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ABSTRACT
Background. Dengue is a major and rapidly increasing public health problem.
In Argentina, the southern extreme of its distribution in the Americas, epidemic
transmission takes place during the warm season. Since its re-emergence in 1998 two
major outbreaks have occurred, the biggest during 2016. To identify the environmental
factors that trigger epidemic events, we analyzed the occurrence and magnitude of
dengue outbreaks in time and space at different scales in association with climatic,
geographic and demographic variables and number of cases in endemic neighboring
countries.
Methods. Information on dengue cases was obtained from dengue notifications
reported in the National Health Surveillance System. The resulting database was
analyzed by Generalized Linear Mixed Models (GLMM) under three methodological
approaches to: identify in which years the most important outbreaks occurred in
association with environmental variables and propose a risk estimation for future
epidemics (temporal approach); characterize which variables explain the occurrence of
local outbreaks through time (spatio-temporal approach); and select the environmental
drivers of the geographical distribution of dengue positive districts during 2016 (spatial
approach).
Results. Within the temporal approach, the number of dengue cases country-wide
between 2009 and 2016 was positively associated with the number of dengue cases in
bordering endemic countries and negatively with the days necessary for transmission
(DNT) during the previous autumn in the central region of the country. Annual
epidemic intensity in the period between 1999–2016 was associated with DNT during
previous autumn and winter. Regarding the spatio-temporal approach, dengue cases
within a district were also associated with mild conditions in the previous autumn
along with the number of dengue cases in neighboring countries. As for the spatial
approach, the best model for the occurrence of two or more dengue cases per district
included autumn minimum temperature and human population as fixed factors, and
the province as a grouping variable. Explanatory power of all models was high, in the
range 57–95%.
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Discussion. Given the epidemic nature of dengue in Argentina, virus pressure from
endemic neighboring countries along with climatic conditions are crucial to explain
disease dynamics. In the three methodological approaches, temperature conditions
during autumn were best associated with dengue patterns. We propose that mild
autumns represent an advantage formosquito vector populations and that, in temperate
regions, this advantage manifests as a larger egg bank from which the adult population
will re-emerge in spring. This may constitute a valuable anticipating tool for high
transmission risk events.

Subjects Ecology, Epidemiology
Keywords Arbovirus, Predictive models, Climate, Demography, Aedes aegypti, Epidemiology

INTRODUCTION
Dengue is a mosquito-borne infectious disease caused by a virus with four serotypes (DEN
1-4) of the Flaviviridae family, which is transmitted to man by the bite of mosquitoes
of the genus Aedes, mainly Aedes aegypti in urban areas (Kraemer et al., 2015). Clinical
manifestations of the disease vary widely from asymptomatic to high fevers, headache,
muscle and joint pain, and in some severe cases plasma leakage, hemorrhages and death
(Polwiang, 2016). It stands as one of the main emergent tropical diseases, affecting 390
million people per year and a tenfold at risk in 128 countries, with an estimated annual
global cost of US$8.9 billion (Bhatt et al., 2013; Brady et al., 2012; Shepard et al., 2016). The
major disease burden is registered in South East Asia, South Asia and Latin America; during
2016, over 2.3 million cases were reported only in the Americas, with 244.8 cases for every
100,000 inhabitants (PAHO, 2018).

Where dengue is epidemic, the occurrence of an outbreak depends on virus arrival, the
presence of a susceptible human population, a competent vector population and adequate
environmental conditions for virus development and transmission. Therefore, dengue
dynamics is affected by multiple mechanisms, in which temperature is an important
determinant of mosquito traits relevant to transmission, namely the biting rate, egg and
immature development, adult survival and fecundity, and development time of the virus
in the mosquito (reviewed in Mordecai et al., 2017). While both seasonal and inter-annual
climatic variability influence the geographical distribution of A. aegypti, other factors
also determine habitat suitability. Importantly, the successful exploitation of artificial
containers as larval habitats, which translates in a high domestic condition of the vector,
allows A. aegypti to persist in regions that may otherwise be unsuitable based solely on
climate (Jansen & Beebe, 2010). Along with local climate, El Niño Southern Oscillation
has also been reported to play a role in dengue dynamics at the seasonal and inter-annual
scales (e.g., Vincenti-Gonzalez et al., 2018).

