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The accumulation of RNA-Seq gene expression data in recent years has resulted in large

and complex data sets of high dimensions. Exploratory analysis, including data mining and

visualization, reveals hidden patterns and potential outliers in such data, but is often

challenged by the high dimensional nature of the data. The scatterplot matrix is a

commonly used tool for visualizing multivariate data, and allows us to view multiple

bivariate relationships simultaneously. However, the scatterplot matrix becomes less

effective for high dimensional data because the number of bivariate displays increases

quadratically with data dimensionality. In this study, we introduce a selection criterion for

each bivariate scatterplot and design/implement an algorithm that automatically scan and

rank all possible scatterplots, with the goal of identifying the plots in which separation

between two pre-defined groups is maximized. By applying our method to a multi-

experiment Arabidopsis RNA-Seq data set, we were able to successfully pinpoint the

visualization angles where genes from two biological pathways are the most separated, as

well as identify potential outliers.
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Abstract8

The accumulation of RNA-Seq gene expression data in recent years has resulted9

in large and complex data sets of high dimensions. Exploratory analysis, including10

data mining and visualization, reveals hidden patterns and potential outliers in such11

data, but is often challenged by the high dimensional nature of the data. The scat-12

terplot matrix is a commonly used tool for visualizing multivariate data, and allows13

us to view multiple bivariate relationships simultaneously. However, the scatterplot14

matrix becomes less effective for high dimensional data because the number of bi-15

variate displays increases quadratically with data dimensionality. In this study, we16

introduce a selection criterion for each bivariate scatterplot and design/implement17

an algorithm that automatically scan and rank all possible scatterplots, with the18

goal of identifying the plots in which separation between two pre-defined groups is19

maximized. By applying our method to a multi-experiment Arabidopsis RNA-Seq20

data set, we were able to successfully pinpoint the visualization angles where genes21

from two biological pathways are the most separated, as well as identify potential22

outliers.23

1. INTRODUCTION

High throughput RNA sequencing (RNA-Seq) has been widely adopted for quantifying24

relative gene expression in comparative transcriptome analysis. In recent years, the in-25

creasing number of RNA-seq studies on the model plant Arabidopsis thaliana have resulted26

in an ever-accumulating amount of data from multiple RNA-Seq experiments. In this ar-27

ticle, we will develop tools for the exploration and visualization of such multi-experiment28

data.29

For examining treatment effects of individual genes under multiple conditions and30

across multiple experiments, a vector summarizing the differential expression (DE) results31

under different treatment conditions seems adequate. To visualize the DE profile under32

different treatments, a line plot can be used. However, since genes work interactively in33

all biological processes, it is of interest to examine expression patterns of groups of genes,34

through which the genes’ biological context can be better understood. In light of this,35

researchers often would like to both identify the general trend and pinpoint individual36

aberrations in the expression profile of genes belonging to the same biological pathway,37
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as well as compare the profiles between multiple pathways.38

When multiple genes are being examined together, the line plots are less effective for39

visualizing DE or expression profiles: The lines often cross each other, making it difficult40

to identify the grouping and understand the behavior of individual genes. One common41

alternative visualization method is the scatterplot, which shows expression level under two42

treatment conditions at a time. Scatterplots are effective in showing clustering patterns43

and outliers, greatly assisting with data exploration (Elmqvist et al., 2008). For high44

dimensional data, one has the option of using the scatterplot matrix, in which each panel45

is the scatterplot for the corresponding pairs of features. However, manual scanning46

of all possible pairwise scatterplots can be arduous or even fruitless at times, because47

the number of possible visualization angles increases quadratically with respect to data48

dimensionality (p choose 2 possible angles).49

In this paper, we propose to automatically search for the best low dimensional visual-50

ization angles (2-, 3-, or 4-dimensional) based on a context-sensitive, numeric measure of51

importance, thereby reducing the amount of effort invested in scatterplot scanning. In our52

study, we hope to explore the patterns and differences in gene expression profile between53

two phytohormone signaling pathways, and therefore, we would like the top ranked scat-54

terplots to contain as much information as possible on pathway classification. We thus55

define such an importance measure for the dimension subsets such that the scatterplots56

will show the largest separation between different pre-defined groups in the data set.57

For this study, we will look for feature subsets upon which the pathways ethylene (ET)58

and jasmonate (JA) are the most separated, and quantify the between-group separation by59

calculating the repeated cross-validation (RCV) error of misclassification using MclustDA60

(Fraley and Raftery, 2002), a model-based classification method. In Figure 1, we show61

one of the top ranked 2-subset feature combinations that give the greatest separation62

between two pathways, as well as subset giving the smallest separation. Comparing the63

two scatterplots, we can observe that the two pathway groups in Figure 1(a) are more64

visually distinguishable than those in Figure 1.65
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(a) Group Separation = 0.7082 (b) Group Separation = 0.5355

Figure 1: Scatterplots of 2-dim feature subsets reflecting maximum and minimum group

separations. Dashed-line square marks ±1 range from the origin. Different classes dis-

tinguished with color. Ellipses correspond to component mean and covariance fitted by

MclustDA. Treatment i-j represents the jth treatment in experiment i.

