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ABSTRACT
Genome sequencing is rapidly being adopted in reference labs and hospitals for
bacterial outbreak investigation and diagnostics where time is critical. Seven gene
multi-locus sequence typing is a standard tool for broadly classifying samples into
sequence types (STs), allowing, in many cases, to rule a sample out of an outbreak, or
allowing for general characteristics about a bacterial strain to be inferred. Long-read
sequencing technologies, such as from Oxford Nanopore, can produce read data
within minutes of an experiment starting, unlike short-read sequencing technologies
which require many hours/days. However, the error rates of raw uncorrected long
read data are very high. We present Krocus which can predict a ST directly from
uncorrected long reads, and which was designed to consume read data as it is
produced, providing results in minutes. It is the only tool which can do this from
uncorrected long reads. We tested Krocus on over 700 isolates sequenced using
long-read sequencing technologies from Pacific Biosciences and Oxford Nanopore.
It provides STs for isolates on average within 90 s, with a sensitivity of 94% and
specificity of 97% on real sample data, directly from uncorrected raw sequence reads.
The software is written in Python and is available under the open source license
GNU GPL version 3.
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INTRODUCTION
With rapidly falling costs, long-read sequencing technologies, such as from Pacific
Biosciences (PacBio) and Oxford Nanopore Technologies (ONT), are beginning to be used
for outbreak investigations (Faria et al., 2017; Quick et al., 2015) and for rapid clinical
diagnostics (Votintseva et al., 2017). Long-read sequencers from Oxford Nanopore can
produce sequence reads in a matter of minutes and sequencers from PacBio can produce
sequences in a number of hours compared to short-read sequencing technologies which
takes hours/days. Seven gene multi-locus sequence typing (MLST) is a widely used
classification system for categorising bacteria. It can be used to quickly rule an isolate out
of an outbreak and knowing a sequence type (ST) can often allow for general
characteristics of a bacteria to be inferred. By reducing the time from swab to an actionable
answer, genomics can begin to directly influence clinical decisions, with the potential to
make a real positive impact for patients (Gardy & Loman, 2018).
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With the increased speed afforded by long-read sequencing technologies comes
increased base errors rates. The high error rates inherent in long-read sequencing
reads require specialised tools to correct the reads (Koren et al., 2017), however, these
methods have substantial computational resource requirements often taking longer
to run than the original time to generate the sequencing data.

A full overview of MLST software for short-read sequencing technologies is available
in Page et al. (2017). Of the software reviewed in Page et al. (2017), only the methods
which take a de novo assembly as input can be used with long-read sequencing
technologies; however, de novo assembly has a substantial post processing computational
overhead, which can exceed the time taken to perform the sequencing. StringMLST
(Gupta, Jordan & Rishishwar, 2017), was designed to rapidly predict MLST from raw
read sets by performing a k-mer analysis. MentaLiST (Feijao et al., 2018) takes a similar
k-mer analysis approach and is designed for large typing schemes, such as cgMLST
and wgMLST. They were designed to work only with high base quality short-read
sequencing data. To our knowledge, no method currently exists for calling MLST from
uncorrected long-read sequencing data.

We present Krocus which can rapidly estimate STs directly from uncorrected long
reads from isolates. Results are presented using the largest public dataset of bacterial
long-read data containing over 700 samples generated using the PacBio sequencing
technology, and for real and simulated datasets of ONT data. On average it produces
sequence correct STs in 90 s, with a sensitivity of 94% and specificity of 97% for
uncorrected PacBio sequence data. On a dataset consisting of 524 simulated ONT
samples based on E. coli reference genomes the sensitivity was 82–94% depending
on the flow cell modelled. On a small real ONT dataset of 12 Klebsiella pneumoniae
a sensitivity of 100% was achieved. Krocus is the only tool which can call MLST
directly from uncorrected long reads with high accuracy. It is written completely
in Python 3 and is available under the open source licence GNU GPL 3 from
https://github.com/andrewjpage/krocus.

MATERIALS AND METHODS
The basic method of Krocus is to take short k-mers and calculate the coverage over
the MLST alleles and a flowchart showing the method is presented in Fig. 1. As the
base errors are mostly uniformly distributed, a well chosen k-mer value results in short
stretches of error free bases. Some k-mers will be erroneously flagged due to errors however
as more reads are added (above 5�), these errors are filtered out as they have a low
occurrence overall.