In Argentina,A. aegypti is distributed along temperate and subtropical latitudes (Vezzani
& Carbajo, 2008). Adult activity is concentrated in the warm season throughout its
distribution and is absent during winter in temperate zones (Carbajo & Vezzani, 2015).
As neighboring countries to the northeast (Brazil and Paraguay) and northwest (Bolivia)
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Figure 1 Total number of dengue cases registered in Argentina per epidemiological year (defined from
1 July Year X-1 to 30 June Year X) for the period between 1999–2016, and classification of each year in
epidemic intensity 0 to 3.

Full-size DOI: 10.7717/peerj.5196/fig-1

are endemic for dengue, Argentina represents the southern limit of dengue transmission
in South America with epidemic outbreaks concentrated in the warm season (November
to May) (Carbajo, Cardo & Vezzani, 2012). In this transmission fringe, dengue re-emerged
in 1998 causing epidemic outbreaks of different magnitudes in tight association with the
incidence in endemic neighboring countries (Fig. 1). Before 2016, the biggest outbreak
had occurred in 2009, with nearly 27,000 cases of DEN 1, followed by 2013, in which 2,922
cases were reported and co-circulation of DEN 1, 2 and 4 was verified (MSN, 2015). In
2016, the biggest dengue epidemic in the country so far was experienced, concomitant with
first to date autochthonous transmission of Zika and chikungunya (26 and 322 confirmed
cases, respectively) (MSN, 2016). Also, a recent outbreak of yellow fever has been reported
in Brazil with over 1,000 confirmed cases (Ministério da Saúde do Brasil, 2018). These
arboviruses are all transmitted in urban settings by the same mosquito vector, A. aegypti
(Kraemer et al., 2015). There is currently no antiviral therapy against dengue, and although
the vaccine CYD-TDV ‘‘Dengvaxia R©’’ has been approved in the country (ANMAT, 2017),
the development of haemorragic dengue in a first infection after vaccination has been
recently reported (WHO, 2017). Therefore, preventing contact between mosquitoes and
people is still considered the main tool in the struggle against dengue.

Despite its recent history of epidemics, several studies with different geographic scopes
have been performed to study dengue dynamics in Argentina. The spatio-temporal pattern
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of dengue cases during the 2009 epidemic has been analyzed within a city (Seijo et al., 2009;
Estallo et al., 2014) and at the country scale (Carbajo, Cardo & Vezzani, 2012). Regarding
the 2016 outbreak, studies have been undertaken only at the city scale (Rotela et al., 2017;
Carbajo et al., 2018). As no country-wide comprehensive analysis has been performed so
far, and given the recent upsurge of the disease, the objective of this work was to identify
the environmental factors that trigger epidemic events in Argentina by analyzing the
spatio-temporal pattern of dengue cases since the re-emergence of the disease.

MATERIALS & METHODS
Mainland Argentine extends from 22◦ to 55◦S, encompassing subtropical and temperate
latitudes (Fig. 2). Along with its neighboring countries, it is located between the two great
oceans of the Southern Hemisphere, the Atlantic and Pacific Oceans. This configuration
reduces daily and annual thermal amplitudes in comparison to similar latitudes of the
Northern Hemisphere. The Andes Mountains, with a height range of 2,600—6,000 m.a.s.l.,
also greatly influences the regional climate by preventing the passage of moisture from the
Pacific Ocean (Barros et al., 2015).

Mean temperature has increased by about 0.5 ◦C across most of Argentina during the
past century. The strongest positive changes since 1960 occurred in the mean summer
minimum temperature, even though in this season the mean maximum temperatures
mostly decreased, except in Patagonia. In the second half of the past century, there was a
general warming in Patagonia where both the maximum and the minimum temperature
had a positive trend that was consistent with a more frequent northern flow component
in the low levels of the atmosphere. Regarding precipitation, annual positive trends in
northern Argentina can be partly attributed to variations in the frequency and intensity
of the El Niño-Southern Oscillation (ENSO) phases. The rest of subtropical Argentina
was influenced by the southern shift of the western edge of the South Atlantic high that
enhanced moist advection from the Atlantic Ocean (Barros et al., 2015).

