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ABSTRACT
Despite the striking physical and environmental gradients associated with depth
variation in the oceans, relatively little is known about their impact on population
diversification, adaptation and speciation. Changes in light associated with increas-
ing depth are likely to alter the visual environment of organisms, and adaptive
changes in visual systems may be expected. The pelagic beaked redfish, Sebastes
mentella, exhibits depth-associated patterns of substructure in the central North
Atlantic, with a widely distributed shallow-pelagic population inhabiting waters
between 250 and 550 m depth and a deep-pelagic population dwelling between 550
and 800 m. Here we performed a molecular genetic investigation of samples from
fish collected from ‘shallow’ and ‘deep’ populations, using the mitochondrial control
region and the gene coding for the visual-pigment rhodopsin. We identify patterns
suggestive of potential adaptation to different depths, by detecting a specific amino
acid replacement at the rhodopsin gene. Mitochondrial DNA results reflect a scenario
of long-term demographic independence between the two S. mentella groups, and
raise the possibility that these ‘stocks’ may in fact be two incipient species.

Subjects Aquaculture, Fisheries and Fish Science, Ecology, Evolutionary Studies, Genetics,
Marine Biology
Keywords Sebastes, Rhodopsin, Environmental gradient, Adaptation, Vision, Deep sea

INTRODUCTION
Speciation phenomena in taxa diverging with gene flow, in the absence of obvious

geographic barriers, remain a central focus in evolutionary biology (Bird et al., 2012;

Smadja & Butlin, 2011; Fitzpatrick, Fordyce & Gavrilets, 2008). The classical model of

allopatric speciation involves the evolution of reproductive isolation as a result of physical

barriers that block gene flow in spatially separated populations; whereas populations

diverging in sympatry lead to the formation of species from a single panmictic population

which must exhibit strong divergent selection in order to overcome the homogenizing

effects of gene flow (Gavrilets, 2003). Parapatric speciation represents an intermediate

scenario of species formation whereby partial yet restricted contact zones exist between

two populations with limited gene exchange (Gavrilets, 2003). Although exhaustive

frameworks exist to identify and interpret speciation dynamics (Rettelbach et al., 2013; Bird

et al., 2012; Smadja & Butlin, 2011), only recently has empirical attention been directed to
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the role of depth gradients in aquatic (Vonlanthen et al., 2009) and especially oceanic biota

(Roy, Hurlbut & Ruzzante, 2012; Bird et al., 2011; Brokovich et al., 2010; Hyde et al., 2008).

The strong physical gradients across depth layers in the ocean pose strong selective

pressures in aquatic organisms (Ingram, 2011; Somero, 1992), and one notable factor

is the change in the light environment (Warrant & Locket, 2004), which affects vision.

Visual sensitivity in marine vertebrates depends on the spectral tuning mechanism of the

visual pigment (VP) (Yokoyama, 2000), which consists of an opsin protein (part of the

largest family of G-protein-coupled receptors) bound to a light-sensitive chromophore.

Differently-charged amino acid (AA) residues in the opsin will result in slightly different

light absorbance by the photoreceptor cells (Yokoyama, 2002).

The percomorph marine family of rockfishes (Sebastidae) have played a central role in

the understanding of depth-associated population divergence and speciation in the ocean

(Ingram, 2011; Stefánsson et al., 2009a; Hyde et al., 2008; Alesandrini & Bernardi, 1999),

and evidence exists that the rhodopsin gene may have evolved in response to different light

environments in the main, ancient radiation of the genus, in the Pacific (Sivasundar &

Palumbi, 2010). North-Atlantic Sebastes have a much more recent history (Hyde & Vetter,

2007), with the four recognised extant species having diversified during the Pleistocene

(Bunke, Hanel & Trautner, 2012). In particular, the beaked redfish, Sebastes mentella,

consists of two genetically distinguishable groups (Stefánsson et al., 2009a; Pampoulie &

Danı́elsdóttir, 2008): a widely-distributed shallow-pelagic (SP) form, found between 250

and 550 m depth and a more circumscribed deep-pelagic (DP) component, between 550

and 800 m. However, doubts remain as to the forces at play and the time scales associated

with this divergence (Stefánsson et al., 2009b; Cadrin et al., 2010).