Krocus takes as input the path to an MLST scheme, a FASTQ file containing
uncorrected long reads from an isolate and a k-mer size. The MLST alleles are contained
in seven FASTA files, downloaded from PubMLST (Jolley & Maiden, 2010) or taken from
the set distributed with the software. Each sequence in the allele files contains a unique
identifier and the combination of these allele identifiers gives rise to the ST, contained
within a profile tab delimited file. An alignment-free k-mer sequence analysis approach
is used to determine the presence and absence of particular alleles, with optimisations for
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high error rate long-read sequencing data. For a given k-mer size, the k-mers are extracted
from each sequence in each allele file.

In long-read sequencing reads, whilst there are high base error rates, the errors are
mostly uniformly distributed. The ideal k-mer size is the mean number of bases on a read
which is free from errors, for example if the base error rate n is 91% an error occurs on
average every ∼11 bases, thus the k-mer size k calculated as k = ⌊100/(100-n)⌋. A k-mer
size which is too high would invariably always include an erroneous base, reducing the
probability of a match with the allele files. A k-mer size which is too low would reduce
the possible k-mer space and lead to an increase in matches by random chance. Each
long read is inspected and k-mers are generated with a step size of k giving an average
depth of k-mer coverage of 1. If a single k-mer from this set is present in the allele k-mers,
the read is kept for further analysis, if no k-mers are present, the read is discarded as it
is unlikely to contain the MLST genes.

All possible k-mers are generated for the read which passed the initial filtering with a
step size of 1, giving an average depth of k-mer coverage equal to k, with k-mers occurring
more than five times excluded from further comparison as they do not impart useful
information. For each allele file, the intersection of the allele k-mers and the read k-mers is
taken. The read is split up into bins of length k, and the intersecting k-mers are assigned to
their corresponding bin in the read to produce an approximate k-mer coverage of the read.

Figure 1 Flowchart of the Krocus method. The square boxes denote processes that the data undergoes,
the diamond shapes denote a decision point, the box with a wavy lower line denotes a data file, and the
tabs denote an output. Full-size DOI: 10.7717/peerj.5233/fig-1
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A sliding window (default four times k-mer size) is used to span short gaps, which are
likely the result of small errors in the underlying sequencing data. The largest contiguous
block of k-mer coverage in the read is identified, based on the sliding window results,
and if it meets the minimum block size (default 150 bases, derived from ⅓ of the average
length 467 of all sequences in PubMLST, retrieved 02-02-18), it is said to contain one
of the typing alleles. The block is extended by 100 bases on either side to ensure the
full allele is captured. The k-mers matching this block in the read are extracted and
k-mer counts corresponding to the allele matching k-mers are incremented. The read is
reverse complemented and the same search is undertaken once more.

At defined intervals (default 200 reads) the genes of each allele are analysed to
calculate the number of k-mers covered by the raw read, allowing for the input files to
be streamed in real-time as data is generated. Only ONT sequencers support real-time
streaming of reads. PacBio sequencers require post analysis once the sequencing
experiment is complete. If an allele has a gene with 100% k-mer coverage, it is said to
be present, if it is less than 100%, the allele with the most number of k-mers is identified,
but with a low confidence flag. Where two or more alleles of the same gene have 100%
coverage, the sequence with the highest k-mer coverage is used. Novel combinations of
alleles and new, unseen, alleles cannot be reliably detected using this method, and so are
excluded from the analysis.

PacBio samples
The NCTC 3000 project (http://www.sanger.ac.uk/resources/downloads/bacteria/nctc)
aims to produce 3,000 bacteria reference sequences using the PacBio long-read sequencing
technology. Each of the reference strains was selected for sequencing to maximise diversity
and to capture historically medically important strains. This is currently the largest
public long-read sequencing project for bacteria and is still on-going with 1,048 assemblies
publicly available (accessed 2/1/18). The assemblies were downloaded from the project
website and the sequencing reads directly from the European Nucleotide Archive.
The sequencing reads were all generated on the PacBio RSII between 2014 and 2017.
The assemblies used for comparison with Krocus were generated using an open source
pipeline (https://github.com/sanger-pathogens/vr-codebase) which first performed a de
novo assembly using HGAP (SMRT analysis version 2.3.0) (Chin et al., 2013), followed by
circularisation with circlator (version 1.5.3) (Hunt et al., 2015), and finally automated
polishing with the resequencing protocol (SMRT analysis version 2.3.0) from PacBio.