The rest of the paper is formatted as follows: Section 2 outlines the collection and66

processing of the data and information on the experiments and biological pathways. The67

statistical methods are described in Section 3. In Section 4, we list the results obtained by68

applying our method to the collected data. Finally, we state our conclusion and discuss69

limitations and possibilities for future work in Section 5. Additional proofs and graphs70

are included in the Appendix.71

2. DATA DESCRIPTION AND PROCESSING

2.1 Collecting experimental data

In this study, we use the data collected and processed by Bin Zhuo (Zhuo et al., 2016). All72

5 datasets were acquired from the National Center for Biotechnology Information (NCBI)73

website www.ncbi.nlm.nih.gov and processed through a customized assembly pipeline74

to obtain a matrix of counts for genes in samples. All datasets originate from RNA-Seq75

experiments on the model plant Arabidopsis thaliana, with treatment conditions (includ-76
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ing genetic variants) varying between experiments. All experiments were conducted on77

the leaf tissue. The number of treatments/factor levels also vary among the experiments.78

The GEO (Gene Expression Omnibus) accession numbers (which can be used to directly79

search for the experiment/dataset information) are available as part of the meta-data,80

and the assembly pipeline is described in detail in Zhuo et al. (2016). We have included81

the basic information on the experiments in Table 1.82

ID GEO accession # Title

1 GSE36626

Dynamic Deposition of the Histone H3.3 Variant

Accompanies Developmental Remodeling

of Arabidopsis Transcriptome (mRNA-Seq)

2 GSE39463

Time-course RNA-seq analysis of the barley MLA1

immune receptor-mediated response to barley

powdery mildew fungus Bgh in Arabidopsis thaliana

3 GSE48235
Four distinct types of dehydration stress memory

genes in Arabidopsis thaliana

4 GSE51304
Non-CG methylation patterns shape the

epigenetic landscape in Arabidopsis

5 GSE54677
Transcriptional gene silencing by Arabidopsis Microrchidia

homologues involves the formation of heteromers

Table 1: Experiment information

For each of the 5 experiments, a negative binomial regression model is fitted to the83

normalized counts, where the normalization factors are computed using the 104 genes84

shared by top 1000 most stably expressed genes in three tissue groups (Zhuo et al., 2016).85

After removing the columns corresponding to the baseline expression levels of the control86

groups, the resulting matrix summarizes the log (base 2) fold changes under different87

treatments across the 5 experiments: Each column represents the log fold changes of gene88

expression between one treatment group (or a gene knockout mutant) and the control89

group (or wildtype) in one of the experiments.90

4
PeerJ reviewing PDF | (2017:12:22729:0:3:NEW 17 Jan 2018)

Manuscript to be reviewed



2.2 Finding pathway genes

For this study, we focus our attention on the signaling pathways of two phytohormones:91

ethylene (ET) and jasmonic acid (JA). As a plant hormone, ethylene is commercially92

important due to its regulation on fruit ripening (Lin et al., 2009). JA acts as a key93

cellular signal involved in the activation of immune responses to most insect herbivores94

and necrotrophic microorganisms (Ballaré, 2010).95

For each pathway, we first use AmiGO 2 (http://amigo.geneontology.org/amigo/96

landing) to search for the list of genes involved, and then identify the subset of genes97

in our data set that belong to the pathway through cross-reference. Genes with a fold98

change of < 2 under all treatment conditions are filtered out. The name, GO accession99

number, and the number of genes in each pathway are listed in Table 2.100

ID Pathway name GO accession # # Genes

ET Ethylene-activated signaling pathway GO: 0009873 86

JA Jasmonic acid mediated signaling pathway GO: 0009867 48

Table 2: Pathway information

In Figure 2, we display the expression profile of genes that belong to each pathway101

group. Under certain individual treatment-control contrasts (e.g. 2-3, 4-3, 5-1), there102

exist observable similarities between the distribution of expression levels, while it is more103

difficult to tell under other treatments.104
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Figure 2: Gene expression profile plot for pathways ET and JA. Treatments from the same experiment

are joined by orange lines. Different experiments are joined by grey dashed lines. Feature i-j represents

the jth treatment-control contrast in experiment i.

3. METHOD

3.1 Mixture discriminant analysis via MclustDA

In this section, we will start by introducing a classification method named MclustDA, and105

then define a measure for group separation using cross-validation results with MclustDA.106

Finally, we lay out our strategy for reducing data dimensionality with the ultimate goal107

of simplifying navigation of scatterplots.108

109

MclustDA model In discriminant analysis (DA), known classifications of some ob-110

servations are used to classify others. The number of classes, G, is assumed to be known.111

For probabilistic DA methods, it is assumed that observations in class k follow a class112

specific probability distribution fk(·). Let τk represent the proportion of observations in113

class k. According to Bayes’s theorem, it follows that114

P (yyy ∈ class j) =
τjfj(yyy)

∑G

k=1 τkfk(yyy)
,

where observation yyy is assigned to the most probable class.115

Commonly used DA methods, including Fisher’s linear discriminant analysis (LDA)116

and quadratic discriminant analysis (QDA), assume a multivariate normal density for117

each class:118
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fk(yyy) = φ(yyy|µk,Σk).

The method is called LDA if the covariance matrices for all classes coincide (Σk = Σ119

for k = 1, ..., G), and is called QDA if the class covariances are allowed to vary.120

MclustDA (Fraley and Raftery, 2002), an extension and generalization to LDA and121

QDA, models each class density as a mixture of multivariate normals. The density for122

class j is as follows:123

fj(yyy|θk) =

Gj
∑

k=1

τjkφ(yyy|µjk,Σjk),

where Gj is the number of components for class j, {τjk} are mixing proportions for com-124

ponents in class j, and θk is the vector of parameters for the normal mixture. Component125

covariances Σjk are allowed to vary both within and between classes.126

Parameters within each class are separately estimated by maximum likelihood via the127

EM algorithm (Dempster et al., 1977), which is equivalent to fitting a Mclust (Fraley and128

