
Fast and accurate semantic annotation of bioassays 
exploiting a hybrid of machine learning and user 
confirmation

Bioinformatics and computer aided drug design rely on the curation of a large number of 

protocols for biological assays that measure the ability of potential drugs to achieve a 

therapeutic effect. These assay protocols are generally published by scientists in the form of 

plain text, which needs to be more precisely annotated in order to be useful to software 

methods. We have developed a pragmatic approach to describing assays according to the 

semantic definitions of the BioAssay Ontology (BAO) project, using a hybrid of machine 

learning based on natural language processing, and a simplified user interface designed to 

help scientists curate their data with minimum effort. We have carried out this work based on 

the premise that pure machine learning is insufficiently accurate, and that expecting scientists

to find the time to annotate their protocols manually is unrealistic. By combining these 

approaches, we have created an effective prototype for which annotation of bioassay text 

within the domain of the training set can be accomplished very quickly. Well-trained 

annotations require single-click user approval, while annotations from outside the training set 

domain can be identified using the search feature of a well-designed user interface, and 

subsequently used to improve the underlying models. By drastically reducing the time 

required for scientists to annotate their assays, we can realistically advocate for semantic 

annotation to become a standard part of the publication process. Once even a small 

proportion of the public body of bioassay data is marked up, bioinformatics researchers can 

begin to construct sophisticated and useful searching and analysis algorithms that will provide

a diverse and powerful set of tools for drug discovery researchers.
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Abstract
Bioinformatics and computer aided drug design rely on the curation of a large number of 

protocols for biological assays that measure the ability of potential drugs to achieve a therapeutic

effect. These assay protocols are generally published by scientists in the form of plain text, which

needs to be more precisely annotated in order to be useful to software methods. We have 

developed a pragmatic approach to describing assays according to the semantic definitions of 

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

PeerJ reviewing PDF | (v2014:07:2353:1:0:NEW 26 Jul 2014) 

R
ev
ie
w
in
g
M
an

us
cr
ip
t



the BioAssay Ontology (BAO) project, using a hybrid of machine learning based on natural 

language processing, and a simplified user interface designed to help scientists curate their data

with minimum effort. We have carried out this work based on the premise that pure machine 

learning is insufficiently accurate, and that expecting scientists to find the time to annotate their 

protocols manually is unrealistic. By combining these approaches, we have created an effective 

prototype for which annotation of bioassay text within the domain of the training set can be 

accomplished very quickly. Annotations that are well-defined in the training data are generally 

predicted correctly by the machine learning models, and require only single-click user approval, 

while annotations from outside the training set domain can be identified using the search feature 

of a well-designed user interface, and subsequently used to improve the underlying models. By 

drastically reducing the time required for scientists to annotate their assays, we can realistically 

advocate for semantic annotation to become a standard part of the publication process. Once 

even a small proportion of the public body of bioassay data is marked up, bioinformatics 

researchers can begin to construct sophisticated and useful searching and analysis algorithms 

that will provide a diverse and powerful set of tools for drug discovery researchers.

Introduction
In recent decades scientific data has been almost entirely digitized: authors prepare their 

manuscripts and presentations using a collection of text, graphics and data processing software. 

Consumers of scientific data regularly download documents from publishers' websites, search 

for content in databases, and share data with their colleagues electronically, often in an entirely 

paperless fashion. Dozens of commercial and academic research groups are actively working on

ways to use software to analyze this rapidly expanding corpus of data to provide facile 

information retrieval, and to build decision support systems to ensure that new research makes 

the best possible use of all available prior art.

Despite the near complete migration from paper to computers (Khabsa & Giles 2014), the style 

in which scientists express their results has barely changed since the dawn of scientific 

publishing. Whenever possible, ideas and facts are expressed as terse paragraphs of English 

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

PeerJ reviewing PDF | (v2014:07:2353:1:0:NEW 26 Jul 2014) 

R
ev
ie
w
in
g
M
an

us
cr
ip
t



text, kept as short as possible to minimize printing costs, and as stripped down diagrams that 

often summarize vast numbers of individual data points in a form that can be visualized statically

by a scientific peer. These methods of communication have remained consistent because they 

are effective for their primary purpose, but this presents a major hurdle to computer software that

is attempting to perform data mining operations on published results.

In the case of biological assays, experiments designed to measure the effects of introduced 

substances for a model of a biological system or disease process, the protocols are typically 

described in one or more textual paragraphs. Information about the target biology, the proteins or

cells, the measurement system, the preparation process, etc., are all described using information

rich jargon that allows other scientists to understand the conditions and the purpose. This 

comprehension process is, however, expert-specific and quite time consuming. While one 

scientist may read and understand dozens of published assay descriptions, this is not scalable 

for large-scale analysis, e.g. clustering into groups after generating pairwise metrics, or 

searching databases for related assays.

One of the most promising approaches to solving this problem is to express the assay design 

experiments with terminology from a semantically rich ontology, which has the advantage of 

being readily understood by software (Jonquet et al. 2010; Jonquet et al. 2009; Roeder et al. 

2010). Efforts such as the BioAssay Ontology (BAO) project (Abeyruwan 2014; Vempati et al. 