Information on dengue cases was obtained from dengue notifications reported in the
National Health Surveillance System. During laboratory surveillance (SIVILA), diagnosis
was confirmed through the detection of viral genome by polymerase chain reaction or
detection of neutralizing antibodies (IgG) by plaque reduction neutralization test (PRNT).
After the onset of epidemics in a given city, cases were further confirmed by detection of
virus-specific immunoglobulin M (IgM) antibodies or NS1 antigen detection. Unknown
data regarding department and province of residence was reconstructed using different
sources: (1) district and locality in the domicile section of the SIVILA database; (2) direct
consultation with the provincial Health Surveillance Area referents; or (3) data of province
and district of sample collection consigned in SIVILA. Data of province or country of
contagion was reconstructed from epidemiological comments of each case report. Cases
registered in the SIVILA database were classified as autochthonous or imported according
to the site of acquisition of the infection. All cases whose possible site of infection coincided
with the jurisdiction of the patient’s habitual residence, without a history of travel to an
area with dengue virus circulation, were defined as autochthonous. All cases with residence
in an area without dengue virus circulation and with a history of travel to an area with
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Figure 2 Study area andmeteorological stations. Squares indicate stations adjacent to districts with
dengue cases in at least one year since 2009.

Full-size DOI: 10.7717/peerj.5196/fig-2

circulation of the dengue virus in the last 15 days prior to the onset of symptoms were
defined as imported. The database was available per district and epidemiological week.

For all analyses hereafter epidemiological years were defined as from 1 July Year 1
through 30 June Year 2 (e.g., reference to Year 2004 includes the period from 07/01/2003
to 06/30/2004). In accordance, climatic seasons were defined as follows: winter 1 Jul–30
Sep, spring 1 Oct–31 Dec, summer 1 Jan–31 Mar, autumn 1 Apr–30 Jun.

Explanatory variables
The selection of explanatory variables was based on available data at the spatial and temporal
detail required along with previous knowledge of which factorsmay affect dengue dynamics
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Table 1 Explanatory variables included in statistical models for temporal 2009–2016 (Ta), temporal 1999–2016 (Tb), spatio-temporal (ST) and
spatial (S) methodological approaches.

Variable class Variable
name

Description Units Source Included in
approach

Climatic Tme* Mean temperature ◦C [1] Ta - Tb - ST - S
Tmi* Minimum temperature ◦C [1] Ta - Tb - ST - S
PP Mean annual cumulative precipitation mm [1] Ta - Tb - ST - S
DE Mean annual dew point ◦C [1] Ta - Tb - ST - S
WI Mean annual windspeed m/s [1] Ta - Tb - ST - S
DNT* Days necessary for transmission days [1] Ta -Tb - ST - S
DPT* Days of possible transmission days [1] Ta -Tb - ST - S
JnDe Sum of Niño monthly index for the 12 months of the previous year (e.g., Jan-

Dec 2000 for year 2001)
– [2] Ta - Tb - ST

JnJn Sum of Niño monthly index from January through June of the previous year. – [2] Ta - ST
JlDe Sum of Niño monthly index from July–Dec of the previous year – [2] Ta - ST
ApSe Sum of Niño monthly index from April–Sept of the previous year – [2] Ta -Tb - ST

Epidemiologic DenBol Number of dengue cases in Bolivia [3] Ta - ST
DenPar Number of dengue cases in Paraguay [3] Ta - ST
DenBra Number of dengue cases in southern Brazil [4] Ta - ST

Geographic Ar Area of each district m2 [5] S
Al Mean district elevation above sea level m [6] S
AlSd Standard deviation of altitude of all pixels within a district m [6] S
DiWa Distance to the nearest water body or course (excluding the sea) Km [5] S
DiBol Distance to nearest border crossing to Bolivia Km [5] S
DiNea Distance to nearest border crossing to Brazil/Paraguay Km [5] S

Demographic Pop Population per district people [7] ST - S
Prc Percentage of population change per district – [7] S

Notes.
*Calculated at different time spans: epidemiological year, season (winter, spring, autumn) and month. Also for each time span, regional (center, east and west) averages were cal-
culated.
Data sources:
[1] NCDC (2016)
[2] NOAA (2017)
[3] PAHO (2015)
[4]Ministério da Saúde do Brasil (2017)
[5] United States Geological Survey (2005)
[6] Instituto Geográfico Nacional (2010)
[7] INDEC (2017)

(see Carbajo, Cardo & Vezzani, 2012). For instance, the distance to the nearest water body
has been described as a proxy for the need of people to store water in containers, which
eventually become larval habitats for A. aegypti, whereas human population increase
or decrease in a given locality may reflect habitational and urbanization processes also
associated with the generation of potential immature habitats. Variables included were
divided in four classes: climatic, epidemiologic, geographic and demographic (definition
of variables, units and data sources are shown in Table 1, Pearson’s correlation coefficients
between pairs of variables in File S1).

