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ABSTRACT
Bioinformatics and computer aided drug design rely on the curation of a large
number of protocols for biological assays that measure the ability of potential drugs
to achieve a therapeutic effect. These assay protocols are generally published by
scientists in the form of plain text, which needs to be more precisely annotated in
order to be useful to software methods. We have developed a pragmatic approach
to describing assays according to the semantic definitions of the BioAssay Ontology
(BAO) project, using a hybrid of machine learning based on natural language
processing, and a simplified user interface designed to help scientists curate their
data with minimum effort. We have carried out this work based on the premise
that pure machine learning is insufficiently accurate, and that expecting scientists
to find the time to annotate their protocols manually is unrealistic. By combining
these approaches, we have created an effective prototype for which annotation of
bioassay text within the domain of the training set can be accomplished very quickly.
Well-trained annotations require single-click user approval, while annotations
from outside the training set domain can be identified using the search feature of
a well-designed user interface, and subsequently used to improve the underlying
models. By drastically reducing the time required for scientists to annotate their
assays, we can realistically advocate for semantic annotation to become a standard
part of the publication process. Once even a small proportion of the public body
of bioassay data is marked up, bioinformatics researchers can begin to construct
sophisticated and useful searching and analysis algorithms that will provide a diverse
and powerful set of tools for drug discovery researchers.

Subjects Bioinformatics, Computational Science
Keywords Bioassay, Ontology, Machine learning, Natural language processing, Bayesian,
Semantic curation

INTRODUCTION
In recent decades scientific data has been almost entirely digitized: authors prepare

their manuscripts and presentations using a collection of text, graphics and data

processing software. Consumers of scientific data regularly download documents from

publishers’ websites, search for content in databases, and share data with their colleagues

electronically, often in an entirely paperless fashion. Dozens of commercial and academic
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research groups are actively working on ways to use software to analyze this rapidly

expanding corpus of data to provide facile information retrieval, and to build decision

support systems to ensure that new research makes the best possible use of all available

prior art.

Despite the near complete migration from paper to computers (Khabsa & Giles, 2014),

the style in which scientists express their results has barely changed since the dawn of

scientific publishing. Whenever possible, ideas and facts are expressed as terse paragraphs

of English text, kept as short as possible to minimize printing costs, and as stripped down

diagrams that often summarize vast numbers of individual data points in a form that

can be visualized statically by a scientific peer. These methods of communication have

remained consistent because they are effective for their primary purpose, but this presents

a major hurdle to computer software that is attempting to perform data mining operations

on published results.

In the case of biological assays, experiments designed to measure the effects of

introduced substances for a model of a biological system or disease process, the protocols

are typically described in one or more textual paragraphs. Information about the target

biology, the proteins or cells, the measurement system, the preparation process, etc., are

all described using information rich jargon that allows other scientists to understand the

conditions and the purpose. This comprehension process is, however, expert-specific and

quite time consuming. While one scientist may read and understand dozens of published

assay descriptions, this is not scalable for large-scale analysis, e.g., clustering into groups

after generating pairwise metrics, or searching databases for related assays.

One of the most promising approaches to solving this problem is to express the assay

design experiments with terminology from a semantically rich ontology, which has the

advantage of being readily understood by software (Jonquet, Musen & Shah, 2010; Jonquet,

Shah & Musen, 2009; Roeder et al., 2010). Efforts such as the BioAssay Ontology (BAO)

project (Abeyruwan et al., 2014; Vempati et al., 2012; Visser et al., 2011) were specifically

designed to address this issue, and is part of a pantheon of ontologies for expressing the

chemistry and biology definitions and relationships that are essential to drug discovery.

Having all relevant scientific data expressed in semantic form enables an inordinate

number of options for building compelling decision support software, but the biggest

hurdle is the expression of the data. Expecting scientists to alter their documentation

habits to use computer-friendly ontologies rather than human-friendly natural language

is unrealistic, especially given that the benefits do not start to accrue until a critical mass

is achieved within the community. On the other hand, there has been a considerable

amount of research toward designing software to perform fully automated parsing of

otherwise intractable text and diagrams (Attwood et al., 2010), and add annotations in a

machine-friendly format. Many of these efforts have been found to be valuable for certain

scenarios where the high error rate is tolerable. For example, allowing a scientist to search

the entire patent literature for chemical reactions may be a very useful service even with a

low signal to noise ratio, because the effort required to manually filter out false positives
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is relatively low, and the portion of false negatives may be no worse than more traditional

methods (Hawizy et al., 2011; Jessop, Adams & Murray-Rust, 2011; Jessop et al., 2011).

Nonetheless, such fully automated extraction procedures are likely to continue to have a

very high error rate for most scientific subject areas for the conceivably near future, and the

poor signal to noise ratio prevents most kinds of analysis from being effective. To address

this urgent issue, we have developed methods for combining automated extraction and

manual curation in order to optimize for both goals: minimal additional burden on prac-

ticing scientists, and minimal transcription errors during the semantic markup process.