2012; Visser et al. 2011) were specifically designed to address this issue, and is part of a 

pantheon of ontologies for expressing the chemistry and biology definitions and relationships 

that are essential to drug discovery. Having all relevant scientific data expressed in semantic 

form enables an inordinate number of options for building compelling decision support software, 

but the biggest hurdle is the expression of the data. Expecting scientists to alter their 

documentation habits to use computer-friendly ontologies rather than human-friendly natural 

language is unrealistic, especially given that the benefits do not start to accrue until a critical 

mass is achieved within the community. On the other hand, there has been a considerable 

amount of research toward designing software to perform fully automated parsing of otherwise 

intractable text and diagrams (Attwood et al. 2010), and add annotations in a machine-friendly 
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format. Many of these efforts have been found to be valuable for certain scenarios where the 

high error rate is tolerable. For example, allowing a scientist to search the entire patent literature 

for chemical reactions may be a very useful service even with a low signal to noise ratio, 

because the effort required to manually filter out false positives is relatively low, and the portion 

of false negatives may be no worse than more traditional methods (Hawizy et al. 2011; Jessop et

al. 2011a; Jessop et al. 2011b). 

Nonetheless, such fully automated extraction procedures are likely to continue to have a very 

high error rate for most scientific subject areas for the conceivably near future, and the poor 

signal to noise ratio prevents most kinds of analysis from being effective. To address this urgent 

issue, we have developed methods for combining automated extraction and manual curation in 

order to optimize for both goals: minimal additional burden on practicing scientists, and minimal 

transcription errors during the semantic markup process.

There are already examples of hybrid manual/automatic annotation technologies, for example 

PubTator,(Wei et al. 2013) which is designed to help identify a variety of keywords in order to 

classify papers within the PubMed collection. The web interface provides an initial attempt to 

identify keywords that correspond to semantic content in the chemical or biological domain, and 

allows the user to confirm them or add their own. On the other hand, some of the large scale 

curation efforts, such as ChEMBL, provide funding for expert curators to manually annotate 

bioassay data, but this is too labor intensive to execute in detail, and is currently limited to 

identifying the target (Gaulton et al. 2012). Approaches such as Active Learning (AL) have also 

been applied to classification of domain specific text documents (Cohn 1996; Dara 2014; 

Tomanek 2007). Our objective in this work is to provide the necessary capabilities to annotate 

bioassay protocols, in a significant level of detail, such that the semantic content is a relatively 

complete description of the assay. In many ways our aims are similar to other natural language 

text-based classification projects, but unusual in that we are ultimately seeking to use these 

methods to express a very detailed description of a domain localized class of experiments.. We 

can draw upon existing vocabularies, such as the BioAssay Ontology (BAO), and other 

ontologies, which it in turn references, for the means to complete this description. To achieve the 
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objective of reducing the burden on the individual scientist to the bare minimum, we have made 

use of natural language processing and machine learning techniques, and coupled the 

algorithms to a prototype user interface with a workflow design that iterates back and forth 

between automated inference and operator approval.

Rather than starting with the lofty objective of having an algorithm provide the right answers all of

the time, we merely require it to eliminate most of the wrong answers. To the extent that we are 

able to achieve this comparatively realistic goal, this allows us to create a user-facing service for 

which the scientist simply selects correct semantic markup options from a short list of options 

proposed by the software. This is as opposed to the entirely manual curation approach, which 

would require the operator to navigate through a densely packed hierarchy of descriptors. By 

reducing the burden of markup to mere minutes by somebody who is not familiar with semantic 

technology, and has had no special training for use of the software, it is quite reasonable to 

expect scientists to use this software as part of their standard write-up and submission process.

As the number of correctly annotated bioassay protocols grows, it will improve the training set 

and the machine learning algorithm will correspondingly improve in accuracy. Once the currently 

high barrier to adoption has been overcome, and semantic markup of scientific knowledge such 

as biological assay experiments is routine, assay protocols will be as readable to computer 

software as they are to expert scientists. The informatics capabilities that this will unlock are 

essentially limitless, but the first most clear example is the ability to search assays for specific 

properties, e.g. target, assay type, cell line, experimental conditions, etc. Being able to 

conveniently organize and aggregate assays by particular characteristics, cluster by similarity, or 

assemble chemical structures and activity from multiple assays based on customizable criteria, 

are all advantages that have a direct impact on drug discovery, which are currently held back by 

the lack of semantic annotation. Once the corpus of marked up annotations becomes large, it 

will also be possible to construct data mining algorithms to study large scale trends in bioassay 

data, which will result in entirely new kinds of insight that are currently not possible.
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Methods

Ontologies
The primary annotation reference for this project is the BioAssay Ontology (BAO), which is 

available from http://bioassayontology.org, and can be downloaded in raw RDF format. The BAO 

classes refer to a number of other ontologies, and of particular relevance are the Cell Line 

Ontology (CLO) (Sarntivijai 2011), Gene Ontology (GO) (Balakrishnan et al. 2013; Blake 2013), 

and NCBI Taxonomy (Federhen 2012), all of which are used for annotations within the training 

set. All of the source files for these ontologies were loaded into a SPARQL server (Apache 

Fuseki)(Website 2014a). SPARQL queries were used to organize the available values that 

correspond to each of the property groups.

Training data
In order to test the methodology of using text to create suggested annotations, we made use of a

corpus of annotated bioassays that were that were provided by the BAO group (Schurer et al. 