Climatic variables were calculated based on the Global Surface Summary of the Day,
downloaded from NOAA Satellite and Information Service (NCDC, 2016). This data

Carbajo et al. (2018), PeerJ, DOI 10.7717/peerj.5196 6/20

https://peerj.com
http://dx.doi.org/10.7717/peerj.5196#supp-1
http://dx.doi.org/10.7717/peerj.5196


is derived from the Integrated Surface Hourly (ISH) dataset, which includes global
data obtained from the USAF Climatology Center and considers a minimum of four
observations per day. We downloaded daily values from 33 country-wide meteorological
stations throughout the country (Fig. 2), which presented no missing values for periods
longer that 15 consecutive days along the period 1999–2016. To calculate country-wide
annual and seasonal values, daily records of all meteorological stations located contiguous
to case positive districts for at least one year were averaged (Fig. 2). We considered this
subset of 15 stations because in such locations, conditions for the occurrence of cases are
guaranteed, i.e., the vector is present in the district (Vezzani & Carbajo, 2008) and virus
transmission has been reported. Also, three regions were defined following the criterion of
dengue cases recompilation of the NationalMinistry of Health (center, east and west, Fig. 2)
and values of the stations within each region were averaged. To obtain single mean values
of temperature, precipitation, dew point and wind speed per district, monthly means from
the period July 2011–June 2016 were averaged for each of the 33 meteorological stations.
Such values were interpolated for the whole country (inverse weighted distance method,
15 km square cell grid) and the grid value corresponding to the centroid of each district
was extracted and taken as the value for the district. For this interpolation, eight fictitious
stations were added at the northwestern limit of the country, in the high Andes range,
which were assigned the lowest values in the lowlands for each climatic variable. As no
stations are present in the region, low values were needed to limit the interpolation to the
west.

The extrinsic incubation period (EIP) of the dengue virus in the mosquito is the lapse
from ingestion of infected blood to the virus transmission in a subsequent feed, and varies
as a function of temperature (Morin, Comrie & Ernst, 2013). The proportion of the EIP
completed per day was calculated for each meteorological station using a temperature
dependent model in two hour intervals based on an asymmetric interpolation of the daily
maximum and minimum (Carbajo, Cardo & Vezzani, 2012). The function is inhibited by
low and high temperatures (around 0 and 40 ◦C respectively, details in File S2). With this
information, two metrics were estimated. The days of possible transmission (DPT) is the
number of days per year that the EIP could be completed before the death of the vector.
It adds up the proportion of daily virus development for a number of days equal to the
mosquito life expectancy. If unity is reached it is assigned a value of 1, and 0 otherwise
(Carbajo, Cardo & Vezzani, 2012). This metric has the caveat of having to define a life
expectancy, which was set to 15 days based on a previous study (Carbajo et al., 2001). A
value for each district was obtained using the same methodology as for climatic variables
described above. The second metric counts the number of days necessary for transmission
(DNT). Beginning in each day of the year, the proportion of daily virus development is
added up until unity is reached, a lower DNT value indicating higher transmission risk. It
was resumed by its monthly and seasonal mean for each of the 15 meteorological stations,
all values were averaged and also regional (center, east and west) values were calculated.
The relation among DNT, DPT and mean temperature is shown in File S3.

The ENSO condition includes El Niño, La Niña and neutral phases. It was considered
in the models by means of the monthly Oceanic Niño Index 3.4 (5N-5S, 120E-170W),
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estimated as a trimester mobile mean (NOAA, 2017). This index, which captures SST
anomalies in the central equatorial Pacific, presents a unique value for the entire country.
A El Niño event occurs when this anomaly is positive (above 0.5 ◦C) and a La Niña event
occurs when it is negative (below −0.5 ◦C) (Dogliotti, Ruddick & Guerrero, 2016). We
considered the sum of the index for six and twelve months as a relative indicator of the
magnitude of such events, considering different time spans and moments of the previous
year (see Table 1).