Here, we sought to investigate whether on-going processes of adaptation to different

depth layers may leave a signature of disruptive selection in the rhodopsin gene in a

recently diversifying Sebastes species. We also employed for the first time the mitochondrial

DNA control region to reconstruct historical demography and to further elucidate the

evolutionary relationships between ‘shallow’ and ‘deep’ pelagic beaked redfish.

MATERIAL AND METHODS
Generation of molecular data
Archive samples were randomly selected from 25 shallow-pelagic (SP) (collected above

400 m depth) and 25 deep-pelagic (DP) (collected below 700 m) Sebastes mentella from

the Irminger Sea, south-west of Iceland previously genotyped by Stefánsson et al. (2009b)

(sample numbers 4 & 5 in the original article). DNA was isolated from gill tissue that had

been preserved in 96% EtOH using a modified salt extraction protocol (Miller, Dykes &

Polesky, 1988) or the DNeasy kit (Qiagen©) following the manufacturer’s protocol. The

non-coding mitochondrial control region was amplified by PCR using primers developed

by Hyde & Vetter (2007); D-RF: 5′-CCT GAA AAT AGG AAC CAA ATG CCA G-3′ and

Thr-RF: 5′-GAG GAY AAA GCA CTT GAA TGA GC-3′. The primers by Chen, Bonillo &

Lecointre (2003); Rh193: 5′-CNT ATG AAT AYC CTC AGT ACT ACC-3′ and Rh1039r:

5′-TGC TTG TTC ATG CAG ATG TAG A-3′ were used to amplify 744 bp of the intron-free
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rhodopsin gene in 10 shallow-pelagic S. mentella, 12 deep-pelagic S. mentella, and 3 and

4 individuals of S. marinus and S. viviparus as outgroups. Reactions were carried out in

25 µl volumes containing 1× PCR buffer, 1 mM MgC12, 200 µM dNTPs, 0.4 µM of each

primer, 0.2 units Taq DNA polymerase, with 1 µl of DNA template for mtDNA (4 µl for

rhodopsin). Amplifications were performed in a Biometra T3000 Thermocycler using

the following temperature profiles: control region: 94 ◦C (2 min), 35 cycles of [94 ◦C

(30 s), 59 ◦C (60 s), 72 ◦C (60 s)], followed by 3 min at 72 ◦C; for rhodopsin: 95 ◦C

(5 min), 37 cycles of [94 ◦C (20 s), 58 ◦C (30 s), 72 ◦C (45 s)], followed by 5 min at

72 ◦C. A negative control was included in all reactions. PCR products were subjected to

electrophoresis through a 1% agarose gel 1X Tris–Borate–EDTA Buffer, stained with SYBR

green for visualisation via a UV-transilluminator and then purified through the addition

of exonuclease I and shrimp alkaline phosphatase to remove unincorporated primers

and deoxynucleotides in preparation to sequencing. Purified products were sequenced by

Macrogen (Macrogen, Amsterdam; http://dna.macrogen.com/eng/).

DATA ANALYSIS
Genetic diversity and population differentiation
The mtDNA control region was examined for nucleotide and haplotype diversity. This

included the number of net nucleotide substitutions per site between populations (Da)

which was calculated using DnaSP v5.10 (Librado & Rozas, 2009). We estimated the level of

genetic variation between populations calculating pairwise population FST and ΦST values

performed in ARLEQUIN v3.5.1.2 (Excoffier & Lischer, 2010) with significant values tested

by 5,000 permutations.

Mismatch analysis was performed to examine the demographic history between

the shallow-pelagic and deep-pelagic S. mentella populations using ARLEQUIN, and

distributions were compared with a two-sample Kolmogorov–Smirnov (K–S) test. For

populations at stationary demographic equilibrium, theoretical and empirical studies

show that the mismatch distributions usually have multimodal, ragged or erratic

distributions, while these are typically smoother or unimodal for populations that have

undergone a recent expansion (Rogers & Harpending, 1992). To test the goodness-of-fit

of distributions, we calculated the sum of squared deviations (SSD) and raggedness index

(r) for a stepwise expansion model for the data tested by Monte Carlo Markov Chain

simulations (1,000 steps) in ARLEQUIN.