2011; Vempati et al. 2012) (See supplementary material). As part of the testing process for the 

BioAssay Ontology project, a simple annotation user interface was created in the form of an 

Excel spreadsheet template. Approximately 1000 assays were selected from PubChem, and 

each of these was painstakingly annotated, leading to an output document taking the form of: 

<assay ID> <property> <value>.

For each assay, 20-30 annotations were incorporated into the training set. The property values 

were individually mapped to the BAO space, e.g. 'has assay method' is mapped to the URI 

http://www.bioassayontology.org/bao#BAO_0000212, which is a part of the BAO ontology. 

Values that are string literals are not included in the training data. Those which map to a distinct 

URI are typically part of the BioAssay Ontology directly, or part of other ontologies that are 

referenced, such as the Cell Line Ontology (CLO), Gene Ontology (GO) and NCBI Taxonomy.

Once the annotations had been suitably collated for each distinct assay, the NCBI PubChem 

assays were obtained by a simple script making a call to the PUG RESTful API (Website 2014b).

In each case, the description and protocol sections of the resulting content were merged into a 
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free text document. The manner in which these two fields are used by scientists submitting new 

assay data varies considerably, but they are generally complete. For the collection of text 

documents obtained, it was necessary to manually examine each entry, and remove non-

pertinent information, such as attribution, references and introductory text. The residual text for 

each case was a description of the assay, including information about the target objective, the 

experimental details, and the materials used. The volume of text varies from concisely worded 

single paragraph summaries to verbosely detailed page length accounts of experimental 

methodology. These reductively curated training documents can be found in the supplementary 

information.

Natural language processing
There has been a considerable amount of effort in the fields of computer science and linguistics 

to develop ways to classify written English documents in terms of classified tokens that can be 

partially understood by computer software (Kang & Kayaalp 2013; Leaman et al. 2013; Liu et al. 

2011; Santorini 1990). We made use of the OpenNLP project(Website 2014c), which provides 

part of speech (POS) tagging capabilities, using the default dictionaries that have been trained 

on general purpose English text. The POS tags represent each individual word as a token that is

further annotated by its type, e.g. the words "report" and "PubChem" were classified as an 

ordinary noun and a proper noun, respectively:

(NN report)

(NNP PubChem)

Blocks of text are classified in an increasingly specific hierarchical form, e.g.

(NP (DT an) (JJ anti-cancer) (NN drug))

(VP (VBG developing) (NP (JJ potential) (JJ human) (NNS therapeutics)))

(NP (NP (NN incubation)) (PP (IN with) (NP (NN test) (NN compound))))

(NP (NP (DT the) (JJ metabolic) (NN activity)) (PP (IN of) (NP (DT a) (NN suspension) 

(NN cell) (NN line))))
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(VP (VB measure) (SBAR (WHADVP (WRB when)) (S (VP (VBG developing) (NP (JJ 

potential) (JJ human) (NNS therapeutics))))))

(NP (JJ luciferase-based) (NN cell) (NN proliferation/viability) (NN assay) (NN endpoint))

An assay description of several paragraphs can generate many hundred distinct instances of 

POS-tagged blocks. These marked up tokens contain a far larger amount of information about 

the composition of the sentence than the words themselves. While building a model by 

correlating words with annotations would be expected to achieve poor results, including markup 

information about how the words are used in conjunction with each other might be able to 

achieve far greater discrimination. For example, the POS-tagged block "(NP (DT an) (JJ anti-

cancer) (NN drug))" represents the words [an, anti, cancer, drug]. Each of these 4 words taken 

out of context could be found in almost any assay description, but when they are associated 

together in context, contribute an important statement about the corresponding biochemistry.

By collecting all sizes of POS-tagged blocks, up to a certain limit, it is possible to give many 

different depths of linguistic structure the opportunity to distinguish themselves within a model. In

some cases a single word can have significant meaning on its own, especially proper nouns or 

jargon (e.g. "luciferase"), and are likely to have a high correlation to certain kinds of annotations 

(e.g. use of a luciferase-based assay). Other words are general to the English language, or 

occur frequently in assay descriptions, such that they only have value in their proper context (e.g.

"interaction").

One of the useful properties of scientific writing is that authors have self-organized around a 

narrow range of styles for presenting information such as assay descriptions. While the explicit 

intent may not have been for the benefit of computerized natural language processing, the 

motivation is the same: scientific authors also read many other published descriptions, and it is 

in the best interests of the community to maintain a certain degree of consistency as well as 

brevity. Because the literary style lacks prose and has a relatively little variation, there are certain

blocks of words, as identified by the POS-tagging, that are frequently correlated with particular 

concepts, and hence the semantic annotations.
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Machine learning models
A collection of hundreds of assay descriptions will result in thousands of distinct POS-tagged 

blocks after processing each of them with natural language analysis, and while certain blocks 

are likely to be specifically correlated with certain annotations, there are many more with only 

weak correlation or none at all. Matching thousands of potentially important tags with hundreds 

or thousands of annotations requires the selection of an algorithm with favorable scaling 

properties, and is well beyond the scope of manual curation.