There are already examples of hybrid manual/automatic annotation technologies, for

example PubTator, (Wei, Kao & Lu, 2013) which is designed to help identify a variety of

keywords in order to classify papers within the PubMed collection. The web interface

provides an initial attempt to identify keywords that correspond to semantic content in the

chemical or biological domain, and allows the user to confirm them or add their own. On

the other hand, some of the large scale curation efforts, such as ChEMBL, provide funding

for expert curators to manually annotate bioassay data, but this is too labor intensive to

execute in detail, and is currently limited to identifying the target (Gaulton et al., 2012).

Approaches such as Active Learning (AL) have also been applied to classification of domain

specific text documents (Cohn, Ghahraman & Jordan, 1996; Dara et al., 2014; Tomanek &

Hahn, 2007). Our objective in this work is to provide the necessary capabilities to annotate

bioassay protocols, in a significant level of detail, such that the semantic content is a rela-

tively complete description of the assay. In many ways our aims are similar to other natural

language text-based classification projects, but unusual in that we are ultimately seeking

to use these methods to express a very detailed description of a domain localized class

of experiments. We can draw upon existing vocabularies, such as the BioAssay Ontology

(BAO), and other ontologies, which it in turn references, for the means to complete this

description. To achieve the objective of reducing the burden on the individual scientist to

the bare minimum, we have made use of natural language processing and machine learning

techniques, and coupled the algorithms to a prototype user interface with a workflow

design that iterates back and forth between automated inference and operator approval.

Rather than starting with the lofty objective of having an algorithm provide the right

answers all of the time, we merely require it to eliminate most of the wrong answers. To

the extent that we are able to achieve this comparatively realistic goal, this allows us to

create a user-facing service for which the scientist simply selects correct semantic markup

options from a short list of options proposed by the software. This is as opposed to the

entirely manual curation approach, which would require the operator to navigate through

a densely packed hierarchy of descriptors. By reducing the burden of markup to mere

minutes by somebody who is not familiar with semantic technology, and has had no special

training for use of the software, it is quite reasonable to expect scientists to use this software

as part of their standard write-up and submission process.

As the number of correctly annotated bioassay protocols grows, it will improve the

training set and the machine learning algorithm will correspondingly improve in accuracy.

Once the currently high barrier to adoption has been overcome, and semantic markup
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of scientific knowledge such as biological assay experiments is routine, assay protocols

will be as readable to computer software as they are to expert scientists. The informatics

capabilities that this will unlock are essentially limitless, but the first most clear example

is the ability to search assays for specific properties, e.g., target, assay type, cell line,

experimental conditions, etc. Being able to conveniently organize and aggregate assays

by particular characteristics, cluster by similarity, or assemble chemical structures and

activity from multiple assays based on customizable criteria, are all advantages that have

a direct impact on drug discovery, which are currently held back by the lack of semantic

annotation. Once the corpus of marked up annotations becomes large, it will also be

possible to construct data mining algorithms to study large scale trends in bioassay data,

which will result in entirely new kinds of insight that are currently not possible.

METHODS
Ontologies
The primary annotation reference for this project is the BioAssay Ontology (BAO), which

is available from http://bioassayontology.org, and can be downloaded in raw RDF format.

The BAO classes refer to a number of other ontologies, and of particular relevance are the

Cell Line Ontology (CLO) (Sarntivijai et al., 2011), Gene Ontology (GO) (Balakrishnan

et al., 2013; Blake, 2013), and NCBI Taxonomy (Federhen, 2012), all of which are used for

annotations within the training set. All of the source files for these ontologies were loaded

into a SPARQL server (Apache Fuseki) (The Apache Software Foundation, 2014a). SPARQL

queries were used to organize the available values that correspond to each of the property

groups.

Training data
In order to test the methodology of using text to create suggested annotations, we made

use of a corpus of annotated bioassays that were provided by the BAO group (Schurer et al.,

2011; Vempati et al., 2012) (see Supplemental Information). As part of the testing process

for the BioAssay Ontology project, a simple annotation user interface was created in the

form of an Excel spreadsheet template. Approximately 1,000 assays were selected from

PubChem, and each of these was painstakingly annotated, leading to an output document

taking the form of: ⟨assayID⟩ ⟨property⟩ ⟨value⟩.

For each assay, 20–30 annotations were incorporated into the training set. The property

values were individually mapped to the BAO space, e.g., ‘has assay method’ is mapped to

the URI http://www.bioassayontology.org/bao#BAO 0000212, which is a part of the BAO

ontology. Values that are string literals are not included in the training data. Those which

map to a distinct URI are typically part of the BioAssay Ontology directly, or part of other

ontologies that are referenced, such as the Cell Line Ontology (CLO), Gene Ontology (GO)

and NCBI Taxonomy.