Last national censuses of human population by locality were performed in 2001 and
2010 (INDEC, 2017). Two demographic variables were considered, namely the population
number per district and the proportion of population change between both censuses,
calculated as (population in 2010–population in 2001)/population in 2001 (Carbajo, Cardo
& Vezzani, 2012).

The number of dengue cases in bordering countries with endemic transmission was
obtained for the whole country in the case of Bolivia and Paraguay (PAHO, 2018). Given
its extension, the number of cases in Brazil was calculated considering only the three
southernmost districts that limit with Argentina (Santa Catarina, Rio Grande do Sul and
Parana, (Ministério da Saúde do Brasil, 2017). As information was available at the annual
scale in the traditional definition (1 January–31 December), annual cases corresponding
to the current year were used (e.g., cases in 2004 for the Year 2004).

Statistical modeling
Generalized Linear Mixed Models (GLMM) can treat data with errors that do not follow
a normal distribution, and include random terms (grouping variables) to account for
temporal or spatial correlation. Error distribution was selected in each analysis according
to the definition of the response variable (Gaussian, Poisson or dichotomic binomial).
First, univariate analyses were run (results in File S4). Then, a forward stepwise procedure
was performed in which centered explanatory variables were entered one-by-one, along
with quadratic relations and two-way interactions. Colinearity issues were first assessed
considering correlation matrices (File S1) and further tested in every step of the modelling
with the variance inflation factors (VIF, Car package). If any of the VIF values was higher
than 5, which indicates multicolinearity (Zuur, Ieno & Elphick, 2009), the variable with the
highest VIF was dropped, all VIFs were recalculated and the process was repeated until all
values were lower than 5.

Once the best fixed model was achieved, the Province, District or Year (according to
the scope of each methodological approach) were tested as random intercepts or slopes.
Decision rules for random factor addition and variables inclusion were based on the
Akaike’s information criterion (AIC) (Akaike, 1974); the model that yielded the lowest
AIC was selected from all possible models (Zuur et al., 2009). Graphical verification of the
residuals was performed to verify the assumptions of the models.

For Gaussian and Poisson distributions, the percentage of explanation achieved was
calculated as the deviance explained by the selected model divided by the deviance of the
null model. For dichotomic models, as the output variable of the binomial model lies
between 0 and 1, a threshold probability must be selected to distinguish positivity from
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negativity (dengue occurrence and absence, respectively). All possible cut-off points from
0.01 to 0.99 were assessed to select an optimum cut-off point (cp) which maximized the
classification effectiveness of the model. This was evaluated by applying the Kappa index
(K) to assess improvement of classification of the model over chance (Fielding & Bell,
1997). Finally, for models including a random factor, variance percentages explained by the
fixed (marginal R2) and fixed + random (conditional R2) terms were calculated (MuMIn
Package).

To analyze the yearly temporality and spatial distribution of dengue cases in Argentina
along the period 1999–2016, three methodological approaches were followed: (1) the
temporal approach aimed to identify the years in which the most important outbreaks
occurred in association with environmental variables and propose a risk estimation for
future epidemics; (2) the spatio-temporal approach intended to identify which variables
explain the occurrence of local outbreaks through time, taking into consideration the
spatial variation country-wide; and (3) the spatial approach put particular emphasis in the
2016 epidemics, to describe the geographical distribution of dengue cases and identify its
environmental drivers.

Temporal approach
For this analysis, two data sets were defined:

Ta. Annual cumulative number of dengue cases at the country level between 2009 and
2016. The response variable was log (n◦ of cases), modeled in a GLM with Gaussian error
distribution (link identity) as a function of climatic variables and dengue cases in bordering
countries (Table 1). This period presents the best quality in surveillance data. Before the
2009 epidemics, records had lower standards.

Tb. Annual cumulative number of dengue cases at the country level between 1999
and 2016. Acknowledging different surveillance data quality, the analysis of this dataset
attempted to predict the risk of future outbreaks including all available information.
Given that the number of cases presents a random component and too much dispersion,
the response variable was classified in four categories of epidemic intensity: 0 (0 cases),
1 (1–1,000), 2 (1,001–5,000), 3 (>5,000) (Fig. 1). The model presented a Poisson error
distribution and log link. Explanatory variables describing El Niño events during the
summer and dengue cases in bordering countries were excluded because the time span in
which they are calculated restrict anticipating power.