Each assembly (1,048) was ST using the TS-mlst software (https://github.com/
tseemann/mlst). Any samples identified as ambiguous or untypable by TS-mlst were
excluded from further analysis. Also, samples where there were no corresponding MLST
scheme for the species (339) were also excluded, as a meaningful comparison cannot be
made. The TS-mlst software was shown in Page et al. (2017) to never make any false
positive ST calls. The remaining 709 samples are detailed in Table S1, including accession
numbers, and summarised in Table 1, covering 43 species and 638 STs with representatives
from both gram positive and gram negative. The FASTQ files of the uncorrected reads
were generated from the raw data using the PacBio SMRTlink pipeline (version
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5.0.1.9585), and the time for this conversion is not considered in the results presented in
this paper as it is a standard preprocessing step required for many downstream analyses.

PacBio control samples
A set of 74 samples representing 48 species were selected as controls from the NCTC 3000
project. Each were sequenced using the PacBio long-read sequencing technology as
described previously and are listed in Table S2. The controls were selected from within the
same genus as the cases as listed in Table 1, but from different species. The species
classifications came from experimental techniques. The de novo assemblies of each sample
were analysed with the TS-mlst software, and any which resulted in valid STs were
removed to reduce the impact of confounders from misclassified isolates.

ONT samples
To analyse the performance of Krocus on ONT data, we selected a set of 12 K. pneumoniae
samples used previously for performance comparisons (Wick, Judd & Holt, 2018;
Wick et al., 2017b). The dataset is available from Wick (2017a) and detailed in Table S3.
For comparison Canu (Koren et al., 2017) (version 1.5) assemblies and Unicycler
(Wick et al., 2017a) (version 0.4.0) assemblies, utilising Miniasm (Li, 2016) and Racon
(Vaser et al., 2017), post Nanopolish (https://github.com/jts/nanopolish) (version 0.7.0),
created using only the long-read data (Wick, 2017b) were used.

There are currently no large publicly available ONT datasets. To overcome this,
simulated ONT reads were generated using NanoSim-H (https://github.com/karel-brinda/
NanoSim-H) (version 1.1.0.2), a derivative of NanoSim (Yang et al., 2017). NanoSim-H
includes error models for simulating E. coli uncorrected nanopore reads with multiple flow
cell types. Every complete E. coli reference genome in RefSeq was downloaded (n = 549).
TS-mlst was run on these reference genomes to generate the target ST. TS-mlst was unable
to call an E. coli ST in 25 cases and these were excluded from further analysis. Of the
samples, 11 contained one or more incomplete gene, three contained duplicated genes, two

Table 1 NCTC 3000 PacBio sequenced samples with results after analysis with Krocus.

Species No. of
samples

No. of
unique STs

No. in
agreement

Mean wall
time (s)

Mean reads

E. coli 226 204 204 102 17,524

E. faecalis 11 10 10 42 19,900

K. pneumoniae 113 101 109 62 22,297

P. aeruginosa 22 21 18 127 41,444

S. aureus 114 92 111 122 16,255

S. dysgalactiae 16 16 16 32 10,412

S. enterica 48 46 47 107 16,348

S. pyogenes 47 47 47 37 7,714

Other 112 101 106 57 15,024

Total 709 638 668 86 17,439

Note:
An ST is said to be in agreement if it matches the ST called by TS-mlst from a de novo assembly.
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were missing a gene, and one was a novel combination of alleles. Extended details of
the samples and the results are listed in Table S4. Using NanoSim-H 20,000 reads were
simulated with the R9 flow cell error model (R9_1D and R9_2D) and the default
parameters for each reference genome (n = 524). The reads were converted from FASTA
format to FASTQ format using PyFASTAQ (https://github.com/sanger-pathogens/Fastaq)
(version 3.17.0) and provided to Krocus (default parameters).