In our initial explorations, we chose to apply a variation of Bayesian inference, which has been 

used successfully in other aspects of computer aided drug discovery. The Laplacian-modified 

naïve Bayesian variant is frequently used in conjunction with chemical structure based 

fingerprints (Hassan et al. 2006; Mussa et al. 2013; Nidhi et al. 2006; Rogers et al. 2005), as it is 

highly tolerant of large numbers of parameters. The score for each annotation is calculated as:

where n is the tagged natural language block, An is the number of documents containing the 

annotation and the tagged block, Tn is the total number of documents with the tagged block, and 

P is the fraction of documents containing the annotation. The score is computed by adding up 

the logarithms of these ratios, which circumvents issues with numeric precision, but produces a 

score with arbitrary scale, rather than a probability.

When we considered each individual annotation as a separate observation, building a Bayesian 

model using the presence or absence of each distinct POS-tagged block gave rise to a highly 

favorable response for most annotations, as determined by the receiver-operator-characteristic 

(ROC) curves. Selected examples of these models are shown in Figure 1: (a) shows annotations

with high training set coverage that perform well, due in part to having relatively unambiguous 

word associations, while (b) shows well covered annotations that perform poorly, due to being 

reliant on terms that can be used in a variety of contexts that do not necessarily imply the 

presence of the annotation, and hence make it more difficult for the model to eliminate false 
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positives. Similarly, (c) shows the perfect recall for less well covered annotations, which are 

easily identified due to very specific terms, while (d) shows a relatively poor response due to 

small training set and terminology with variations in wording style.

One of the disadvantages of using this Laplacian corrected variant is that the computed value is 

not a probability, but rather a score with arbitrary range and scale. This means that it is not 

possible to compare the outcomes from two separate models, which is a problem, since the 

objective of this technology is to rank the scores that are obtained from each separate model. In 

order to achieve the ranking, the scores need to be directly comparable, and hence be suitable 

for providing a list of suggestions for which annotations are most likely to be associated with the 

text.

In order to make the scores from each of the models comparable, each model requires a 

calibration function. This can be accomplished effectively by defining a simple linear correction 

for each model, of the form y = ax + b, which is applied to each score prior to inter-model 

comparison. Selecting appropriate values for a and b, for each model, can be achieved by 

picking initial values that map each of the model outcomes to the range 0..1. By adjusting the 

scale and offset of the linear calibration functions for each of these models, the overall ability of 

the models to correctly rank the extant annotations with a higher score than those which are not 

observed can be evaluated. It is straightforward to define a scoring term that measures the 

ability of the calibrated models to distinguish between correct and incorrect annotations. This 

score can be optimized by iteratively adjusting the calibration terms to get the best overall 

separation in ranking.

Besides consistent use of linguistic descriptions of assays, one of the other observations about 

the annotations defined for these assay protocols is that they are not in any way orthogonal: the 

degree to which the annotations are correlated is very high. For example, if it is known that the 

assay uses luciferin as a substrate, the probability that it also involves luminescence as a 

detection method is far higher than it would be if the prior fact had not already been established.

Given that the calibrated Bayesian models have been established to perform very well at placing 

the top few highest ranking annotations for the data used in this study, once these top scoring 
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annotations have been confirmed by the user, the amount of information that can be inferred 

about the assay may be significantly greater, due to the high degree of correlation.

This second order correlation was implemented by building another set of Bayesian models with 

each possible annotation considered separately as an observation. For each document, each 

annotation’s likely presence is modeled against the presence or absence of all the other 

annotations recorded for the document, e.g. when building the correlation model for annotation 

A, if document i contains annotations A, B and C, then it is considered to be "active", with priors 

B and C; if document j contains annotations B, C and D, it is considered "inactive", with priors B, 

C and D.

Thus, once one or more annotations have been assigned, the secondary Bayesian models are 

consulted, and the score for each of the annotations is modified by applying the correlation 

factor. Essentially this means that as the user approves annotations, the prediction scores of the 

remaining annotations tends to improve, as the correlations are factored in.

Figure 2 provides an indication of how the ranking evolves during the model building steps, using

four example documents. For each of these diagrams, the left hand side shows two bands which

represent the uncalibrated predictions, which are linearly normalized so their values fall between 

the minimum and maximum scores from the raw Bayesian prediction score. The annotations that

do not apply to the document are shown as red lines, while the annotations that are present are 

shown in black. The height of each line is indicative of its score. As can be clearly seen, the 

desired predictions score are significantly higher for those present than those which are absent, 

but the extent to which the ranking separates the two groups varies, and is not initially a perfect 

separation for any of these examples.

The main area of each diagram shows the progression of the relative predictions: at the 

beginning of the sequence, the scores are ranked by the inter-model calibration functions, which 

typically results in a significant improvement. For each of the subsequent steps, the highest 

scoring correct annotation is added to the approved set, and the correlation model is updated 

and applied. The ranking is redetermined, and the next highest scoring correct annotation is 

selected. The diagram indicates the point at which each annotation is selected by plotting a 
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black circle, and changing the color of the line to green: since it has been confirmed, its ranking 

order is no longer a concern, though its presence continues to affect the way the correlation 

model is applied.

In the first example, shown in Figure 2 (a), application of these models in the given sequence 

provides a perfect result: in each case the highest scoring annotation yet to be selected is at the 

top of the list, with no false positives. In examples (b) and (c), the results are good but not 

perfect: the red cross marks indicate when an incorrect annotation was presented as the best 

next choice. Since this exercise is simulating curation by a human expert, the elimination of a 

top-ranked incorrect proposal is equivalent to being recognized by the user as an incorrect 

result, and explicitly excluded from further consideration. If the objective was to provide a pure 

machine learning solution, each of these ranking mistakes would represent the accumulation of 

bad data, rather than a small increase in the amount of effort required by the operator. In 

example (d), the response of the model is relatively poor, with several false positives appearing 

close to the top of the list, and the last few correct results being obscured by a large number of 

incorrectly ranked proposals.