Haplotype genealogies for the S. mentella data set were constructed following a method

described by Salzburger, Ewing & von Haeseler (2011) based on a maximum likelihood tree

for mtDNA and rhodopsin genes sequences.

Data from a selected suite of 12 microsatellite loci previously used for genotyping

by Stefánsson et al. (2009b) were used to calculate pairwise genetic differentiation

(Weir & Cockerham’s FST , Hedricks G
′

ST & Jost’s Dest) between populations with 9,999

permutations carried out to obtain significance levels using GenAIEx 6.501 software

(Peakall & Smouse, 2006). Population structure was visualized by correspondence analysis

(CA) using GENETIX 4.05 (Belkhir et al., 1996).
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Table 1 Summary of mtDNA control region molecular diversity.

Population H/n S ĥ ± SD π ± SD DT FS F∗ D∗

(SP) 8/25 10 0.887 ± 0.033 0.00504 ± 0.00082 −1.08590 −3.806 −2.30037 −2.35314

(DP) 6/25 8 0.543 ± 0.119 0.00238 ± 0.00071 −1.77639 −4.717 −1.49744 −1.08199

Notes.

H, unique haplotypes; n, number of individuals; S, Segregating sites; ĥ, haplotype diversity; π , nucleotide diversity (both
with associated standard deviations, SD); DT , Tajima’s D; FS, Fu’s; FS, statistic; F∗, Fu and Li’s F test; D∗, Fu and Li’s D
test; SP, Shallow Pelagic; DP, Deep Pelagic.

Phylogenetic analysis and test for positive selection
Maximum-likelihood (ML) analyses of the rhodopsin gene sequences were performed

using PhyML 3.0 (Guindon et al., 2010) under 1,000 replications; using Modeltest3.7

(Posada & Crandall, 1998), the model that best fit the data was found to be F81+ I

(pinvar = 0.9770). Trees generated from these results were used for a test for positive

selection at the rhodopsin gene, conducted using the Creevey–McInerney method (Creevey

& McInerney, 2002) implemented in CRANN (Creevey & McInerney, 2003). This test

is a more sensitive tree-based analysis derived from the relative ratio test McDonald &

Kreitman (1991). Given an appropriate rooted tree, the number of synonymous and

non-synonymous substitutions are calculated along each internal branch using the

reconstructed ancestral sequences. The method uses statistical tests for independence

(χ2 G-test or Fisher’s exact test) to evaluate whether the ratio between synonymous (Silent

Invariable (SI) to Silent Variable (SV)) and non-synonymous (Replacement Invariable

(RI) to Replacement Variable (RV)) substitutions deviate from the expected value under

the neutral model. Where the G-test fails to produce a result, the Fisher’s test is used and

vice versa. Positive directional selection is expected if there is a significantly higher number

of RI substitutions or non-directional selection if RV >RI. The test was performed using

S. alutus as outgroup (Fig. 3) as it represents the closest common ancestor for the Atlantic

Sebastes spp. (Hyde & Vetter, 2007).

RESULTS AND DISCUSSION
We recovered 16 mtDNA haplotypes, defined by 15 total variable sites across the two

groups. Haplotypes were almost completely segregated between depth layers, with eight

haplotypes found in the deep, never recovered in the shallow area, and resembling a

starburst pattern, three mutational steps away from the rest of the network (Fig. 1A).

Of the 10 haplotypes found in the shallow, eight were exclusive of this habitat, and only

two individuals collected in the deep were found to bear a ‘shallow-type’ sequence.

The shallow-pelagic (SP) group exhibited much greater diversity (ĥ = 0.887 ± 0.033,

π = 0.00504 ± 0.00082) than the deep-pelagic (DP) group (ĥ = 0.543 ± 0.119,

π = 0.00238 ± 0.00071) (Table 1).