Once the annotations had been suitably collated for each distinct assay, the NCBI

PubChem assays were obtained by a simple script making a call to the PUG RESTful API

(NCBI, 2014). In each case, the description and protocol sections of the resulting content
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were merged into a free text document. The manner in which these two fields are used by

scientists submitting new assay data varies considerably, but they are generally complete.

For the collection of text documents obtained, it was necessary to manually examine

each entry, and remove non-pertinent information, such as attribution, references and

introductory text. The residual text for each case was a description of the assay, including

information about the target objective, the experimental details, and the materials used.

The volume of text varies from concisely worded single paragraph summaries to verbosely

detailed page length accounts of experimental methodology. These reductively curated

training documents can be found in the Supplemental Information.

Natural language processing
There has been a considerable amount of effort in the fields of computer science and

linguistics to develop ways to classify written English documents in terms of classified

tokens that can be partially understood by computer software (Kang & Kayaalp, 2013;

Leaman, Islamaj Dogan & Lu, 2013; Liu, Hogan & Crowley, 2011; Santorini, 1990). We made

use of the OpenNLP project (The Apache Software Foundation, 2014b), which provides

part of speech (POS) tagging capabilities, using the default dictionaries that have been

trained on general purpose English text. The POS tags represent each individual word as a

token that is further annotated by its type, e.g., the words “report” and “PubChem” were

classified as an ordinary noun and a proper noun, respectively:

(NN report)

(NNP PubChem)

Blocks of text are classified in an increasingly specific hierarchical form, e.g.,

(NP (DT an) (JJ anti-cancer) (NN drug))

(VP (VBG developing) (NP (JJ potential) (JJ human) (NNS therapeutics)))

(NP (NP (NN incubation)) (PP (IN with) (NP (NN test) (NN compound))))

(NP (NP (DT the) (JJ metabolic) (NN activity)) (PP (IN of) (NP (DT a) (NN suspension)
(NN cell) (NN line))))

(VP (VB measure) (SBAR (WHADVP (WRB when)) (S (VP (VBG developing)
(NP (JJ potential) (JJ human) (NNS therapeutics))))))

(NP (JJ luciferase-based) (NN cell) (NN proliferation/viability) (NN assay) (NN endpoint))

An assay description of several paragraphs can generate many hundred distinct instances

of POS-tagged blocks. These marked up tokens contain a far larger amount of information

about the composition of the sentence than the words themselves. While building a model

by correlating words with annotations would be expected to achieve poor results, including

markup information about how the words are used in conjunction with each other might

be able to achieve far greater discrimination. For example, the POS-tagged block “(NP

(DT an) (JJ anti-cancer) (NN drug))” represents the words [an, anti, cancer, drug]. Each

of these 4 words taken out of context could be found in almost any assay description, but

when they are associated together in context, contribute an important statement about the

corresponding biochemistry.
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By collecting all sizes of POS-tagged blocks, up to a certain limit, it is possible to give

many different depths of linguistic structure the opportunity to distinguish themselves

within a model. In some cases a single word can have significant meaning on its own,

especially proper nouns or jargon (e.g., “luciferase”), and are likely to have a high

correlation to certain kinds of annotations (e.g., use of a luciferase-based assay). Other

words are general to the English language, or occur frequently in assay descriptions, such

that they only have value in their proper context (e.g., “interaction”).

One of the useful properties of scientific writing is that authors have self-organized

around a narrow range of styles for presenting information such as assay descriptions.

While the explicit intent may not have been for the benefit of computerized natural

language processing, the motivation is the same: scientific authors also read many other

published descriptions, and it is in the best interests of the community to maintain a

certain degree of consistency as well as brevity. Because the literary style lacks prose

and has a relatively little variation, there are certain blocks of words, as identified by

the POS-tagging, that are frequently correlated with particular concepts, and hence the

semantic annotations.

Machine learning models
A collection of hundreds of assay descriptions will result in thousands of distinct

POS-tagged blocks after processing each of them with natural language analysis, and while

certain blocks are likely to be specifically correlated with certain annotations, there are

many more with only weak correlation or none at all. Matching thousands of potentially

important tags with hundreds or thousands of annotations requires the selection of an

algorithm with favorable scaling properties, and is well beyond the scope of manual

curation.

In our initial explorations, we chose to apply a variation of Bayesian inference, which

has been used successfully in other aspects of computer aided drug discovery. The

Laplacian-modified naı̈ve Bayesian variant is frequently used in conjunction with chemical

structure based fingerprints (Hassan et al., 2006; Mussa, Mitchell & Glen, 2013; Nidhi et al.,

2006; Rogers, Brown & Hahn, 2005), as it is highly tolerant of large numbers of parameters.

The score for each annotation is calculated as:

score =


n

ln


An + 1

Tn · P + 1


where n is the tagged natural language block, An is the number of documents containing

the annotation and the tagged block, Tn is the total number of documents with the

tagged block, and P is the fraction of documents containing the annotation. The score

is computed by adding up the logarithms of these ratios, which circumvents issues with

numeric precision, but produces a score with arbitrary scale, rather than a probability.