Compute resources
All experiments on real datasets were performed using the Wellcome Sanger Institute
compute infrastructure running Ubuntu 12.04 LTS, with each host containing 32 cores
(AMDOpteron Processor 6272) and 256 GB of RAM. All experiments involving simulated
datasets were performed using the MRC CLIMB (Connor et al., 2016) cloud infrastructure
running the Genomics Virtual Lab (Afgan et al., 2015), with each host containing eight
cores and 64 GB of RAM. Only a single core was used in each performance experiment
with the mean memory requirement of 0.354 GB (std dev 0.16).

RESULTS
PacBio results
Each of the assemblies from the NCTC dataset were run through TS-mlst to generate a
ST. Krocus was run for each sample using the uncorrected FASTQ files and default settings
and halted when the ST matched the expected result from TS-mlst. The time to achieve
the correct predicted ST was noted, as were the number of reads, with a mean of 86 s,
after processing a mean of 17,439 reads. The number of reads required before Krocus
correctly predicts the ST is presented in Fig. 2A, with only species with 10 or more isolates
included. The running time for each species is presented in Fig. 2B. The running time
of three Staphylococcus aureus samples was elevated due to the need to process a higher
than average number of reads; however, within 60 s six out of seven alleles had been
correctly identified, with the last allele taking up to a further 11 min to identify correctly.
In 94% of cases (sensitivity) the results from Krocus and TS-mlst were in agreement,
with the calculations listed in Table S5.

In 43 cases (6%) STs did not match the expected ST or were untypable, with 40 of
these calling six out of seven typing genes correctly. In the remaining one case, five out of
seven genes were called correctly. These failures are due to known systematic errors with
long homoployers with the PacBio sequencing technology (Quail et al., 2012) which
cannot be overcome with short k-mers.

The control samples were analysed in a similar fashion to give a specificity of 97%
(72 out of 74). In the two false negative cases, both contained all seven typing genes, with
one containing two copies of gene phoE which Krocus was unable to distinguish, and one
containing a variant in fumC which was not in the typing database.

ONT results
For all 12 K. pneumoniae samples (100%) of uncorrected ONT reads Krocus provided
the expected ST. The mean time to the expected ST was 134 s after a mean of 3,250 reads.
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As a comparison, de novo assembled genomes using the ONT reads alone fromWick et al.
(2017b) did not identify any of the STs when analysed by TS-mlst. This was due to the
inherent high base error rate which resulted in a poor quality assembly. Only hybrid
assemblies additionally utilising Illumina short-read data could be ST. This gives Krocus
an advantage over de novo assembly of ONT only reads.

For the simulated E. coli reference genome reads, two flow cell models were used,
R9 1D and R9 2D. The lower quality R9 1D simulations correctly identified the STs
in 432 (82.4%) cases with a mean running time of 71 s and a mean of 6,618 reads.
Of the 92 STs which were not called correctly, 84 were as a result of errors in calling fumC
or gyrB. The higher quality R9 2D simulations correctly identified STs in 492 (93.8%)
cases with a mean running time of 25 s and after a mean of 5,894 reads. Of the 36 STs
which were not called correctly, 34 were as a result of errors in calling fumC or gyrB.
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Figure 2 The reads and time to correctly predict an ST for each PacBio NCTC species analysed.
(A) Number of reads analysed before the Krocus correctly predicted an ST for each PacBio NCTC
species analysed. (B) Time in seconds before Krocus correctly predicted an ST for each PacBio NCTC
species analysed. Full-size DOI: 10.7717/peerj.5233/fig-2
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The difference in running time is due to lower error rates in the R9 2D uncorrected reads,
reducing the number of observed k-mers. The quality of the base called data used for
generating the simulation models directly impacts the ability to call STs accurately.

DISCUSSION
As shown previously it is possible to call STs directly from uncorrected long-read data.
Whilst the error rates in uncorrected reads are high, the error profile of long reads is
such that short regions of high quality data exist between the errors in the reads. Read
correction typically overlaps reads and calls a consensus to fix errors in the underlying
read. The ability to utilise uncorrected reads and still generate accurate results means
that time consuming read correction steps are not needed to generate sequence typing
information. Krocus achieves this by using short k-mers.