Partitioning of genetic variance between the populations showed highly significant

and strong population structure (Table 2). The mismatch distributions of the two groups

(Fig. 1B) were significantly different (K–S test: D300 = 0.3,p ≪ 0.001), and confirmed

what is visually apparent from the haplotype network: a scenario of more recent and
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Figure 1 Comprehensive image of mtDNA and Rhodopsin genetic divergence and Mismatch
Distributions. S. mentella genealogies for mtDNA (n = 50;25SP +25DP) and rhodopsin (n = 22;10SP +

12DP), and mtDNA mismatch distributions. (A) Haplotype network for the shallow (red) and deep
(blue) groups for mtDNA (i) and rhodopsin (ii). The size of each circle represents the proportion of
haplotypes. The lengths of the connecting lines reflect the number of mutations between haplotypes.
(B) Mismatch distributions from the mtDNA sequences of shallow (i) and deep (ii) groups, respectively
from above and below 550 metres depth respectively. Dotted lines (Up/low bound.) represent the 95%
boundaries of the simulated distributions.

pronounced demographic and spatial expansion in the deep-pelagic group compared

to the shallow-pelagic (Table 3). Using Nei’s (Nei, 1987) formula for divergence time:

T = Da/2 µ, where 2µ represents a general mtDNA evolutionary rate, commonly assumed

to be around 11% per million years for fish mtDNA control region (Patarnello, Volckaert &

Castilho, 2007), we find that the “deep” and “shallow” lineages split over 44,000 years ago.

The rhodopsin gene was tested for signatures of positive selection using the Creevey-

McInerney method rooting the tree with S. alutus as an outgroup (Fig. 2). Values for

the four substitution variables, G-test, and p-values along each branch are presented in

Table 4. Two branches (numbers 26 and 27) showed significance at the p = 0.05 level

(Fig. 2). Branches 26 and 27 show significant RI to RV deviations from neutrality, due to

non-synonymous substitutions (Table 3), suggesting that positive disruptive selection
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Table 2 Analysis of fixation/differentiation indices for mtDNA and microsatellite data between
shallow-pelagic (SP) and deep-pelagic (DP) S mentella.

Marker Group Fixation/differentiation
index

Estimate p

mtDNA SP vs. DP FST 0.636 <0.001

ΦST 0.273 <0.001

Microsatellites SP vs. DP FST 0.031 0.001

G′
ST 0.135 0.001

Dest 0.121 0.001

Table 3 Mismatch distribution parameter estimates for mtDNA control region.

Population Mismatch distribution

τ θ0 θ1 SSD p-value ± SD r p-value ± SD

(SP) 1.9 0.0000 99,999 DE 0.007 ± 0.18 0.30 ± 0.21

SE 0.007 ± 0.002 0.27 ± 0.28

(DP) 0.1 0.0000 99,999 DE 0.274 ± 0.18 0.00 ± 0.21

SE 0.004 ± 0.002 0.67 ± 0.28

Notes.
τ , tau; θ0, theta 0; θ1, theta 1; SSD, sum of squared deviations; r, raggedness statistic; DE, demographic expansion;
SE, spatial expansion; (SP), Shallow pelagic; (DP), Deep-pelagic.

is acting on the rhodopsin gene for the clade and on the internal branch leading to

the shallow group. We observed a fixed non-synonymous AA substitution within the

transmembrane domain, which strongly discriminates the two groups inhabiting shallow

and deep environments (Fig. 3). The shallow-pelagic group exhibits a GTC at position

119, which codes for Valine (L119V), while the deep-pelagic type displays an ATC,

coding for Isoleucine (L119I). Amino acid changes located in the transmembrane helical

regions have been known to be important for spectral tuning (Yokoyama et al., 2008),

yet in-vitro experimental spectral analyses of vertebrate rhodopsins suggest that amino

acid substitutions at site 119 have negligible effect on absorption spectra (Yokoyama

et al., 2008). Nevertheless, substitutions within the transmembrane protein domain III

(helix-III), such as site 119, have been shown to affect the decay rate of metarhodopsin II

(“meta II”; Ou et al., 2011), which is an intermediate of rhodopsin that binds and activates

transducin, the visual G-protein (Smith, 2010). Ou et al. (2011) have shown that an AA

replacement L119C against the wild-type rhodopsin resulted in shorter meta II lifetimes,

suggesting more responsive structural alterations at the helix’ G-protein binding site.