Spatio-temporal approach
From a database available per week at the district level, we considered cases between
2009 and 2016 grouped by district and epidemiological year. This analysis was restricted
to case positive districts for at least one year and contiguous to any of the available 33
meteorological stations. The combination of both conditions resulted in a subset of 15
districts retained (squares in Fig. 2). Two alternative dichotomic response variables were
defined. Of the first, a value of 1 was assigned to a district in a given year if >20 cases were
reported that year, a value of 0 otherwise (30% of the database is classified as positive; the
number of positive district does not differ when considering the threshold between 15 and
20 cases). In the second, a value of 1 was assigned to a district in a given year if >100 cases
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were reported, a value of 0 otherwise (20% of the database classified as positive). Both were
modeled in a GLM with binomial error distribution and link logit. Explanatory variables
included were climatic and cases in endemic neighboring countries (Table 1).

Spatial approach
The database consisted in the number of cases (between epidemiological weeks 43 of 2015
and 29 of 2016) per district for the whole country (503 districts in total). The response
variable was the occurrence of two or more dengue cases per district (dichotomic) in
a binomial GLM with logit link. Four districts with up to two reported cases located
southwards of the geographical distribution of A. aegypti were deliberately excluded
assuming a potential mistake in the classification as autochthonous. Explanatory variables
included were climatic, demographic and geographic (Table 1).

RESULTS
Temporal approach
The best model associated the (log transformed) number of dengue cases at the national
scale between 2009 and 2016 (Ta) positively with the number of dengue cases in bordering
endemic countries and negatively with the DNT during the autumn of the previous year
in the central region of the country (Table 2). In other words, higher number of cases in
Bolivia and south of Brazil were correlated with more intense outbreaks in Argentina, and
when a given autumn presented fewer days necessary for transmission, a larger outbreak
could be expected the following warm season. The latter result makes sense for the central
temperate region, in which temperature is a limiting factor for vector development, whereas
in northern subtropical areas DNT values are consistently smaller. The model explained
95.2% of the variability of the data, and the correlation between the response values and
those predicted by the model was 0.97. However, the model required three parameters for
explaining only eight values. No retro extrapolation of this model to the years 1999–2008
could be performed, given that no reports of dengue cases in Bolivia were available for
those years.

When aiming to propose a model able to predict future dengue epidemics, considering
the entire time span of epidemics since vector re-invasion (Tb) and deliberately excluding
variables with no predicting power, the best model associated the intensity of epidemics
with temperature conditions during the previous autumn and winter, estimated as days of
possible transmission for each season (Table 2). Although at lower explanation percentages
(57%), once again themeteorological situationduring the previous autumnwas a significant
predictor of the following outbreak. This model is valuable in providing a risk estimation
for the following warm season based on in advance and easily available climatic data as only
input. The model predicted an intensity epidemic of class 1 for 2017, as has been verified to
date (254 confirmed and 299 probable cases up to epidemiological week 28;MSN, 2017).

Spatio-temporal approach
When considering >20 cases as an epidemic, the selected model classified the observed
values 72% better than chance (K = 0.72), at a cut-off point of 0.38. None of the tested
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Table 2 Selected models for the different methodological approaches used to study the environmental
and demographical determinants of dengue epidemics in Argentina.

Methodological
approach

Response variable Explanatory
variable

Estimate± standard
error

Temporal 2009–2016 Log (n◦ cases) Ordinate 7.59± 0.20***

DNTautumn-center −1.11± 0.25*

DenBol 1.85± 0.29**

DenBra 1.29± 0.32*

1999–2016 Epidemic intensity Ordinate −0.01± 0.28
DNTautumn −0.78± 0.28**

DNTwinter 0.47± 0.23*

Spatio-temporal Occurrence > 20 cases Ordinate −1.41± 0.31***

DNTmay −0.29± 0.09**

DenBol 0.07± 0.02***

DNTspring 0.33± 0.13**

DenPar 0.024± 0.007***

DNTmay: DenBol 0.008± 0.003**

Occurrence > 100 cases Ordinate −2.35± 0.45***

DNTmay −0.29± 0.10**

DenBol 0.09± 0.02***

DenBra 0.06± 0.02***

Pop (in thousands) 0.0008± 0.0004*

DNTmay:DenBol 0.006± 0.002*

Spatial Occurrence ≥ 2 cases Ordinate −2.33± 0.51***

Tmiautumn 2.88± 0.46***

Log(Pop) 2.49± 0.32***

(1|Province)

Notes.
Asterisks next to the values indicate statistical significance ∗p< 0.05, ∗∗p< 0.01, ∗∗∗p< 0.001.
See variables abbreviations in Table 1.

grouping random factors (1|District, 1|Year and Year|District) significantly improved the
model. DNT values in autumn months of the previous year (best represented by May)
resulted determinant; once again, dengue cases within a district were associated with mild
conditions during the previous autumn (that is, lower DNT values). High DNT during the
spring also favored the occurrence of epidemics, along with the number of dengue cases in
Bolivia and Paraguay (Table 2).