Raftery, 2002) model for each class. And just like Mclust, MclustDA performs model129

selection within each class for the number of mixture components as well as covariance130

matrix parameterizations with Bayesian information criterion (Schwarz, 1978).131

132

Comparison with LDA In our study, MclustDA is chosen over LDA/QDA as the133

classifier due to its greater flexibility in describing the data. In RNA-Seq analysis, we134

typically assume that the majority of genes are not differentially expressed, and therefore135

we expect to see a cluster of points around the origin. Since MclustDA proposes to fit136

more than one normal component to each class, it readily captures the cluster of non-DE137

genes as well as any abnormalities that might be of interest.138

In Figure 3, we fitted a MclustDA model and a LDA model on dimensions [3-1, 4-139

2] of our data, separately. In MclustDA fit, each class is described with a mixture of140

two bivariate normal components, with the ellipses representing fitted covariance matrix141

estimates. For details in how the ellipses are constructed, see Appendix A.142

Class JA is fitted with a component centered near the origin, representing genes143

with low expression levels under both treatments, as well as a component centered at144
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(2.276, 1.663) that encompasses relatively active genes. Class ET is represented by a145

single normal component centered at (0.537, 0.406).146

In comparison, due to model assumptions, LDA fitted a bivariate normal density to147

each class with covariances being equal, and in this case, the estimated centers almost148

coincide with each other. The fitted normal densities are only able to capture the general149

shape and orientation of each class, while MclustDA provides us with a more detailed150

anatomy of geometric and distributional properties in each class.151

(a) MclustDA fit with 1 and 2 components in each

class

(b) LDA model assuming equal covariance matrix

for each class

Figure 3: Comparison of MclustDA and LDA fit of the same data. Fitted components

and points from different classes are distinguished with color. Ellipses correspond to

component covariances.

3.2 Quantification of group separation

Our definition of group separation measure is motivated by the relationship between152

visualized separation and misclassification probability (from a model-based classifier).153

Suppose we wish to separate two populations π1 and π2. Let X = [X1, ..., Xp] denote154

the p-dimensional measurement vector of an observation. We assume that densities f1(x)155

and f2(x) describe the variability of the two populations. Let p1 and p2 denote prior156

probability of each population. Define c(1|2) and c(2|1) as costs of misclassifying an157

object from class 2(1) as class 1(2). Here we let c(1|2) = c(2|1) = 1 to simplify the158

formulation. Let Ω denote the entire sample space, and Ω = R1 ∪R2, where R1 is the set159

of values of x for which we classify objects into π1, and R2 = Ω−R1.160

The probability of misclassifying an object from π1 as π2 is:161
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P (2|1) = P (X ∈ R2|π1) =

∫

R2

f1(x)dx,

and similarly, we have162

P (1|2) = P (X ∈ R1|π2) =

∫

R1

f2(x)dx.

By definition, we can calculate the probability of misclassifying any object:163

P (misclassified as π1) = P (X ∈ R1|π2)P (π2) = P (1|2)p2,

P (misclassified as π2) = P (X ∈ R2|π1)P (π1) = P (2|1)p1.

The Total Probability of Misclassification (TPM) is defined as the probability of either164

misclassifying a π1 object or misclassifying a π2 object, i.e.165

TPM = p1P (2|1) + p2P (1|2). (1)

Suppose Y = {Y1, ..., YN1
} ∼ π1 and Z = {Z1, ..., ZN2

} ∼ π2 are two i.i.d samples from166

the two populations. Assume that a classification system has been trained and tested on167

this data set, and results in the following confusion matrix in Table 3:168

A
ct
u
a
l

C
la
ss

Predicted Class

π1 π2 total

π1 n1|1 n2|1 N1

π2 n1|2 n2|2 N2

total N ′
1 N ′

2

Table 3: Confusion matrix

Then the misclassification error rate (MER), i.e. probability of misclassifying any169

object, is given by:170

MER =
n1|2 + n2|1

N1 +N2

=
n1|2

N2

·
N2

N1 +N2

+
n2|1

N1

·
N1

N1 +N2

. (2)
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Under the assumption that each object is independently classified, the number of mis-171

classified π1 objects, N2|1, follows a Binomial distribution with parameters (N1, P (2|1)).172

Likewise, the number of misclassified π2 objects, N1|2, follows a Binomial distribution173

with parameters (N2, P (1|2)). The maximum likelihood (ML) estimators for P (2|1) and174

P (1|2) can be easily computed:175

P̂ (2|1) =
n2|1

N1

; P̂ (1|2) =
n1|2

N2

.

Now, if we set p1 = N1/(N1 +N2) and p2 = N2/(N1 +N2) as prior probabilities for π1176

and π2, then under independence assumption, it follows that177

MER = p1P̂ (2|1) + p2P̂ (1|2),

that is, MER is a maximum likelihood, and hence consistent, estimate of TPM.178

In practice, however, the MER tends to underestimate TPM because the same data179

has been used for both training and testing. In this study, we use cross-validation to180

address this issue.181

182

Repeated stratified cross-validation One of the most commonly used method to183

estimate the expected error rate is cross-validation (CV). For a K-fold CV, the original184

data is randomly split into K equally sized subsamples, of which K − 1 (training set) are185

used to train a classifier and the remaining one (validation set) is used to test the trained186

classifier. For a binary classification problem, the misclassification error rate (MER), as187

defined in (2), is typically computed using the validation set as a performance measure for188

the classifier. The training-validation process is iterated over all K folds, each time using189

a different subsample as validation set, and the resulting K MER values are averaged. In190

stratified cross-validation, the folds are selected so that they contain approximately the191

same proportion of classes as the original data. It has been shown in previous studies192

that stratified CV tends to perform uniformly better than CV, in terms of both bias and193

variance (Kohavi, 1995).194

Due to the randomness in partitioning the sample into K folds, we have introduced195

variation into the K-fold CV estimator. One way to reduce this variation is to repeat the196

whole cross-validation process multiple times using different pseudorandom allocations197
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of instances to training and validation folds for each repetition (Kim, 2009), and report198

the average of CV estimators across all repetitions. This method is often referred to199

as the repeated cross-validation (RCV). For improved repeatability of results, common200

seeding has been recommended in earlier studies (Powers and Atyabi, 2012). In our201

implementation, we set a fixed random number seed for each repetition of CV.202

Let C ×K-CV denote a K-fold CV with C repetitions. There has been much discus-203

sion on the optimal choice of C and K (Kohavi, 1995; Kim, 2009; Powers and Atyabi,204