Neither spectral nor conformational analyses have so far been conducted on shallow-

pelagic and deep-pelagic Sebastes mentella, but the AA variation observed here could

underlie differential hydrophobic activity and photoisomerization sensitivity (Ou et al.,

2011) that could hold some adaptive value, even without net change in wavelength of

maximal absorption.
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Figure 2 CRANN test tree. Creevey–McInerney analysis of Sebastes rhodopsin. Rhodopsin reveals sig-
nificant positive selection (*) at two nodes (26, 27).

Figure 3 Example of non-synonymous base substitution. Chromatograms illustrating the non-
synonymous A/G mutation on the rhodopsin gene, which discriminates between “Deep-Pelagic” (A)
and “Shallow-Pelagic” (B) Sebastes mentella.
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Table 4 Creevey–McInerney positive selection analysis on Sebastes rhodopsin sequences outgrouped
with S. alutus (GenBank: EF212407.1), G-value p < 0.05 for Fisher’s† and G-Test*.

Branch no. RI RV SI SV G-value

Rhodopsin

0 0 2 0 0 0.00

1 0 2 0 0 0.00

2 0 2 0 0 0.00

3 0 5 0 0 0.00

4 0 5 0 0 0.00

5 0 5 0 0 0.00

6 0 5 0 0 0.00

7 0 5 0 0 0.00

8 0 5 0 0 0.00

9 0 5 0 0 0.00

10 0 5 0 0 0.00

11 0 8 0 0 0.00

12 0 8 0 0 0.00

13 0 8 0 0 0.00

14 0 8 0 0 0.00

15 0 8 0 0 0.00

16 0 11 1 0 2.01

17 0 0 1 0 0.00

18 0 9 0 0 0.00

19 0 11 0 0 0.00

20 0 12 0 0 0.00

21 0 12 0 0 2.2

22 0 12 1 0 2.2

23 0 12 1 0 2.2

24 0 12 1 0 2.2

25 0 12 1 0 2.2

26 1 12 2 0 5.5†

27 8 24 5 1 6.76*

Sivasundar & Palumbi (2010) discovered a striking association between AA replace-

ments along the rhodopsin gene and inferred depth preference in many North Pacific

Sebastes. Interestingly, four North-Pacific Sebastes (S. chlorostictus, S. elongatus, S. aurora

and S. melanostomus) typically associated with deeper waters were observed to exhibit the

same AA replacement L119I as detected in the deep-sea S. mentella. Similarly, one Pacific

species (S. diploproa) exhibits the AA replacement L119V, which is linked to a shift back to

shallower waters, and mirrors the polymorphism in the shallow-pelagic S. mentella.

Although larger sample sizes will be required in the future to test these patterns more ro-

bustly, the implications of these findings are twofold, and have powerful resonance for both

marine evolution and fisheries management. First, mitochondrial variation between ‘shal-

low’ and ‘deep’ S. mentella in the North Atlantic unveil a degree of historical divergence
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Figure 4 Ordination of microsatellite genotypes. Correspondence analysis based on microsatellite data.
Each circle represents an individual; red and blue refer to the shallow-pelagic (SP) and deep-pelagic (DP)
groups respectively.

that previously employed genetic markers either failed to detect (Bunke, Hanel & Trautner,

2012) or could not reliably frame in a phylogeographic context (Stefánsson et al., 2009b).

The level of differentiation and haplotype sorting is such that evolutionary indepen-

dence can be broadly upheld for these two habitat-segregated lineages, and re-analysis

of microsatellite data confirm this picture (Fig. 4). In particular, the comparison of

frequency-based indicators of substructure (FST for mtDNA, and G′

ST and Dest to

account for the hypervariability of microsatellite loci) reveal values (Table 2) that match

theoretical expectations under neutral divergence, taking into account the four-fold

strength of genetic drift at mitochondrial markers. Interestingly, we also noticed two

individuals with a ‘shallow-type’ mtDNA haplotype, which were caught in the deep

layer. One of these two (DP29, Fig. 2) also screened at the rhodopsin locus, exhibits

a sequence typical of the shallow layer, and its multilocus microsatellite genotype also

falls with the shallow group (Fig. 4), which can be interpreted as the occurrence of

individual movements along the water column during the life cycle (i.e., short-term

“dives” into the deep, by shallow-dwelling fish). Another deep-caught individual (DP1)

also exhibits a “shallow” haplotype, but a “deep-like” ATC rhodopsin sequence and an

inconclusive multilocus microsatellite genotype (Fig. 4). Collectively, this likely reflects the

occurrence of introgressive hybridisation between the two groups, as previously suggested

by Pampoulie & Danı́elsdóttir (2008).