The PacBio sequencer produces uncorrected reads in both BAM format and HDF5
format (legacy). These are not available to call in real-time due to the requirement for
post-sequencing base calling, so Krocus would only ever be run on the final data at the end
of a sequencing run. The ONT sequencers can produce uncorrected reads in FASTQ
format in real-time. These can be streamed directly into Krocus taking maximum
advantage of the method. Additionally, as the ONT sequencers can be halted mid-run,
flushed and loaded with a new sample, a single flow cell can be reused many times over,
potentially as soon as Krocus has generated a ST. This has the effect of reducing the costs
of the sequencing run.

Due to a current lack of large ONT datasets in the public archives, simulated data
was used. Simulated ONT reads gives an insight into the performance of Krocus with
different error models, with more accurate read sets resulting in more accurate ST
calling. The ONT sequencing technology and the base calling software are currently
undergoing rapid change with constant improvements in the quality of the data,
so these simulations should seen as a baseline performance for Krocus.

CONCLUSION
Krocus is the only tool which can call STs directly from uncorrected long reads with
high accuracy. The sensitivity of 94% and specificity of 97% achieved by Krocus on a
large, diverse, PacBio dataset is similar to gold standard experimental standard methods
(Liu et al., 2012). By calling STs directly from uncorrected long reads, the need for post
processing steps and de novo assembly is eliminated, reducing the turnaround time for
MLST from days to minutes. For a small ONT dataset of real samples, Krocus correctly
called the ST in all cases, compared to de novo assemblies of the same data, where no STs
could be called. In a large simulated ONT dataset of E. coli, the sensitivity was 82–94%,
depending on the flow cell modelled.

ACKNOWLEDGEMENTS
We wish to thank Nick Grayson from the Wellcome Sanger Institute for assistance with
the NCTC 3000 dataset. Thanks to João Carriço and Nabil-Fareed Alikhan for providing

Page and Keane (2018), PeerJ, DOI 10.7717/peerj.5233 8/11

http://dx.doi.org/10.7717/peerj.5233
https://peerj.com/


helpful feedback and suggestions for this paper. Thank you to Karel B�rinda and Nick
Loman for reviewing this paper and providing helpful feedback.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This work was supported by the Quadram Institute Bioscience BBSRC funded Core
Capability Grant (project number BB/CCG1860/1) and by the Wellcome Trust (grant WT
098051). The funders had no role in study design, data collection and analysis, decision to
publish, or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
Quadram Institute Bioscience BBSRC funded Core Capability Grant: project number BB/
CCG1860/1.
Wellcome Trust: WT 098051.

Competing Interests
The authors declare that they have no competing interests.

Author Contributions
� Andrew J. Page conceived and designed the experiments, performed the experiments,
analysed the data, contributed reagents/materials/analysis tools, prepared figures and/or
tables, authored or reviewed drafts of the paper, approved the final draft.

� Jacqueline A. Keane authored or reviewed drafts of the paper, approved the final draft.

Data Availability
The following information was supplied regarding data availability:

GitHub: https://github.com/andrewjpage/krocus.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj.5233#supplemental-information.

REFERENCES
Afgan E, Sloggett C, Goonasekera N, Makunin I, Benson D, Crowe M, Gladman S,

Kowsar Y, Pheasant M, Horst R, Lonie A. 2015. Genomics virtual laboratory: a practical
bioinformatics workbench for the cloud. PLOS ONE 10(10):e0140829
DOI 10.1371/journal.pone.0140829.t001.

Chin CS, Alexander DH, Marks P, Klammer AA, Drake J, Heiner C, Clum A, Copeland A,
Huddleston J, Eichler EE, Turner SW, Korlach J. 2013.Nonhybrid, finished microbial genome
assemblies from long-read SMRT sequencing data. Nature Methods 10(6):563–569
DOI 10.1038/nmeth.2474.

Connor T, Loman N, Thompson S, Smith A, Southgate J, Poplawski R, Bull M, Richardson E,
Ismail M, Thompson S, Kitchen C, Guest M, Bakke M, Sheppard S, Pallen M. 2016. CLIMB

Page and Keane (2018), PeerJ, DOI 10.7717/peerj.5233 9/11

https://github.com/andrewjpage/krocus
http://dx.doi.org/10.7717/peerj.5233#supplemental-information
http://dx.doi.org/10.7717/peerj.5233#supplemental-information
http://dx.doi.org/10.1371/journal.pone.0140829.t001
http://dx.doi.org/10.1038/nmeth.2474
http://dx.doi.org/10.7717/peerj.5233
https://peerj.com/


(the Cloud Infrastructure for Microbial Bioinformatics): an online resource for the medical
microbiology community. Microbial Genomics 2(9):e000086 DOI 10.1099/mgen.0.000086.