2012). Increasing C tends to decrease the variance of the RCV estimator, but at the same205

time increases the computational time. The choice of K takes into account the tradeoff206

between bias and variance of the CV estimator (of the expected error rate). For small207

K, less data is used to train the classifier and therefore the error estimate tends to be208

biased. For large K, the estimator becomes less biased due to more data being used in209

training, but its variance is inflated due to higher correlation between different training210

folds. Kohavi (1995) recommends using a stratified 10-fold CV with multiple runs, and211

we chose C = 10 considering the amount of computation required as well as the specs of212

our hardware.213

214

Quantify group separation We define the group separation index (GSI) as215

GSI = 1− ǫ̂rcv, (3)

where ǫ̂rcv denotes the repeated stratified CV estimator of the total misclassification prob-216

ability using MclustDA as the classifier.217

Intuitively, for a chosen feature subset, a small CV error indicates that the data can be218

more easily classified when projected onto these dimensions, which, in our expectation,219

can be reflected in the graphical representation of the data by showing that different220

classes can be more easily distinguished through simple visualization.221

3.3 Feature subset selection via GSI ranking

In this section, we describe the data in each pathway with a low dimensional representation222

for easier interpretation by selecting a parsimonious subset of features (treatments) that223

contain as much information on pathway classification/separation as possible. In other224

words, we hope to find the dimensions to project the data onto such that the separation225
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between two pathways is as large as possible. We use GSI, as defined in (3), to measure226

the separation between two pathway groups.227

In order to find the optimal feature subset in terms of group separation, we designed228

and implemented the following algorithm:229

Step 1: Determine the number of features M to keep. Choose M from {2, 3, 4}.230

Step 2: List all M -subsets of features exhaustively. Call this collection of subsets231

FM .232

Step 3: For each member of FM , subset the data accordingly. Calculate and233

record a 10× 10 stratified CV error rate (and equivalently, GSI) with MclustDA as234

classifier on each subsetted data. For each fold of CV, use misclassification error235

rate as measure of fit.236

– CV model fitting: First fit a MclustDA model to the entire subsetted data,237

setting maximum number of components as 2. Then use the same fitted model238

(number of components, parameterization) for every fold of CV.239

Step 4: Rank the feature subsets in FM according to their GSI values. Feature240

subsets with higher GSI values are ranked higher.241

Step 5: Repeat above steps for other values of M .242

For the purpose of finding “good” angles for data visualization, we will examine the243

scatterplots and scatterplot matrices generated by top-ranked feature subsets. The results244

will be discussed in Section 4.245

246

Random number seed To ensure reproducibility of our results, for each of 2-, 3-247

and 4-subset selection process, we followed the following protocol to set random number248

seeds:249

Step 1: Choose a list of 50 random number seeds. Partition the list into 5 batches250

of 10 seeds.251

Step 2: For each feature subset, run 10-fold stratified CV for 50 times, each time252

using a different seed from the list.253
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Step 3: Average results within each of 5 batches of 10 random seeds to obtain254

10 × 10 stratified CV result. For instance, average of seeds 1∼10 results serves as255

first run of 10× 10 RCV; average of seeds 11∼20 serves as second run, etc.256

3.4 Dimension reduction via PCA

Principal component analysis (PCA) maps the data onto a lower dimensional space in such257

a way that the variance of the data in the low-dimensional representation is maximized.258

As a dimension reduction technique, usually only the first few principal components (PCs)259

are used. Despite its popularity in the field of data visualization, the formulation of PCA260

does not involve any class information in the data, which implies that the projected261

directions corresponding to the largest variance may not contain the best separability262

information.263

To verify this observation, using the expression data from all 5 experiments, we calcu-264

lated its principal components, and treat them as the new (projected) features. Then for265

the first 2, 3 and 4 PCs, respectively, we calculated the group separation index for each266

case using 10× 10-CV with MclustDA and compare the results with ours.267

4. RESULTS

4.1 Repeated cross-validation with MclustDA

With the secondary purpose of testing the stability of repeated CV, we executed multiple268

runs for each of the 2-, 3-, and 4-subset feature selection procedures. The top ranked269

feature subsets as well as their corresponding GSI values are presented in Tables 4∼6.270
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Table 4: Top ranked 2-subsets from multiple runs of 10×10 RCV. Ties are marked with

asterisk (∗). Combinations appearing in all 5 runs are highlighted with distinguishing

colors.