When considering >100 cases as an epidemic, the selected model classified the observed
values 63% better than chance (K = 0.63), at a cut-off point of 0.39. No random factors
were significant. Results were consistent with the former analysis and associated the
occurrence of an epidemic with the DNT of the previous May, the intensity of outbreaks in
neighboring countries (Bolivia and Brazil), and positively with human population density
(Table 2).
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Figure 3 Dengue cases per district and days of possible transmission (DPT) isolines for 2009 (A) and
2016 (B).

Full-size DOI: 10.7717/peerj.5196/fig-3

Spatial approach
Out of the 503 districts in the country, 272 were negative for dengue cases in both major
epidemics (2009 and 2016), whereas 73 reported one or more cases in both occasions. A
strong increase in the number of positive districts was verified in 2016 compared to 2009,
with 133 new districts reporting cases, and only 25 with the opposite behavior (Fig. 3). The
relation autochthonous/imported cases was, however, very similar in both years, around
26 autochthonous cases per imported case (47,894/1,850 for 2016 and 26,923/∼1,000 for
2009). Although not reflected in the number of cases and districts affected, considering
temperature conditions expressed in terms of days of possible transmission (DPT) the
situation in 2009 was worse than in 2016 (isolines of 30 and 120 DPT spread further south
and west, Fig. 3).

The best model for the occurrence of two or more dengue cases per district included
autumn minimum temperature and human population (log scale) as fixed factors, and the
province as a random grouping variable (Table 2). Mild temperatures during the previous
autumn and higher population numbers were associated with the occurrence of dengue
cases per district. Prediction accuracy of the observed values was 80% better than chance
(K = 0.8) at a cut off-point of 0.4. Explanatory power of the fixed factors (marginal R2)
was 0.74, whereas including the random factor (conditional R2) raised explanation to 0.86.

The model published in Carbajo, Cardo & Vezzani (2012) for the 2009 epidemics was
re-run using the occurrence of two or more dengue cases per district in 2016 as a response
variable, and the same explanatory variables that predicted the previous outbreak. These
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were the DPT, distance to water courses, population number (log scale) and the percentage
of population change in the period 2001–2010 (last two national censuses). In Argentina,
national censuses are typically performed on a decadal basis; therefore, updating of the
demographic variables was unfeasible. The model was not very accurate in predicting the
new cases (K = 0.47, correct classification 0.7, sensibility 0.4, specificity 0.9). An alternative
explanation for the low predictive model is the difference in the origin of both epidemics.
The one in 2009 came down from Bolivia, whereas the latter 2016 outbreak was caused by
an unusually high incidence in north-eastern neighboring countries (Brazil and Paraguay).
Also, unexpectedly two northeastern provinces did not communicate any cases during
2009 (Fig. 3A).

Conversely, the new model was re-run with the 2009 epidemics data. In this case, the
predictive accuracy was high (K = 0.71 at a cut off point of 0.35), however the fraction
explained by the fixed factors was significantly reduced (marginal R2

= 0.45), whereas
the variance explained by the Province as a random grouping increased (conditional
R2
= 0.84).

DISCUSSION
Modeling disease outbreaks in time and space is a powerful tool to qualitatively predict
future potential epidemics (Myers et al., 2000). Given the epidemic nature of dengue
in Argentina, virus pressure from endemic neighboring countries along with climatic
conditions are crucial to explain disease dynamics. Remarkably, in all three methodological
approaches used to analyze the spatial and temporal pattern of dengue cases, different
proxies for temperature of the previous autumn were among the best predictors. The
number of days necessary for transmission presented higher explanatory power than the
raw variable in two approaches. Although this proxy is mainly used for transmission risk
calculations, it may well resume conditions for the mosquito. As temperatures seldom
reach extreme inhibition values during autumn, the temporal detail and the inclusion of
temperature amplitude in its calculation may favor DNT instead of mean temperature.