Faria NR, Quick J, Claro IM, Thézé J, De Jesus JG, Giovanetti M, Kraemer MUG, Hill SC,
Black A, Da Costa AC, Franco LC, Silva SP, Wu CH, Raghwani J, Cauchemez S, Du Plessis L,
Verotti MP, De Oliveira WK, Carmo EH, Coelho GE, Santelli ACFS, Vinhal LC,
Henriques CM, Simpson JT, Loose M, Andersen KG, Grubaugh ND, Somasekar S, Chiu CY,
Muñoz-Medina JE, Gonzalez-Bonilla CR, Arias CF, Lewis-Ximenez LL, Baylis SA,
Chieppe AO, Aguiar SF, Fernandes CA, Lemos PS, Nascimento BLS, Monteiro HAO,
Siqueira IC, De Queiroz MG, De Souza TR, Bezerra JF, Lemos MR, Pereira GF, Loudal D,
Moura LC, Dhalia R, França RF, Magalhães T, Marques ET Jr, Jaenisch T, Wallau GL,
De Lima MC, Nascimento V, De Cerqueira EM, De Lima MM, Mascarenhas DL, Neto JPM,
Levin AS, Tozetto-Mendoza TR, Fonseca SN, Mendes-Correa MC, Milagres FP, Segurado A,
Holmes EC, Rambaut A, Bedford T, Nunes MRT, Sabino EC, Alcantara LCJ, Loman NJ,
Pybus OG. 2017. Establishment and cryptic transmission of Zika virus in Brazil and the
Americas. Nature 546(7658):406–410 DOI 10.1038/nature22401.

Feijao P, Yao HT, Fornika D, Gardy J, Hsiao W, Chauve C, Chindelevitch L. 2018.
MentaLiST—a fast MLST caller for large MLST schemes. Microbial Genomics 4(2):e000146
DOI 10.1099/mgen.0.000146.

Gardy JL, Loman NJ. 2018. Towards a genomics-informed, real-time, global pathogen surveillance
system. Nature Reviews Genetics 19(1):9–20 DOI 10.1038/nrg.2017.88.

Gupta A, Jordan IK, Rishishwar L. 2017. stringMLST: a fast K-mer based tool for multilocus
sequence typing. Bioinformatics 33(1):119–121 DOI 10.1093/bioinformatics/btw586.

Hunt M, De Silva N, Otto TD, Parkhill J, Keane JA, Harris SR. 2015. Circlator: automated
circularization of genome assemblies using long sequencing reads. Genome Biology 16(1):294
DOI 10.1186/s13059-015-0849-0.

Jolley KA, Maiden MCJ. 2010. BIGSdb: scalable analysis of bacterial genome variation at the
population level. BMC Bioinformatics 11(1):595 DOI 10.1186/1471-2105-11-595.

Koren S, Walenz BP, Berlin K, Miller JR, Bergman NH, Phillippy AM. 2017. Canu: scalable
and accurate long-read assembly via adaptive K-mer weighting and repeat separation.
Genome Research 27(5):722–736 DOI 10.1101/gr.215087.116.

Li H. 2016. Minimap and miniasm: fast mapping and de novo assembly for noisy long sequences.
Bioinformatics 32(14):2103–2110 DOI 10.1093/bioinformatics/btw152.

Liu L, Li Y, Li S, Hu N, He Y, Pong R, Lin D, Lu L, Law M. 2012. Comparison of next-generation
sequencing systems. BioMed Research International 2012:1–11 DOI 10.1155/2012/251364.

Page AJ, Alikhan NF, Carleton HA, Seemann T, Keane JA, Katz LS. 2017. Comparison of
classical multi-locus sequence typing software for next-generation sequencing data.
Microbial Genomics 3(8):e000124 DOI 10.1099/mgen.0.000124.

Quail MA, Smith M, Coupland P, Otto TD, Harris SR, Connor TR, Bertoni A, Swerdlow HP,
Gu Y. 2012. A tale of three next generation sequencing platforms: comparison of Ion torrent,
pacific biosciences and Illumina MiSeq sequencers. BMC Genomics 13(1):341
DOI 10.1186/1471-2164-13-341.