(a) Run 1

Rank Subset GSI

1 [4-7, 4-8] 0.698

2 [3-1, 3-2] 0.694

3 [4-7, 5-2] 0.688

4 [3-1, 5-2] 0.681

5 [2-1, 4-7] 0.680

(b) Run 2

Rank Subset GSI

1 [4-7, 4-8] 0.703

2 [3-1, 3-2] 0.696

3 [4-7, 5-2] 0.690

4 [3-1, 5-8] 0.682

5 [3-1, 5-2] 0.681

(c) Run 3

Rank Subset GSI

1∗ [3-1, 3-2] 0.697

2∗ [4-7, 5-2] 0.697

3 [4-7, 4-8] 0.689

4 [3-1, 5-2] 0.685

5 [2-1, 4-7] 0.675

(d) Run 4

Rank Subset GSI

1 [3-1, 3-2] 0.704

2 [4-7, 4-8] 0.695

3 [3-1, 5-2] 0.687

4 [3-1, 5-8] 0.684

5 [4-7, 5-2] 0.681

(e) Run 5

Rank Subset GSI

1 [4-7, 4-8] 0.708

2 [3-1, 3-2] 0.702

3 [4-7, 5-2] 0.689

4 [4-4, 5-2] 0.688

5 [3-1, 5-2] 0.683

14
PeerJ reviewing PDF | (2017:12:22729:0:3:NEW 17 Jan 2018)

Manuscript to be reviewed



Table 5: Top ranked 3-subsets from multiple runs of 10×10 RCV. Ties are marked with

asterisk (∗). Combinations appearing in all 5 runs are highlighted with distinguishing

colors.

(a) Run 1

Rank Subset GSI

1 [3-2, 4-7, 5-2] 0.724

2 [3-2, 5-2, 5-6] 0.720

3 [1-1, 3-1, 5-2] 0.718

4 [3-1, 5-2, 5-6] 0.710

5 [2-2, 2-3, 3-1] 0.707

(b) Run 2

Rank Subset GSI

1∗ [1-1, 3-1, 5-2] 0.717

2∗ [3-2, 4-7, 5-2] 0.717

3 [3-2, 5-2, 5-6] 0.713

4 [1-1, 2-2, 3-1] 0.708

5 [2-2, 2-3, 3-1] 0.708

(c) Run 3

Rank Subset GSI

1 [3-2, 5-2, 5-6] 0.725

2 [1-1, 3-1, 5-2] 0.717

3∗ [3-1, 5-2, 5-9] 0.715

4∗ [3-2, 4-7, 5-2] 0.715

5 [3-1, 4-7, 5-2] 0.714

(d) Run 4

Rank Subset GSI

1 [3-2, 5-2, 5-6] 0.736

2 [1-1, 3-1, 5-2] 0.728

3 [2-2, 2-3, 3-1] 0.713

4∗ [3-1, 4-7, 5-2] 0.712

5∗ [3-2, 4-7, 5-2] 0.712

(e) Run 5

Rank Subset GSI

1 [1-1, 3-1, 5-2] 0.726

2 [3-2, 4-7, 5-2] 0.724

3 [3-2, 5-2, 5-6] 0.720

4 [2-3, 3-1, 5-2] 0.715

5 [2-2, 2-3, 3-1] 0.710
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Table 6: Top ranked 4-subsets from multiple runs of 10×10 RCV. Ties are marked with

asterisk (∗). Combinations appearing in all 5 runs are highlighted with distinguishing

colors.

(a) Run 1

Rank Subset GSI

1 [1-1, 4-2, 4-4, 5-2] 0.730

2 [4-4, 4-5, 4-7, 5-8] 0.728

3 [3-1, 4-4, 4-5, 5-2] 0.727

4 [4-1, 4-7, 4-8, 5-1] 0.725

5 [3-2, 4-5, 4-7, 5-7] 0.724

(b) Run 2

Rank Subset GSI

1 [1-1, 4-2, 4-4, 5-2] 0.745

2 [3-1, 4-4, 4-5, 5-2] 0.741

3 [2-3, 3-1, 4-4, 4-5] 0.734

4 [2-3, 3-1, 4-7, 5-2] 0.725

5 [3-2, 4-5, 4-7, 5-7] 0.724

(c) Run 3

Rank Subset GSI

1 [1-1, 4-2, 4-4, 5-2] 0.735

2 [4-4, 4-5, 4-7, 5-8] 0.731

3∗ [3-2, 4-5, 4-7, 5-7] 0.726

4∗ [4-1, 4-7, 4-8, 5-1] 0.726

5 [3-1, 4-4, 4-5, 5-2] 0.725

(d) Run 4

Rank Subset GSI

1 [1-1, 4-2, 4-4, 5-2] 0.739

2∗ [3-1, 4-4, 4-5, 5-2] 0.731

3∗ [3-2, 4-5, 4-7, 5-7] 0.731

4 [4-4, 4-5, 4-7, 5-8] 0.723

5 [3-1, 3-2, 4-7, 5-2] 0.722

(e) Run 5

Rank Subset GSI

1 [1-1, 4-2, 4-4, 5-2] 0.740

2 [3-1, 4-4, 4-5, 5-2] 0.735

3∗ [3-2, 4-5, 4-7, 5-7] 0.730

4∗ [2-2, 2-3, 3-1, 4-7] 0.730

5 [3-2, 4-6, 4-7, 5-6] 0.723

4.1.1 Stability of RCV model selection results

Although the top ranked feature subsets sometimes differ between multiple RCV runs,271

we are still able to observe high degree of overlap between the results:272
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For 4-subset (Table 6), [1-1, 4-2, 4-4, 5-2], [3-1, 4-4, 4-5, 5-2] and [3-2, 4-5, 4-7, 5-7]273

are among top ranked feature combinations in all 5 runs.274

For 3-subset (Table 5), feature combinations [3-2, 4-7, 5-2], [3-2, 5-2, 5-6] and [1-1,275

3-1, 5-2] are ranked top for all 5 runs.276

For 2-subset (Table 4), [4-7, 4-8], [3-1, 3-2], [4-7, 5-2] and [3-1, 5-2] are among top277

ranked feature combinations for all runs.278

4.1.2 Top Ranked Scatterplot: Same Experiment

In Figure 4, we show the scatterplot of the data projected onto dimensions [4-7, 4-8], one279

of the top ranked 2-subset feature combinations. These two features originate from the280

same experiment.281
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Figure 4: Scatterplot of data projected on dimensions 4-7 and 4-8. Pathways are distin-

guished with color. Ellipses represent estimated covariances fitted by MclustDA. Potential

outliers highlighted and labeled with their names. Dashed-line square is ± log(2) range

from the origin.