When we considered each individual annotation as a separate observation, building

a Bayesian model using the presence or absence of each distinct POS-tagged block

gave rise to a highly favorable response for most annotations, as determined by the

receiver–operator-characteristic (ROC) curves. Selected examples of these models are
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Figure 1 Selected leave-one-out ROC plots for annotations, using Bayesian learning models derived from marked-up natural language
processing.

shown in Fig. 1: Fig. 1A shows annotations with high training set coverage that perform

well, due in part to having relatively unambiguous word associations, while Fig. 1B shows

well covered annotations that perform poorly, due to being reliant on terms that can be

used in a variety of contexts that do not necessarily imply the presence of the annotation,

and hence make it more difficult for the model to eliminate false positives. Similarly,

Fig. 1C shows the perfect recall for less well covered annotations, which are easily identified

due to very specific terms, while Fig. 1D shows a relatively poor response due to small

training set and terminology with variations in wording style.

One of the disadvantages of using this Laplacian corrected variant is that the computed

value is not a probability, but rather a score with arbitrary range and scale. This means that

it is not possible to compare the outcomes from two separate models, which is a problem,

since the objective of this technology is to rank the scores that are obtained from each

separate model. In order to achieve the ranking, the scores need to be directly comparable,

and hence be suitable for providing a list of suggestions for which annotations are most

likely to be associated with the text.

In order to make the scores from each of the models comparable, each model requires

a calibration function. This can be accomplished effectively by defining a simple linear

correction for each model, of the form y = ax + b, which is applied to each score prior to

inter-model comparison. Selecting appropriate values for a and b, for each model, can be

achieved by picking initial values that map each of the model outcomes to the range 0.1. By

adjusting the scale and offset of the linear calibration functions for each of these models,
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the overall ability of the models to correctly rank the extant annotations with a higher score

than those which are not observed can be evaluated. It is straightforward to define a scoring

term that measures the ability of the calibrated models to distinguish between correct and

incorrect annotations. This score can be optimized by iteratively adjusting the calibration

terms to get the best overall separation in ranking.

Besides consistent use of linguistic descriptions of assays, one of the other observations

about the annotations defined for these assay protocols is that they are not in any way

orthogonal: the degree to which the annotations are correlated is very high. For example,

if it is known that the assay uses luciferin as a substrate, the probability that it also involves

luminescence as a detection method is far higher than it would be if the prior fact had not

already been established.

Given that the calibrated Bayesian models have been established to perform very well

at placing the top few highest ranking annotations for the data used in this study, once

these top scoring annotations have been confirmed by the user, the amount of information

that can be inferred about the assay may be significantly greater, due to the high degree of

correlation.

This second order correlation was implemented by building another set of Bayesian

models with each possible annotation considered separately as an observation. For

each document, each annotation’s likely presence is modeled against the presence or

absence of all the other annotations recorded for the document, e.g., when building the

correlation model for annotation A, if document i contains annotations A, B and C, then

it is considered to be “active”, with priors B and C; if document j contains annotations B, C

and D, it is considered “inactive”, with priors B, C and D.

Thus, once one or more annotations have been assigned, the secondary Bayesian

models are consulted, and the score for each of the annotations is modified by applying

the correlation factor. Essentially this means that as the user approves annotations, the

prediction scores of the remaining annotations tends to improve, as the correlations are

factored in.

Figure 2 provides an indication of how the ranking evolves during the model building

steps, using four example documents. For each of these diagrams, the left hand side shows

two bands which represent the uncalibrated predictions, which are linearly normalized

so their values fall between the minimum and maximum scores from the raw Bayesian

prediction score. The annotations that do not apply to the document are shown as red

lines, while the annotations that are present are shown in black. The height of each line is

indicative of its score. As can be clearly seen, the desired predictions score are significantly

higher for those present than those which are absent, but the extent to which the ranking

separates the two groups varies, and is not initially a perfect separation for any of these

examples.

The main area of each diagram shows the progression of the relative predictions: at the

beginning of the sequence, the scores are ranked by the inter-model calibration functions,

which typically results in a significant improvement. For each of the subsequent steps, the

highest scoring correct annotation is added to the approved set, and the correlation model
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Figure 2 Representative examples of model building in action, showing relative ranking of uncali-
brated, calibrated, and stepwise application of the correlation models. The four examples refer Pub-
Chem entries by assay ID: (A) 574, (B) 436, (C) 348 and (D) 346.

is updated and applied. The ranking is redetermined, and the next highest scoring correct

annotation is selected. The diagram indicates the point at which each annotation is selected

by plotting a black circle, and changing the color of the line to green: since it has been

confirmed, its ranking order is no longer a concern, though its presence continues to affect

the way the correlation model is applied.