Results
We have designed the algorithm with the goal of ranking the available annotations such that 

given a text description of an assay, the annotations that correctly apply to the document are 

listed before any which do not. A perfect result is considered to be any case where all of the 

correct proposals are ranked first. Because the objective of the machine learning is to assist and 

accelerate the human-guided curation, a handful of mis-ordered annotations can be considered 

as an inconvenience, rather than the means by which data becomes corrupted.

For evaluation purposes, we define a yardstick measure: the null hypothesis is that the 

Bayesian-trained model using natural language processing performs no better than a trivial 

method, such as ranking all proposed annotations by the frequency with which they occur in the 

training set.
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Cross validation
The 983 fully annotated assays, with corresponding text from PubChem, were split into training 

and test sets using a simple partitioning algorithm. First of all, 208 documents were removed on 

account of having the same list of property:value annotations. These documents may differ by 

the free text annotations, but these are not included in the training set, and so duplicates need to

be pruned. Of the remaining documents, entries were selectively picked for the test set in order 

to ensure that each annotation appears once in any one of the test set documents, but such that 

the number of instances remaining in the training set was not reduced below 2. The training set 

contained 698 documents, the test set 77.

The models were rebuilt using just the training set documents, and applied to the test set. For 

evaluation purposes, we can consider the ranking of correct vs. incorrect answers to be 

instructive for how well the model achieves its stated goal. Figure 3 shows several plots that 

show the relative performance of the training and test sets.

The data for each plot is created according to the following procedure:

1. score each available annotation based on the model derived from the training set data;

2. pick the highest scoring annotation: if it is correct, add a positive mark, remove the 

annotation, and goto 1;

3. it is not correct, so add a negative mark, remove the annotation, and goto 2.

This essentially simulates an expert operator who only looks at the current top scoring 

annotation, and either approves it, or excludes it from further consideration. The process stops 

when all correct annotations have been approved.

Figure 3 illustrates this process graphically from several vantagepoints. In 3 (a), all of the test set

documents are considered: for each line, running from left to right, a correct top ranking 

annotation is marked with a black square, while an incorrect top ranking annotation is marked 

with a purple square. Once all of the correct annotations have been picked, the remaining space 

is marked in grey. As can be seen, for the majority of cases the correct annotations are quickly 

picked out. Nonetheless there are a number of test documents that contain a small number of 
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outliers, i.e. required annotations that are ranked very poorly, with many false positives getting a 

higher score.

Figure 3 (b) shows the same datapoints, except that only the actual annotations are given a 

color. The color is determined by a heatmap pattern, for which green indicates predictions that 

were derived from a well-populated model with many examples, while red indicates those for 

which very little training data was available. As can be seen, the outliers that rank very poorly 

relative to the false positives are all colored red, which strongly suggests that poor performance 

is due to sparsity of training data, rather than flaws with the method.

In Figure 3 (c), the method for scoring documents is set to the frequency of each annotation in 

the overall training set, e.g. if an annotation occurs 100 times in 698 documents, its score is set 

to 0.143. The same proposed ranking order is used for all documents, regardless of the text 

description. This is used to test a reasonable null hypothesis, which is that picking the most 

common annotations is an effective way to separate correct from incorrect. While it can be 

clearly seen that the null hypothesis performs better than a random guess, at least for purposes 

of identifying true positives, it is vastly inferior to the proposals generated by the trained 

Bayesian-derived models, on account of the fact that every document has a very large number 

of false positives that need to be eliminated before the annotation is complete.

Figure 3 (d) shows the same process as for (a), except that in this case the training data is used,

i.e. the models are used to predict the same documents from which they were trained. These 

results are superior to applying the models to the test set, which is to be expected.

Operator workflow
The ultimate goal of combining machine learning with a user interface for bioassay annotation is 

to have the models predict all the correct annotations with close to perfect accuracy, and have 

the expert operator confirm these predictions. In practice this is realistic only when the document

being annotated consists of cases that are well covered in the training set. Due to the nature of 

science, there will always be new methods being developed, which means that some of the 

corresponding annotations may have insufficient examples to create a model. It is also possible 
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that the choice of phrasing for some of the assay details differs significantly from the language 

used by the examples in the training set, which can reduce the efficacy of the models, until 

additional data can be incorporated and used to re-train them.

For these reasons, the user interface needs to satisfy two main scenarios: 1) when the 

predictions are correct, and 2) when the document is unable to accurately predict the 

annotations. For the first scenario, confirming the correct annotations should be a matter of 

quickly scanning the highest scoring proposals and confirming the assignments. In these cases, 

the user interface must aspire to being unobtrusive. However, in the second scenario, when the 

correct annotation does not appear at the top of the list, the interface needs to provide ways for 

the user to hunt down the necessary annotations. We have conceived several options to help the

user deal with this case. In near-ideal cases, the user may find the correct annotation by simply 

looking slightly further down the list of proposed annotations. Alternatively, the user may filter the

results by selecting a particular category of annotations, and browse through this refined subset 

to find the correct annotation. Finally, if the user needs to include an annotation that is present in 

the ontology, but has not been included in the list of proposals because there is not enough data 

to build a model, the interface can provide assistance in searching through all of the unscored 

options. Furthermore, there will also be occasions when the desired annotation does not exist in 

the ontology, e.g. a previously unreported biological pathway, in which case it may be desirable 

to allow the user to enter the information as plain text. While this has little immediate value for 

semantic purposes, it could be considered as a placeholder for future additions to the underlying

ontology, which could be upgraded retroactively.