Experiment 4 Since both features originate from the same experiment, we will focus282

on the context of this experiment and first present some background information. The283

purpose of Experiment 4 is to characterize non-CG methylation and its interaction with284

histone methylation in Arabidopsis thaliana(Stroud et al., 2014). Non-CG methylation is285

a category of DNA methylation, where methyl groups are added to the DNA molecule,286

altering its chemical structure and thereby changing its activity. DNA methylation is usu-287

ally catalyzed by DNA methyltransferases (MTases), which transfer and covalently bind288

methyl groups to DNA. In Arabidopsis, the principal DNA MTases include chromomethy-289
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lase (CMT) and domains rearranged MTase (DRM) proteins, in particular CMT3 and290

DRM2. Expression of DRM1 is scarcely detected, while the function of CMT2 has not291

been studied as well as that of CMT3.292

Histone methylation is a process by which methyl groups are transferred to amino acids293

of histone proteins. Histone methylation can either increase or decrease gene transcription,294

depending on which amino acids are methylated and the degree of methylation. The295

methylation process is most commonly observed on lysine residues (K) of histone tails H3296

and H4, among which H3K9 (lysine residue at 9th position on H3) serves as a common site297

for gene inactivation. Lysine methylation requires a specific MTase, usually containing an298

evolutionarily conserved SET domain. In Arabidopsis, Su(var)3-9 homologue 4 (SUVH299

4), SUVH 5 and SUVH 6 are the major H3K9 MTases.300

Feature 4-7 corresponds to the drm1 drm2 cmt2 cmt3 quadruple gene knockout mu-301

tant, created by crossing cmt2 to cmt3 and drm1 drm2 double mutants. It was found302

that non-CG methylation was eliminated in such mutants, indicating that DRM1, DRM2,303

CMT2 and CMT3 proteins are collectively responsible for all non-CG methylation in Ara-304

bidopsis. Feature 4-8 corresponds to the suvh4 suvh5 suvh6 triple mutant. The control305

group of this experiment corresponds to wildtype Arabidopsis. Table 7 summarizes the306

above information.307

Feature ID Sample GEO accession # Description

4-0 (control) GSM1242374, GSM1242375 Wildtype

4-7 GSM1242388, GSM1242389 drm1 drm2 cmt2 cmt3 quadruple mutant

4-8 GSM1242390, GSM1242391 suvh4 suvh5 suvh6 triple mutant

Table 7: Feature information

Outliers Potential outliers from JA pathway, as highlighted and labeled in the scat-308

terplot, fall into the fourth quadrant, which implicates that these genes are up-regulated309

under 4-7 (DNA methylation) but down-regulated under 4-8 (histone methylation). In-310

formation on these genes is collected from TAIR (Berardini et al., 2015) and displayed in311

Table 8. One interesting discovery we made was that one of the outliers, AT3G56400,312

functions as a repressor of JA-regulated genes. In other words, its gene product inhibits313

the expression of other genes related to JA regulation.314
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Gene name Description

AT5G44210
encodes a member of the ERF (ethylene response factor)

subfamily B-1 of ERF/AP2 transcription factor family (ATERF-9)

AT2G44840
Same function as AT5G44210;

Cell-to-cell mobile mRNA

AT5G26170
WRKY Transcription Factor, Group II-c;

Involved in jasmonic acid inducible defense responses.

AT3G56400

WRKY Transcription Factor, Group III;

Repressor of JA-regulated genes;

Activator of SA-dependent defense genes.

AT1G28400 GATA zinc finger protein

Table 8: Outlier information

Pattern differences The first thing we can observe from the scatterplot is that a315

majority of genes are expressed at a low level (with fold change < 2) under both treatment316

conditions, as demonstrated by the clustered points inside ±1 square. Although most317

genes are expressed at a relatively low level, we are still able to identify the difference318

between the two pathways. If a differential expression (DE) analysis is performed and319

only DE genes are included in our model, it will be less likely for us to spot the same320

structural difference as before because we would lose much group level information by321

filtering out non-DE genes.322

Secondly, not considering the outliers, genes belonging to the JA pathway are mostly323

concentrated around the origin as well as in quadrant III, meaning that most JA genes324

are down-regulated under both treatments. The expression pattern of ET pathway genes,325

however, is more diverse than that of JA genes. These genes populate all four quadrants326

of the coordinate system, with the highest density in quadrant I followed by quadrant II327

and III. That is, a majority of ET genes are up-regulated under both treatments, while328

most of the others are down-regulated under 4-7.329
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4.1.3 Top Ranked Scatterplot: Different Experiments

In Figure 5, we show the scatterplot of another top ranked feature combination, [3-1, 5-2],330

which come from two different experiments.331

Figure 5: Scatterplot of data projected on dimensions 3-1 and 5-2. Pathways are distin-

guished with color. Ellipses represent estimated covariances fitted by MclustDA. Potential

outliers highlighted and labeled with their names. Dashed-line square is ± log(2) range

from the origin.