In the first example, shown in Fig. 2A, application of these models in the given sequence

provides a perfect result: in each case the highest scoring annotation yet to be selected is

at the top of the list, with no false positives. In Figs. 2B and 2C, the results are good but

not perfect: the red cross marks indicate when an incorrect annotation was presented

as the best next choice. Since this exercise is simulating curation by a human expert,

the elimination of a top-ranked incorrect proposal is equivalent to being recognized by

the user as an incorrect result, and explicitly excluded from further consideration. If the

objective was to provide a pure machine learning solution, each of these ranking mistakes

would represent the accumulation of bad data, rather than a small increase in the amount

of effort required by the operator. In Fig. 2D, the response of the model is relatively poor,

with several false positives appearing close to the top of the list, and the last few correct

results being obscured by a large number of incorrectly ranked proposals.

RESULTS
We have designed the algorithm with the goal of ranking the available annotations such

that given a text description of an assay, the annotations that correctly apply to the

document are listed before any which do not. A perfect result is considered to be any
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Figure 3 Effectiveness of ranking of activities. (A) hit/miss for test data; (B) heatmap for model size;
(C) null hypothesis; (D) hit/miss for training data.

case where all of the correct proposals are ranked first. Because the objective of the machine

learning is to assist and accelerate the human-guided curation, a handful of mis-ordered

annotations can be considered as an inconvenience, rather than the means by which data

becomes corrupted.

For evaluation purposes, we define a yardstick measure: the null hypothesis is that the

Bayesian-trained model using natural language processing performs no better than a trivial

method, such as ranking all proposed annotations by the frequency with which they occur

in the training set.

Cross validation
The 983 fully annotated assays, with corresponding text from PubChem, were split into

training and test sets using a simple partitioning algorithm. First of all, 208 documents

were removed on account of having the same list of property:value annotations. These doc-

uments may differ by the free text annotations, but these are not included in the training

set, and so duplicates need to be pruned. Of the remaining documents, entries were selec-

tively picked for the test set in order to ensure that each annotation appears once in any one

of the test set documents, but such that the number of instances remaining in the training

set was not reduced below 2. The training set contained 698 documents, the test set 77.

The models were rebuilt using just the training set documents, and applied to the test

set. For evaluation purposes, we can consider the ranking of correct vs. incorrect answers to

be instructive for how well the model achieves its stated goal. Figure 3 shows several plots

that show the relative performance of the training and test sets.

The data for each plot is created according to the following procedure:

1. score each available annotation based on the model derived from the training set data;

2. pick the highest scoring annotation: if it is correct, add a positive mark, remove the

annotation, and goto 1;

3. it is not correct, so add a negative mark, remove the annotation, and goto 2.

This essentially simulates an expert operator who only looks at the current top scoring

annotation, and either approves it, or excludes it from further consideration. The process

stops when all correct annotations have been approved.
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Figure 3 illustrates this process graphically from several vantagepoints. In Fig. 3A, all of

the test set documents are considered: for each line, running from left to right, a correct

top ranking annotation is marked with a black square, while an incorrect top ranking

annotation is marked with a purple square. Once all of the correct annotations have been

picked, the remaining space is marked in grey. As can be seen, for the majority of cases

the correct annotations are quickly picked out. Nonetheless there are a number of test

documents that contain a small number of outliers, i.e., required annotations that are

ranked very poorly, with many false positives getting a higher score.

Figure 3B shows the same datapoints, except that only the actual annotations are given a

color. The color is determined by a heatmap pattern, for which green indicates predictions

that were derived from a well-populated model with many examples, while red indicates

those for which very little training data was available. As can be seen, the outliers that rank

very poorly relative to the false positives are all colored red, which strongly suggests that

poor performance is due to sparsity of training data, rather than flaws with the method.

In Fig. 3C, the method for scoring documents is set to the frequency of each annotation

in the overall training set, e.g., if an annotation occurs 100 times in 698 documents,

its score is set to 0.143. The same proposed ranking order is used for all documents,

regardless of the text description. This is used to test a reasonable null hypothesis, which

is that picking the most common annotations is an effective way to separate correct from

incorrect. While it can be clearly seen that the null hypothesis performs better than a

random guess, at least for purposes of identifying true positives, it is vastly inferior to the

proposals generated by the trained Bayesian-derived models, on account of the fact that

every document has a very large number of false positives that need to be eliminated before

the annotation is complete.

Figure 3D shows the same process as for Fig. 3A, except that in this case the training

data is used, i.e., the models are used to predict the same documents from which they were

trained. These results are superior to applying the models to the test set, which is to be

expected.

Operator workflow
The ultimate goal of combining machine learning with a user interface for bioassay

annotation is to have the models predict all the correct annotations with close to perfect

accuracy, and have the expert operator confirm these predictions. In practice this is

realistic only when the document being annotated consists of cases that are well covered

in the training set. Due to the nature of science, there will always be new methods being

developed, which means that some of the corresponding annotations may have insufficient

examples to create a model. It is also possible that the choice of phrasing for some of the

assay details differs significantly from the language used by the examples in the training set,

which can reduce the efficacy of the models, until additional data can be incorporated and

used to re-train them.