A mockup of the core elements of this interface is shown in Figure 4, which shows the same 

layout principles for the proof of concept application that we created for testing the machine 

learning methods and corresponding workflow. The box shown at the top left allows the user to 

type in free text. This could be cut-and-pasted from another application, or it could be typed in 

manually. The list immediately below shows a series of annotations, consisting of property and 

value. These are ranked highest first. When the system is working perfectly, the user can click on

the approve button for the highest scoring annotation, shown at the top of the list. If the highest 
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scoring annotation is not correct, the user may look further down the list in order to find one that 

is correct; or, they may reject an incorrect proposal. In either case, the proposals are 

recomputed, and a new list of options is shown.

On the right hand side of the screen is shown all of the available properties, which are used to 

organize the annotations: for each property or category, there can be zero-or-more assigned 

annotations, of the property:value form. This simple hierarchical arrangement clearly shows the 

annotations that have been assigned so far, and which properties have as yet no associations. 

Making the property icons clickable is a way to allow filtering of the annotation list, i.e. only 

showing the potential annotations that match the selected property. In this way, the operator can 

carefully pick out assignments for each of the property groups, which is a workflow that becomes

important when working with documents that do not fall within the domain of pretrained data. 

This process of picking out the correct assignment can either be done by scrolling through the 

list of all possible annotations ranked according to the predictive score, or by partial text 

searching.

Domain example
Figure 5 shows the annotation of an assay, which can be found in PubChem (Assay ID 761). The

annotation text has been composed by concatenating the assay description and protocol text 

fields, and trimmed to remove superfluous content, which is shown in (a). This case is an 

example where the performance of the machine learning models is strong, but still requires a 

well-designed user interface for the portions that are less well covered.

Steps (b) through (y) show each of the assignment steps: in most of these examples, the 5 

highest ranked annotations are shown. In most of the initial steps, the top ranked case is a 

correctly predicted annotation. A green checkbox is used to indicate that the user confirms that 

presence of the annotation, and in the following step, the list of proposals is updated to reflect 

the modified scores, which take into account the correlation effects. In cases (l), (q), (r) and (t), 

the top ranked prediction is incorrect, and a red cross mark indicates that the user explicitly 

excludes the annotation from further consideration. In step (w) the desired annotation is further 
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down the list, and so the user scrolls the proposals in order to select the next correct one. In step

(x), the user needs to add the annotation bioassay type : binding assay, which has not been 

ranked well in the overall scheme, and so the list of annotations is filtered by selecting the 

bioassay type property, to only show these corresponding values. In step (y) the user is looking 

to find the GPCR signal pathway annotation, which is not a part of the training set, due to 

insufficient data to build a model. In order to locate this annotation, the user enters a search 

string to narrow down the list and locate it.

In Figure 5 (z), the complete list of annotations, divided into property categories, is shown. This 

list is updated dynamically as each of the annotations is added to the collection. The properties 

for cell line, assay kit and inducer have no corresponding annotations, since these are not a part 

of the assay.

Semantic output
The purpose of adding semantic annotations to bioassays is to enable a diverse range of queries

and automated analysis, and one of the most effective ways to enable this is load the annotation 

markup into the same framework as the original BioAssay Ontology definition and all of its 

related dependencies.

The output from an annotated description can easily be expressed in terms of RDF triples. The 

properties and values are already mapped into the BAO space. A new URI needs to be defined 

for each of the assays being annotated. For example, the annotation example used earlier, 

converted into RDF "Turtle" format, is shown in Figure 6.

Once in this format, the assertions can be loaded into an existing SPARQL server. At this point 

the content becomes accessible to the full suite of semantic technologies. Combining the generic

querying capabilities of the SPARQL syntax, with the semantic structure of the BioAssay 

ontology, allows a variety of ad hoc questions to be answered.

For example, finding a list of annotated documents that make use of a specific assay kit:
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PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX owl: <http://www.w3.org/2002/07/owl#>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX bao: <http://www.bioassayontology.org/bao#>
PREFIX cdd: 
<http://www.collaborativedrug.com/bao/curation.owl#>

SELECT ?aid WHERE 
{
    ?assaykit rdfs:label "HTRF cAMP Detection Kit" .
    ?has rdfs:label "has assay kit" .
    ?document ?has ?assaykit .
    ?document cdd:PubChemAID ?aid
}

This simple query extracts a list of assay identifiers for anything that makes use of a specific 

manufacturer's cyclic AMP detector. Note that the property and value URIs are matched by cross

referencing the label. Based on the training data, this query returns AID numbers 933, 940, 

1080, 1402, 1403, 1421, 1422 and 488980.