Furthermore, the stark pattern of depth-associated divergence at the rhodopsin gene is

perhaps even more surprising, were it not for the fact that comparable evolutionary genetic

patterns have recently been credited with a key role in the diversification of the more

ancient Pacific Sebastes group (Sivasundar & Palumbi, 2010). It has been hypothesized that

fast-evolving markers will allow to determine recent speciation events for closely related
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Sebastes spp. (Alesandrini & Bernardi, 1999; Cadrin et al., 2010). The present data provide

a snapshot of the evolutionary mechanisms that may be at play in the young, species-poor,

Atlantic Sebastes lineage, during its initial phase of adaptive radiation, underpinned by

positive selection at the rhodopsin gene.

Less than a decade ago, S. mentella was assumed to be panmictic in the North Atlantic,

and the rapidly increasing fishery pressure on these stocks did not recognise any possible

substructure until 2009 (Cadrin et al., 2010). These latest results dismiss the notion of

panmixia in this oceanic species, and, perhaps more intriguingly, open the possibility

that the two ‘shallow’ and ‘deep’ groups may represent two lineages experiencing

adaptation towards divergent environmental conditions. In the near future, it should

be experimentally evaluated whether the amino acid replacements at the 119 position

actually produce detectable changes in retinal absorbance or structural responsiveness, and

whether more powerful molecular comparisons covering a wider portion of the genome

(e.g. SNP-based genome scans; transcriptomic approaches) will offer further insights into

the role of depth as a diversifying agent in the ocean.

ACKNOWLEDGEMENTS
We are grateful to the WKREDS workshop of the International Council for the Exploration

of the Sea (ICES) for inspiring this work. We are also indebted to Valerie Chosson for

technical assistance at the MRI, and Emma Teeling, Bruno Fonseca Simões and three

reviewers, for the constructive criticism offered.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
Financial support was provided by the University College Dublin, the Icelandic Marine

Research Institute and the University of Salford. The funders had no role in study design,

data collection and analysis, decision to publish, or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:

University College Dublin.

The Icelandic Marine Research Institute.

The University of Salford.

Competing Interests
The authors declare there are no competing interests.

Author Contributions
• Peter Shum performed the experiments, analyzed the data, wrote the paper, prepared

figures and/or tables, reviewed drafts of the paper.

• Christophe Pampoulie conceived and designed the experiments, contributed

reagents/materials/analysis tools, reviewed drafts of the paper.

Shum et al. (2014), PeerJ, DOI 10.7717/peerj.525 10/13

https://peerj.com
http://dx.doi.org/10.7717/peerj.525


• Carlotta Sacchi performed the experiments, reviewed drafts of the paper.

• Stefano Mariani conceived and designed the experiments, analyzed the data, con-

tributed reagents/materials/analysis tools, wrote the paper, reviewed drafts of the paper.

Animal Ethics
The following information was supplied relating to ethical approvals (i.e., approving body

and any reference numbers):

UCD Ethics Committee, AREC-P-1023 Mariani.

DNA Deposition
The following information was supplied regarding the deposition of DNA sequences:

GenBank Accession numbers for the mtDNA (deep and shallow) and Rhodopsin

(Sebastes mentella, S. marinus, S. viviparus) sequences: KM013849–KM013927.

REFERENCES
Alesandrini S, Bernardi G. 1999. Ancient species flocks and recent speciation events: what can

rockfish teach us about cichlids (and vice versa)? Journal of Molecular Evolution 49:814–818.

Belkhir K, Borsa P, Chikhi L, Raufaste N, Bonhomme F. 1996. Logiciel sous Windows TM pour la
génétique des populations. GENETIX 4.05. Montpellier: Université de Montpellier II.
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