Clark et al. (2014), PeerJ, DOI 10.7717/peerj.524 11/23

https://peerj.com
http://dx.doi.org/10.7717/peerj.524


For these reasons, the user interface needs to satisfy two main scenarios: (1) when the

predictions are correct, and (2) when the document is unable to accurately predict the

annotations. For the first scenario, confirming the correct annotations should be a matter

of quickly scanning the highest scoring proposals and confirming the assignments. In these

cases, the user interface must aspire to being unobtrusive. However, in the second scenario,

when the correct annotation does not appear at the top of the list, the interface needs to

provide ways for the user to hunt down the necessary annotations. We have conceived

several options to help the user deal with this case. In near-ideal cases, the user may

find the correct annotation by simply looking slightly further down the list of proposed

annotations. Alternatively, the user may filter the results by selecting a particular category

of annotations, and browse through this refined subset to find the correct annotation.

Finally, if the user needs to include an annotation that is present in the ontology, but

has not been included in the list of proposals because there is not enough data to build

a model, the interface can provide assistance in searching through all of the unscored

options. Furthermore, there will also be occasions when the desired annotation does not

exist in the ontology, e.g., a previously unreported biological pathway, in which case it may

be desirable to allow the user to enter the information as plain text. While this has little

immediate value for semantic purposes, it could be considered as a placeholder for future

additions to the underlying ontology, which could be upgraded retroactively.

A mockup of the core elements of this interface is shown in Fig. 4, which shows the

same layout principles for the proof of concept application that we created for testing the

machine learning methods and corresponding workflow. The box shown at the top left

allows the user to type in free text. This could be cut-and-pasted from another application,

or it could be typed in manually. The list immediately below shows a series of annotations,

consisting of property and value. These are ranked highest first. When the system is working

perfectly, the user can click on the approve button for the highest scoring annotation,

shown at the top of the list. If the highest scoring annotation is not correct, the user

may look further down the list in order to find one that is correct; or, they may reject an

incorrect proposal. In either case, the proposals are recomputed, and a new list of options is

shown.

On the right hand side of the screen is shown all of the available properties, which are

used to organize the annotations: for each property or category, there can be zero-or-more

assigned annotations, of the property:value form. This simple hierarchical arrangement

clearly shows the annotations that have been assigned so far, and which properties have

as yet no associations. Making the property icons clickable is a way to allow filtering of

the annotation list, i.e., only showing the potential annotations that match the selected

property. In this way, the operator can carefully pick out assignments for each of the

property groups, which is a workflow that becomes important when working with

documents that do not fall within the domain of pretrained data. This process of picking

out the correct assignment can either be done by scrolling through the list of all possible

annotations ranked according to the predictive score, or by partial text searching.
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Figure 4 A mockup of an interactive graphical user interface for annotating bioassays, with guidance
from pretrained models.

Domain example
Figure 5 shows the annotation of an assay, which can be found in PubChem (Assay ID

761). The annotation text has been composed by concatenating the assay description

and protocol text fields, and trimmed to remove superfluous content, which is shown in

Fig. 5A. This case is an example where the performance of the machine learning models

is strong, but still requires a well-designed user interface for the portions that are less well

covered.

Steps (B) through (Y) show each of the assignment steps: in most of these examples, the

5 highest ranked annotations are shown. In most of the initial steps, the top ranked case is a

correctly predicted annotation. A green checkbox is used to indicate that the user confirms

that presence of the annotation, and in the following step, the list of proposals is updated

to reflect the modified scores, which take into account the correlation effects. In cases (L),

(Q), (R) and (T), the top ranked prediction is incorrect, and a red cross mark indicates

that the user explicitly excludes the annotation from further consideration. In step (W) the

desired annotation is further down the list, and so the user scrolls the proposals in order to
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Figure 5 Stepwise annotation process for PubChem Assay ID 761, http://pubchem.ncbi.nlm.nih.gov/rest/pug/assay/aid/761/description/
JSON.

select the next correct one. In step (X), the user needs to add the annotation bioassay type:

binding assay, which has not been ranked well in the overall scheme, and so the list of anno-

tations is filtered by selecting the bioassay type property, to only show these corresponding

values. In step (Y) the user is looking to find the GPCR signal pathway annotation, which

is not a part of the training set, due to insufficient data to build a model. In order to locate

this annotation, the user enters a search string to narrow down the list and locate it.

In Fig. 5Z, the complete list of annotations, divided into property categories, is shown.

This list is updated dynamically as each of the annotations is added to the collection. The

properties for cell line, assay kit and inducer have no corresponding annotations, since

these are not a part of the assay.