Experiment 3 The focus of this study is the response of Arabidopsis to multiple332

consecutive dehydration stresses (Ding et al., 2013). Based on the observation that pre-333

exposure to abiotic stresses (including dehydration) may alter plants subsequent responses334

by improving resistance to future exposures, the researchers hypothesized the existence of335

“memory genes”: genes that provide altered response to subsequent stresses (Ding et al.,336
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2012).337

A RNA-Seq study is performed to determine the transcriptional responses of Arabidop-338

sis plants that have experienced multiple exposures to dehydration stress and compare339

them with the transcriptional behavior of plants encountering the stress for the first time.340

The dehydration treatments are applied in the following fashion:341

(1) Plants were removed from soil and air-dried for 2h. Call this exposure Stress 1 (S1).342

(2) Plants were then rehydrated for 22h by being placed in humid chambers with their343

roots in a few drops of water. Call this step Recovery 1 (R1).344

(3) Air-dry R1 plants for 2h. This is Stress 2 (S2), followed by R2, which is the same345

as R1.346

(4) Air-dry R2 plants for 2h. This is Stress 3 (S3).347

RNA-Seq analyses were then performed on leave tissues from pre-stressed/watered348

plants (control), S1 plants and S3 plants. For each treatment group, plants from two349

independent biological samples were used. In our data, feature 3-1 corresponds to S1, or350

first drought stress. See Table 9 for a summary.351

352

Experiment 5 In this study, the researchers examine the functional relationship be-353

tween members of the Arabidopsis microrchidia (AtMORC) ATPase family (Moissiard354

et al., 2014), which have been shown to be involved in transposon repression and gene355

silencing. Three of seven MORC homologs were examined: AtMORC1, AtMORC2 and356

AtMORC6. RNA-Seq experiment using single and double mutants indicates that At-357

MORC1 and AtMORC2 act redundantly in gene silencing. Wildtype Arabidopsis was358

used as control group. Treatment groups include both single and double mutant lines:359

atmorc2-1, atmorc2-4, atmorc1-2, atmorc1-5, and atmorc1-2 atmorc2-1, in which two in-360

dividual alleles were used for atmorc1 and atmorc2. In our data, feature 5-2 corresponds361

to the single mutant line atmorc2-1. Table 9 includes summary information on this ex-362

periment.363
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Feature ID Sample GEO accession # Description

3-0 (control) GSM1173202, GSM1173203 Watered condition

3-1 GSM1173204, GSM1173205 First drought stress

5-0 (control) GSM1321694, GSM1321704 Wildtype

5-2 GSM1321696, GSM1321706 atmorc2-1 mutant

Table 9: Feature information for experiments 3 and 5

Outliers In Figure 5, we highlighted a few observations considered as outlying, and364

as before, looked up their information using TAIR. A brief description for each outlier is365

included in Table 10. Gene AT3G56400 is again identified as an outlier, mainly because366

of its highly negative expression level under treatment 3-1, while the near-zero expression367

level under 5-2 indicates its inactivity under this treatment. Gene AT5G13220 has the368

highest expression level under 3-1 among all JA genes, and at the same time not as active369

under 5-2. This gene is interesting because it functions as a repressor of JA signaling,370

and its high expression level could be an implication for repression of JA singaling for371

Arabidopsis plants going through first drought stress (3-1).372

Gene name Description

AT3G56400

WRKY Transcription Factor, Group III;

Repressor of JA-regulated genes;

Activator of SA-dependent defense genes.

AT1G19180

a.k.a. JAZ1

Nuclear-localized protein involved in JA signaling;

JAZ1 transcript levels rise in response to a jasmonate stimulus.

AT5G13220
a.k.a. JAS1, JAZ10

Repressor of JA signaling

AT2G44940 Integrase-type DNA-binding superfamily protein

Table 10: Outlier information for 3-1 and 5-2

Pattern differences From the scatterplot, the first thing we can observe is that quite373

a few genes from both pathways are up- or down-regulated under treatment 3-1, while374
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genes are expressed at an overall low level under 5-2. Nevertheless, a few genes from ET375

group show overexpression pattern under 5-2. JA pathway genes populate quadrants I,376

II and III, while ET pathway genes are mainly located in quadrants I, II and IV. Overall,377

under 5-2, ET genes tends to be more active than JA genes.378

In the previous two sections we singled out two of the top ranked scatterplots for379

discussion. Interested readers are directed to the appendix for additional scatterplots for380

top ranked feature subsets (Figures 6∼13).381

4.2 GSI for PC transformed data

In Table 11, we report the GSI for PC transformed data, as well the maximum GSI382

achieved by subsets of the original data. The proportion of total variation explained is383

66.5% for first 2 PCs, 78.2% for first 3, and 85.6% for first 4. Through comparison,384

we observe that using PCs as new features does not necessarily maximize the separation385

between the distinct groups in the data, therefore confirming our statement in Section 3.4.386

Table 11: Separation index for PC transformed data and maximum GSI for original

data

# of PCs GSI Features max GSI achieved

2 0.638 2 0.708

3 0.642 3 0.736

4 0.639 4 0.745

5. CONCLUSION

Conclusion In this article, we defined a numeric measure for the separation between387

different groups of data, and used said measure to perform low dimensional feature sub-388

set selection in order to find the most interesting angles to visualize high dimensional389

data. By applying our method to a multi-experiment RNA-Seq data on Arabidopsis leave390

tissues, we found that the top ranked feature subsets did demonstrate some interesting391

differences in expression patterns between two biological pathways, which shows that our392

method can be a potentially powerful tool in the exploratory analysis of such high dimen-393
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sional integrated/assembled data from various sources.394

395

Significance Firstly, our method yields well documented results. We enumerated the396

group separation index for every low dimensional feature subset, and constructed the397

scatterplots/scatterplot matrices for each case. If scientists know beforehand which fea-398

tures are of interest, they will be able to directly access the corresponding entry in our399

result. Secondly, through the application of mixture discriminant analysis, we were able400

to summarize the expression pattern of groups of genes using a mixture of only a handful401

of normal components. Furthermore, using the fitted MclustDA ellipses as visual aid, we402

were able to clearly show the geometric structure of each group and make comparisons.403

Finally, as seen in Figure 4, through visualization of the unfiltered data, we are able to404

identify difference in expression patterns of non-DE genes between two biological path-405

ways.406

407

Limitations & Future Work A limitation of our method is the difficulty of scaling408

our feature selection method to data of higher dimensions. The first concern is the heavy409

computational burden required for RCV. In our implementation, although we used parallel410

computing to speed up computation as much as possible, the actual running times for 3-411

and 4-dimensional subset are not quite satisfactory (Table 12), mainly due to the large412

number of possible subsets. However, in practice, the 2-subset results are usually more413

interpretable and visually appealing than its higher dimensional counterparts. Therefore,414

we recommend doing only 2-dim feature subset selection for exploratory purposes.415

Table 12: Average running time for 10-fold cross-validation for all feature subsets, aver-

aged over 50 runs with different random number seeds.

