygonal ornamentation covering larger
	Sis	smaller area	area
		Less numerous microforamina and	More numerous microforamina and
2	<u> </u>	striations on the radial ridges	striations on the radial Bridges
	_	Growth Marks in close proximity within	Growth Marks separated by vascularised
		al most avascular upper cortex	zones
	•	Mostly radial ornamentation in the postorbital part	Mostly polygonal ornamentation in the postorbital
-	Ĕ	of the skull	part of the skull
	Кетатк	Larger skulls	Smaller skulls
٦	¥	Two growth patterns seen in femora and hume	ri (Konietzko-Meier and Klein, 2013;
		Teschner, Sander & Konietzko-Meier, 2017)	