A slightly more advanced query can extract information other than just document identifiers:

SELECT ?instrument ?aid WHERE 
{
    ?document bao:BAO_0002855 bao:BAO_0000110 . 
    ?document bao:BAO_0000196 bao:BAO_0000091 . 
    ?document bao:BAO_0000207 bao:BAO_0000363 . 
    ?document bao:BAO_0002865 ?q .
    ?q rdfs:label ?instrument .
    ?document cdd:PubChemAID ?aid
}
ORDER BY ?instrument ?aid

In this case the restrictions are specified by directly referencing the BAO tags, which searches 

for all protein-small molecule interaction assays, with inhibition as the mode of action, using 

fluorescence intensity measurements. For each match, the detection instrument is looked up and

cross referenced by label:
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ViewLux ultraHTS Microplate Imager 2323

ViewLux ultraHTS Microplate Imager 485281

ViewLux ultraHTS Microplate Imager 489008

The inheritance hierarchy of the BioAssay Ontology, and the ontologies it references, can also 

be utilized in queries. The following query looks for assays that target GPCRs of mammals:

SELECT ?organism ?aid WHERE 
{
    ?mammal rdfs:label "mammalian" .
    ?target rdfs:subClassOf* ?mammal .
    ?target rdfs:label ?organism .
    ?document bao:BAO_0002921 ?target .
    ?q rdfs:label "G protein coupled receptor" .
    ?document bao:BAO_0000211 ?q .
    ?document cdd:PubChemAID ?aid
} 
ORDER BY ?organism ?aid

The target variable is used to match any organism URI that is a subclass of mammals. The 

result is a number of assays for humans, rats and mice.

Each of these examples shows how the semantic markup of the annotated assays can be put to 

the test with very direct and specific adhoc questions. These queries can be composed on the fly

by software that provides a more intuitive user interface, or they can be used for developing new 

kinds of analyses by experts. They can be applied to just the bioassay data in isolation, or they 

can be spliced into the greater semantic web as a whole, and linked to all manner of other 

information resources, e.g. screening runs measuring drug candidates, or medical 

knowledgebases that go into more detail about the biological systems being assayed.

Future work
The hybrid interactive/machine learning approach to bioassay annotation is currently a proof of 

concept product. The prototype user interface is presently being evaluated by scientists with an 

interest in improving software annotation of biological data, and we are actively assessing the 
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results in order to improve the workflow. The long-term goal is to provide the user interface in the

form of a web application, which will be incorporated into larger products that provide data 

capture functionality, such as the CDD Vault developed by Collaborative Drug Discovery Inc. or 

potentially public databases such as PubChem. The semantic annotations will be recorded 

alongside the text description, and immediately accessible, sharable, searchable and used by a 

variety of features that can provide reasoning capabilities based on this data.

One of the obvious advantages of having user-approved annotations stored in a centralized 

location is that the machine learning models can be retrained at periodic intervals, which will 

ensure that the ease with which users can rapidly annotate their assays continues to improve as 

more data is submitted. Also, as more data becomes available, the domain of the models will 

continue to grow: annotations that were previously left out of the model building process due to 

insufficient case studies will be added once they have been used.

Another potential advantage of centralization is to provide a pathway for new semantic 

annotations, i.e. when the BioAssay Ontology and its dependencies do not provide an 

appropriate term, users can resort to using a free text placeholder. Such annotations can be 

examined on a regular basis, and either a manual or automated process can be devised to 

collect together repeated use of related terms, and define a new annotation (e.g. for a new class 

of biological target or a new measurement technique). This requires a single authority to decide 

on a universal resource identifier (URI) for the new term, which could be done by the service 

provider hosting the data, who may also take the opportunity to retroactively upgrade the existing

examples of free text labels to use the freshly minted semantic annotation. We have also 

demonstrated creating a file containing RDF triples for the resulting annotations for a document, 

and are looking into harmonizing the data format with the Assay Definition Standard format 

(ADS/ADF)(de Souza et al. 2014; Website 2014d).

In addition to working with potential users of this software, we are also looking to incorporate 

more public content, from large collection services such as PubChem (Wang et al. 2014; Zhang 

et al. 2011), BARD (de Souza et al. 2014), ChEMBL(Bellis et al. 2011) and OpenPHACTS 

(Williams et al. 2012). There are a number of research groups exploring ways to add semantic 
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markup to drug discovery data, including bioassays, and many of these annotations can be 

mapped to the BAO annotations that we have chosen for this project. Even though we have 

found in our internal evaluation efforts that annotation time can be plausibly reduced to a matter 

of minutes, this is still a significant burden to impose on busy scientists, especially if participation

is voluntary. As we consider deployment of the service, it is important to ensure that the benefits 

of assay annotation are realized as early as possible, rather than waiting for critical mass, which 

might otherwise not be achieved. Allowing scientists to use their annotated assays to easily 

search for similar assays within a database, or as a convenient way to label and categorize their 

own collections of assays, are anticipated to be effective strategies to make the technology 

useful during the early adoption phase.

Thinking broadly, one interesting possible use case for the annotation scheme is to run it in 

reverse: to have the software use the annotations to assemble a paragraph of plain English text, 

which is suitable for incorporation into a manuscript. In this case the workflow would likely be 

quite different, e.g. the user types in a poorly formatted collection of terms involved in the assay 

in order to help the inference engine rank the likely suggestions, selects the appropriate terms, 

and then has the text produced by the software. Such a service could be of significant use to 

scientists who are not experienced with writing assay procedures according to the standard style

guides.