Semantic output
The purpose of adding semantic annotations to bioassays is to enable a diverse range of

queries and automated analysis, and one of the most effective ways to enable this is load the

annotation markup into the same framework as the original BioAssay Ontology definition

and all of its related dependencies.
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The output from an annotated description can easily be expressed in terms of RDF

triples. The properties and values are already mapped into the BAO space. A new URI

needs to be defined for each of the assays being annotated. For example, the annotation

example used earlier, converted into RDF “Turtle” format, is shown in Fig. 6.

Once in this format, the assertions can be loaded into an existing SPARQL server. At this

point the content becomes accessible to the full suite of semantic technologies. Combining

the generic querying capabilities of the SPARQL syntax, with the semantic structure of the

BioAssay ontology, allows a variety of ad hoc questions to be answered.

For example, finding a list of annotated documents that make use of a specific assay kit:

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX owl: <http://www.w3.org/2002/07/owl#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX bao: <http://www.bioassayontology.org/bao#>

PREFIX cdd: <http://www.collaborativedrug.com/bao/curation.owl#>

SELECT ?aid WHERE

{

?assaykit rdfs:label "HTRF cAMP Detection Kit" .

?has rdfs:label "has assay kit" .

?document ?has ?assaykit .

?document cdd:PubChemAID ?aid

}

This simple query extracts a list of assay identifiers for anything that makes use of a

specific manufacturer’s cyclic AMP detector. Note that the property and value URIs are

matched by cross referencing the label. Based on the training data, this query returns AID

numbers 933, 940, 1080, 1402, 1403, 1421, 1422 and 488980.

A slightly more advanced query can extract information other than just document

identifiers:

SELECT ?instrument ?aid WHERE

{

?document bao:BAO_0002855 bao:BAO_0000110 .

?document bao:BAO_0000196 bao:BAO_0000091 .

?document bao:BAO_0000207 bao:BAO_0000363 .

?document bao:BAO_0002865 ?q .

?q rdfs:label ?instrument .

?document cdd:PubChemAID ?aid

}

ORDER BY ?instrument ?aid
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Figure 6 RDF Triples for the annotation of PubChem assay ID 761.
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In this case the restrictions are specified by directly referencing the BAO tags, which

searches for all protein-small molecule interaction assays, with inhibition as the mode

of action, using fluorescence intensity measurements. For each match, the detection

instrument is looked up and cross referenced by label:

EnVision Multilabel Reader 622

PHERAstar Plus 1,986

ViewLux ultraHTS Microplate Imager 2,323

ViewLux ultraHTS Microplate Imager 485,281

ViewLux ultraHTS Microplate Imager 489,008

The inheritance hierarchy of the BioAssay Ontology, and the ontologies it references,

can also be utilized in queries. The following query looks for assays that target GPCRs of

mammals:

SELECT ?organism ?aid WHERE

{

?mammal rdfs:label "mammalian" .

?target rdfs:subClassOf* ?mammal .

?target rdfs:label ?organism .

?document bao:BAO_0002921 ?target .

?q rdfs:label "G protein coupled receptor" .

?document bao:BAO_0000211 ?q .

?document cdd:PubChemAID ?aid

}

ORDER BY ?organism ?aid

The target variable is used to match any organism URI that is a subclass of mammals.

The result is a number of assays for humans, rats and mice.

Each of these examples shows how the semantic markup of the annotated assays can

be put to the test with very direct and specific adhoc questions. These queries can be

composed on the fly by software that provides a more intuitive user interface, or they can

be used for developing new kinds of analyses by experts. They can be applied to just the

bioassay data in isolation, or they can be spliced into the greater semantic web as a whole,

and linked to all manner of other information resources, e.g., screening runs measuring

drug candidates, or medical knowledgebases that go into more detail about the biological

systems being assayed.

Future work
The hybrid interactive/machine learning approach to bioassay annotation is currently a

proof of concept product. The prototype user interface is presently being evaluated by

scientists with an interest in improving software annotation of biological data, and we are

actively assessing the results in order to improve the workflow. The long-term goal is to

provide the user interface in the form of a web application, which will be incorporated into

larger products that provide data capture functionality, such as the CDD Vault developed
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by Collaborative Drug Discovery Inc. or potentially public databases such as PubChem.

The semantic annotations will be recorded alongside the text description, and immediately

accessible, sharable, searchable and used by a variety of features that can provide reasoning

capabilities based on this data.

One of the obvious advantages of having user-approved annotations stored in a

centralized location is that the machine learning models can be retrained at periodic

intervals, which will ensure that the ease with which users can rapidly annotate their assays

continues to improve as more data is submitted. Also, as more data becomes available, the

domain of the models will continue to grow: annotations that were previously left out of

the model building process due to insufficient case studies will be added once they have

been used.