Quick J, Ashton P, Calus S, Chatt C, Gossain S, Hawker J, Nair S, Neal K, Nye K, Peters T,
De Pinna E, Robinson E, Struthers K, Webber M, Catto A, Dallman TJ, Hawkey P,
Loman NJ. 2015. Rapid draft sequencing and real-time nanopore sequencing in a hospital
outbreak of salmonella. Genome Biology 16(1):114 DOI 10.1186/s13059-015-0677-2.

Vaser R, Sovi�c I, Nagarajan N, Šiki�c M. 2017. Fast and accurate de novo genome assembly from
long uncorrected reads. Genome Research 27(5):737–746 DOI 10.1101/gr.214270.116.

Page and Keane (2018), PeerJ, DOI 10.7717/peerj.5233 10/11

http://dx.doi.org/10.1099/mgen.0.000086
http://dx.doi.org/10.1038/nature22401
http://dx.doi.org/10.1099/mgen.0.000146
http://dx.doi.org/10.1038/nrg.2017.88
http://dx.doi.org/10.1093/bioinformatics/btw586
http://dx.doi.org/10.1186/s13059-015-0849-0
http://dx.doi.org/10.1186/1471-2105-11-595
http://dx.doi.org/10.1101/gr.215087.116
http://dx.doi.org/10.1093/bioinformatics/btw152
http://dx.doi.org/10.1155/2012/251364
http://dx.doi.org/10.1099/mgen.0.000124
http://dx.doi.org/10.1186/1471-2164-13-341
http://dx.doi.org/10.1186/s13059-015-0677-2
http://dx.doi.org/10.1101/gr.214270.116
http://dx.doi.org/10.7717/peerj.5233
https://peerj.com/


Votintseva AA, Bradley P, Pankhurst L, Del Ojo Elias C, Loose M, Nilgiriwala K, Chatterjee A,
Smith EG, Sanderson N, Walker TM, Morgan MR, Wyllie DH, Walker AS, Peto TEA,
Crook DW, Iqbal Z. 2017. Same-day diagnostic and surveillance data for tuberculosis
via whole-genome sequencing of direct respiratory samples. Journal of Clinical Microbiology
55(5):1285–1298 DOI 10.1128/jcm.02483-16.

Wick R. 2017a. Basecalled ONT reads. figshare DOI 10.4225/49/595c46ae5efb4.

Wick R. 2017b. Unicycler (v0.4.0) + Nanopolish (v0.7.0) assemblies (ONT-only). figshare
DOI 10.4225/49/595c4b31defd0.

Wick RR, Judd LM, Gorrie CL, Holt KE. 2017a. Unicycler: resolving bacterial genome
assemblies from short and long sequencing reads. PLOS Computational Biology 13(6):e1005595
DOI 10.1371/journal.pcbi.1005595.

Wick RR, Judd LM, Gorrie CL, Holt KE. 2017b. Completing bacterial genome assemblies with
multiplex MinION sequencing. Microbial Genomics 3(10):e000132
DOI 10.1099/mgen.0.000132.

Wick R, Judd LM, Holt KE. 2018. Comparison of Oxford Nanopore basecalling tools
(Version v5.1). Zenodo DOI 10.5281/zenodo.1188469.

Yang C, Chu J, Warren RL, Birol I. 2017. NanoSim: nanopore sequence read simulator based
on statistical characterization. Gigascience 6(4):1–6 DOI 10.1093/gigascience/gix010.

Page and Keane (2018), PeerJ, DOI 10.7717/peerj.5233 11/11

http://dx.doi.org/10.1128/jcm.02483-16
http://dx.doi.org/10.4225/49/595c46ae5efb4
http://dx.doi.org/10.4225/49/595c4b31defd0
http://dx.doi.org/10.1371/journal.pcbi.1005595
http://dx.doi.org/10.1099/mgen.0.000132
http://dx.doi.org/10.5281/zenodo.1188469
http://dx.doi.org/10.1093/gigascience/gix010
http://dx.doi.org/10.7717/peerj.5233
https://peerj.com/

	Rapid multi-locus sequence typing direct from uncorrected long reads using Krocus
	Introduction
	Materials and Methods
	Results
	Discussion
	Conclusion
	flink6
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