Subset dim. # of subsets Avg. runtime (s)

2 253 65.04

3 1771 512.61

4 8855 2241.43

Another reason is that the scatterplot matrix becomes less informative when the num-416

ber of displayed dimensions exceeds 4. Even in our study, scatterplot matrices of di-417

25
PeerJ reviewing PDF | (2017:12:22729:0:3:NEW 17 Jan 2018)

Manuscript to be reviewed



mensions 3 and 4 cannot fully reflect geometric properties of the data. For 3-d and418

4-d angles, the scatterplot matrix only shows projections to all axial dimensions, which419

doesn’t precisely convey the amount of separation between two classes, computed using420

all 3 or 4 dimensions. It is difficult to visualize the geometric and topological differences421

by only looking at individual panels of scatterplots. To more effectively visualize higher422

dimensional feature subsets, we can consider using interactive visualization tools, such as423

GGobi Swayne et al. (2003) and R Shiny Chang et al. (2017). Both tools allow users to424

identify the same point in all panels of a scatterplot matrix, significantly increasing its425

visual expressiveness.426

427

Error rate definition In our definition of TPM in (1), we made the assumption that428

the cost of misclassifying an object from either class is the same, i.e. c(1|2) = c(2|1). We429

can adjust the cost values if we are more concerned about correctly classifying a certain430

class of observations.431

432

Evaluating reproducibility of experiments Currently, a typical differential expres-433

sion analysis is conducted in a gene-wise manner, i.e. genes are treated as observations and434

the treatment conditions as features. In our study, we took the same approach because435

our goal was to differentiate expression pattern between two groups of genes. However,436

with the increase in the availability of RNA-Seq data thanks to advances in information437

technology, we can also study the comparability and reproducibility of RNA-Seq experi-438

ments. In this sense, we will be exploring the relationship between treatment conditions439

or experiments, with genes acting as features/variables. Evaluation of experiment repro-440

ducibility is usually accomplished by performing the same experiment using the same441

setting, which is, unfortunately, not a common practice in RNA-Seq studies. In light of442

this, one of our long-term goal is the quantification of similarity between RNA-Seq ex-443

periments, which not only accounts for differences in experimental designs and parameter444

settings, but also utilize the information hidden in the expression of genes.445
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A. CONSTRUCTION OF COVARIANCE

ELLIPSES FOR NORMAL COMPONENTS

In this section, we introduce how the covariance ellipses are constructed by MclustDA495

when a scatterplot or a scatterplot matrix is graphed.496

497

For 2D data, suppose the mean and covariance estimates for component k of class j498

are µ̂jk and Σ̂jk, respectively. Also suppose that Σ̂jk has eigenvalues λ1 > λ2 and their499

corresponding eigenvectors eee1 and eee2. Then MclustDA computes the major and minor500

axes of the ellipse centered at µ̂jk the following way:501

major axis = µ̂jk ±
√

λ1eee1, minor axis = µ̂jk ±
√

λ2eee2,

and the resulting ellipse has coverage probability of approximately 0.393.502

503

In the case of higher dimensional data, MclustDA constructs the scatterplot and504

graphs the ellipses two dimensions at a time. Suppose µ̂jk and Σ̂jk are defined the same505

way as above, and consider data dimensions p and q for visualization via scatterplot.506

Let Σ(p,q) = [Σ̂jk](p,q) be the covariance submatrix corresponding to the two dimensions,507

and µ(p,q) = [µ̂jk](p,q) be the corresponding mean vector. Now, suppose Σ(p,q) has eigen-508

value/eigenvector pairs {λ
(p,q)
1 , eee

(p,q)
1 } and {λ

(p,q)
2 , eee

(p,q)
2 } with λ

(p,q)
1 > λ

(p,q)
2 . Then the509

ellipse plotted by MclustDA has major and minor axes as follows:510

major axis = µ(p,q) ±

√

λ
(p,q)
1 eee

(p,q)
1 , minor axis = µ(p,q) ±

√

λ
(p,q)
2 eee

(p,q)
2 ,

where the ellipse has the same coverage probability as the case above.511
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B. SCATTERPLOTS AND SCATTERPLOT

MATRICES FOR SELECT TOP RANKED

FEATURE COMBINATIONS

Figure 6: Scatterplot for 3-1 and 3-2
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Figure 7: Scatterplot for 4-7 and 5-2
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Figure 8: Scatterplot matrix for [3-2, 4-7, 5-2]
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Figure 9: Scatterplot matrix for [3-2, 5-2, 5-6]
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Figure 10: Scatterplot matrix for [1-1, 3-1, 5-2]
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Figure 11: Scatterplot matrix for [1-1, 4-2, 4-4, 5-2]
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Figure 12: Scatterplot matrix for [3-1, 4-4, 4-5, 5-2]
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Figure 13: Scatterplot matrix for [3-2, 4-5, 4-7, 5-7]
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