Another potential advantage of centralization is to provide a pathway for new semantic

annotations, i.e., when the BioAssay Ontology and its dependencies do not provide an

appropriate term, users can resort to using a free text placeholder. Such annotations can

be examined on a regular basis, and either a manual or automated process can be devised

to collect together repeated use of related terms, and define a new annotation (e.g., for

a new class of biological target or a new measurement technique). This requires a single

authority to decide on a universal resource identifier (URI) for the new term, which could

be done by the service provider hosting the data, who may also take the opportunity to

retroactively upgrade the existing examples of free text labels to use the freshly minted

semantic annotation. We have also demonstrated creating a file containing RDF triples

for the resulting annotations for a document, and are looking into harmonizing the data

format with the Assay Definition Standard format (ADS/ADF) (de Souza et al., 2014; Lahr,

2014).

In addition to working with potential users of this software, we are also looking to

incorporate more public content, from large collection services such as PubChem (Wang et

al., 2014; Zhang et al., 2011), BARD (de Souza et al., 2014), ChEMBL (Bellis et al., 2011) and

OpenPHACTS (Williams et al., 2012). There are a number of research groups exploring

ways to add semantic markup to drug discovery data, including bioassays, and many of

these annotations can be mapped to the BAO annotations that we have chosen for this

project. Even though we have found in our internal evaluation efforts that annotation time

can be plausibly reduced to a matter of minutes, this is still a significant burden to impose

on busy scientists, especially if participation is voluntary. As we consider deployment of the

service, it is important to ensure that the benefits of assay annotation are realized as early

as possible, rather than waiting for critical mass, which might otherwise not be achieved.

Allowing scientists to use their annotated assays to easily search for similar assays within

a database, or as a convenient way to label and categorize their own collections of assays,

are anticipated to be effective strategies to make the technology useful during the early

adoption phase.

Thinking broadly, one interesting possible use case for the annotation scheme is to

run it in reverse: to have the software use the annotations to assemble a paragraph of

plain English text, which is suitable for incorporation into a manuscript. In this case
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the workflow would likely be quite different, e.g., the user types in a poorly formatted

collection of terms involved in the assay in order to help the inference engine rank the likely

suggestions, selects the appropriate terms, and then has the text produced by the software.

Such a service could be of significant use to scientists who are not experienced with writing

assay procedures according to the standard style guides.

As part of our ongoing work, we are evaluating our selection of annotations from the

underlying ontology. Our initial prototype is strongly influenced by the training data that

we have available, which is the result of hundreds of hours of work by qualified domain

experts. We are actively working with biologists and medicinal chemists to determine

which properties are of primary importance, and which are secondary, and to expand our

collection of training data to reflect the priorities of active drug discovery researchers.

Beyond the use of bioassays and BAO annotations for training data, the methodology

developed is broadly applicable and not specific to this domain. We anticipate that there are

a number of other distinct subject areas of scientific publications that would be amenable

to this treatment, e.g., experimental details of chemical reactions, computational chemistry

protocols, and other types of biological protocols beyond drug discovery, such as stem cell

differentiation.

CONCLUSION
We have built a proof of concept framework that involves using machine learning based

on plain text assay descriptions and curated semantic markup, and matched this with a

user interface that is optimized for making machine-assisted annotation very rapid and

convenient when applied to text input that is well within the domain, and moderately

efficient for annotating assays that fall outside of the training set. By optimizing both

the machine learning and user-centric workflow at the same time, we avoid falling into

the traps of both extremes, because both parts complement each other. Annotation

of plain text by purely automated methods has been limited by the need to obtain an

unrealistic level of accuracy, while purely manual annotation has to overcome a very high

motivational barrier, given that most scientists are too busy to take on additional burdens,

without an immediate benefit. By establishing that adding a very modest amount of human

effort to a well designed automated parser can achieve highly accurate results, we believe

that we can make a strong case for the use of this technology in the hands of practicing

scientists.

As the quantity of semantically rich annotated data increases, the opportunities for

delivering value to scientists increases in tandem. Making annotation easy is the first

step, but it needs to be followed by new capabilities. For example, the creators of assay

screens should be able to easily compare their experiments with others contained within

the knowledgebase, and obtain a list of experiments and published papers with common

features. Researchers performing drug discovery modeling studies should be able to

gather together compounds that have been screened under certain conditions, and use

the annotations to make a judgment call as to whether the measured activities can be

incorporated into the same model. Additionally, researchers can search for artifacts, such
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as compounds that are disproportionately active in luminescent assays. New biological

activities may also become mineable; for example, common hits between cell-based assays

and target based assays may reveal unknown molecular mechanisms.

Beyond the specific domain of bioassay annotation, we believe that the hybrid approach

to high level markup is appropriate to many different areas of science, where use of

English text jargon or anachronistic diagrams is the norm for conveying concepts that are

amenable to a highly structured description. The understandable reluctance of scientists

to redesign their communication methods for the benefits of software, and the inability

of software to provide substantially useful results without such richly marked up data,

is a proverbial chicken vs. egg scenario that can be observed throughout the scientific

disciplines. Combining machine learning with modest demands on scientists’ time, and

rapid iteration of improved functionality, is a viable strategy for advancing the goals of

computer assisted decision support.
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