As part of our ongoing work, we are evaluating our selection of annotations from the underlying 

ontology. Our initial prototype is strongly influenced by the training data that we have available, 

which is the result of hundreds of hours of work by qualified domain experts. We are actively 

working with biologists and medicinal chemists to determine which properties are of primary 

importance, and which are secondary, and to expand our collection of training data to reflect the 

priorities of active drug discovery researchers.

Beyond the use of bioassays and BAO annotations for training data, the methodology developed 

is broadly applicable and not specific to this domain. We anticipate that there are a number of 

other distinct subject areas of scientific publications that would be amenable to this treatment, 
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e.g. experimental details of chemical reactions, computational chemistry protocols, and other 

types of biological protocols beyond drug discovery, such as stem cell differentiation. 

Conclusion
We have built a proof of concept framework that involves using machine learning based on plain 

text assay descriptions and curated semantic markup, and matched this with a user interface 

that is optimized for making machine-assisted annotation very rapid and convenient when 

applied to text input that is well within the domain, and moderately efficient for annotating assays 

that fall outside of the training set. By optimizing both the machine learning and user-centric 

workflow at the same time, we avoid falling into the traps of both extremes, because both parts 

complement each other. Annotation of plain text by purely automated methods has been limited 

by the need to obtain an unrealistic level of accuracy, while purely manual annotation has to 

overcome a very high motivational barrier, given that most scientists are too busy to take on 

additional burdens, without an immediate benefit. By establishing that adding a very modest 

amount of human effort to a well designed automated parser can achieve highly accurate 

results, we believe that we can make a strong case for the use of this technology in the hands of 

practicing scientists.

As the quantity of semantically rich annotated data increases, the opportunities for delivering 

value to scientists increases in tandem. Making annotation easy is the first step, but it needs to 

be followed by new capabilities. For example, the creators of assay screens should be able to 

easily compare their experiments with others contained within the knowledgebase, and obtain a 

list of experiments and published papers with common features. Researchers performing drug 

discovery modeling studies should be able to gather together compounds that have been 

screened under certain conditions, and use the annotations to make a judgment call as to 

whether the measured activities can be incorporated into the same model. Additionally, 

researchers can search for artifacts, such as compounds that are disproportionately active in 

luminescent assays. New biological activities may also become mineable; for example, common 
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hits between cell-based assays and target based assays may reveal unknown molecular 

mechanisms.

Beyond the specific domain of bioassay annotation, we believe that the hybrid approach to high 

level markup is appropriate to many different areas of science, where use of English text jargon 

or anachronistic diagrams is the norm for conveying concepts that are amenable to a highly 

structured description. The understandable reluctance of scientists to redesign their 

communication methods for the benefits of software, and the inability of software to provide 

substantially useful results without such richly marked up data, is a proverbial chicken vs. egg 

scenario that can be observed throughout the scientific disciplines. Combining machine learning 

with modest demands on scientists' time, and rapid iteration of improved functionality, is a viable 

strategy for advancing the goals of computer assisted decision support.

Figure Captions
Figure 1: Selected leave-one-out ROC plots for annotations, using Bayesian learning models 

derived from marked-up natural language processing.

Figure 2: Representative examples of model building in action, showing relative ranking of 

uncalibrated, calibrated, and stepwise application of the correlation models. The four examples 

refer PubChem entries by assay ID: (a) 574, (b) 436, (c) 348 and (d) 346.

Figure 3: Effectiveness of ranking of activities: (a) hit/miss for test data; (b) heatmap for model 

size; (c) null hypothesis; (d) hit/miss for training data.

Figure 4: A mockup of an interactive graphical user interface for annotating bioassays, with 

guidance from pretrained models.

Figure 5: Stepwise annotation process for PubChem Assay ID 761, 

http://pubchem.ncbi.nlm.nih.gov/rest/pug/assay/aid/761/description/JSON
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Figure 6: RDF Triples for the annotation of PubChem assay ID 761.
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Figure 1
Selected leave-one-out ROC plots for annotations, using Bayesian learning models 
derived from marked-up natural language processing.

Figure 1: Selected leave-one-out ROC plots for annotations, using Bayesian learning models 

derived from marked-up natural language processing.
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Figure 2
Representative examples of model building in action.

Figure 2: Representative examples of model building in action, showing relative ranking of 

uncalibrated, calibrated, and stepwise application of the correlation models. The four 

examples refer PubChem entries by assay ID: (a) 574, (b) 436, (c) 348 and (d) 346.
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Figure 3
Effectiveness of ranking of activities

Figure 3: Effectiveness of ranking of activities: (a) hit/miss for test data; (b) heatmap for 

model size; (c) null hypothesis; (d) hit/miss for training data.
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Figure 4
A mockup of an interactive graphical user interface for annotating bioassays, with 
guidance from pretrained models.

Figure 4: A mockup of an interactive graphical user interface for annotating bioassays, with 

guidance from pretrained models.
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Figure 5
Stepwise annotation process for PubChem Assay ID 761, 
http://pubchem.ncbi.nlm.nih.gov/rest/pug/assay/aid/761/description/JSON

Figure 5: Stepwise annotation process for PubChem Assay ID 761, 

http://pubchem.ncbi.nlm.nih.gov/rest/pug/assay/aid/761/description/JSON
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Figure 6
RDF Triples for the annotation of PubChem assay ID 761.

Figure 6: RDF Triples for the annotation of PubChem assay ID 761.
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