We built a temporal model based on the period 2009–2016, which lacks predictive power
because it relies on the ongoing year virus pressure from endemic neighboring countries.
However, it does provide a hint regarding the conditions of the previous autumn. If
the autumn of a given year is propitious for transmission, caution should be taken for
the following summer and the situation in bordering endemic areas should be followed
up closely. We propose that mild autumns represent an advantage for mosquito vector
populations. In temperate regions with no mosquito reproduction during winter, this
advantage could manifest as a larger egg bank deposited during autumn from which the
adult population will re-emerge in spring.

Including information of the years 1999–2008, we reached a model only relying on
in advance climatic conditions. In this way, with easy-available temperature data we can
anticipate if the following year will present an epidemic of mid-high intensity. Models
predicting epidemic intensity rather than number of cases are more robust to particular
and/or stochastic conditions of a given year. The presented model properly predicted the
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2017 situation; however as only two major outbreaks (2009 and 2016) have occurred so far
in Argentina to train the models, more time is needed to test its efficiency.

Spatio-temporal models of dengue cases distribution between 2009 and 2016 presented
significant association with the same type of variables, prioritizing the days necessary for
transmission during autumn months and the incidence in neighboring endemic countries.
These models also lack predictive power and are particularly sensitive to the characteristics
of the on course epidemics. This could also be appreciated when comparing 2009 and 2016
spatial models, in light of the poor correspondence in terms of numbers and geographical
distribution of positive districts that presented the Carbajo, Cardo & Vezzani (2012)model
for the 2009 epidemics to predict the situation in 2016. Both main dengue outbreaks in
Argentina started in locations close to endemic borders and further expanded to other
localities, however their origin was different. In 2009, the epidemic was triggered by high
incidence in Bolivia, spreading south from the northwest, whereas in 2016 it started in the
northeast, due to high incidence in south Brazil and Paraguay. For this reason, the proper
identification of imported cases is especially relevant during transmission onset. We also
found no relation between El Niño events and dengue patterns. It has been described that
river flow of water courses located within the northeast region of the country are strongly
affected by ENSO events, whereas those located in the northwest region are not (Pasquini &
Depetris, 2007). This may partly explain the lack of association of dengue outbreaks and El
Niño in Argentina, as described elsewhere, however we were unable to test this hypothesis
due to the short history of northeast and northwest derived epidemics in the country.

The geographic distribution of dengue-positive districts during the 2016 epidemics was
positively associated withminimum autumn temperature and human population, the latter
variable being also associated with the 2009 outbreak (Carbajo, Cardo & Vezzani, 2012).
A larger human population number in a district may reflect higher virus pressure due to
traveling. Also, larger cities usually present precarious and overcrowded conditions, and
are therefore more susceptible to experiencing an outbreak (Brunkard et al., 2007). This is
combined with a large number of artificial containers due to uncontrolled urbanization and
land uses linked to urban areas (e.g., cemeteries, rubbish and tire deposits), which represent
optimum habitats for immature vector development. Within the spatial model, the
inclusion of Province as a random grouping factor may reflect non biological features, such
as asymmetries in case records or in the efficiency of prevention and control interventions.
The total absence of cases reports during 2009 in some northeastern provinces is an extreme
example of this issue. These areas experienced unreported transmission, which could have
substantially affected the predictability of the 2009 model as it occurred to Aström et al.
(2012).

Comparing dengue distribution models may be problematic because of differing
modeling approaches and scales, the diverse quality of the data used, and the selection of
variables associated with disease distribution (Messina et al., 2015). Further issues arise in
the particular case of Argentina due to its geography. It constitutes one of the potential
areas of transmission expansion and intensification, where many models do not agree in
their predictions (Messina et al., 2015). It extends along 3,800 km including a gradient of
transmission risk due to climatic variables roughly decreasing from north to south, but
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almost a third of the population lives at the transmission fringe in the center-east of the
country. The epidemic inter-annual pattern is irregular, with frequent virus circulation
in the north and large sporadic outbreaks extending to almost half of the country. This
implies that the maximum geographic extension does not repeat regularly and may
respond to particular conditions occurring in certain years. Global models are not aimed
at identifying these particular events, what would need a spatial and temporal detail not yet
implemented or simply not available globally. Although the inclusion of demographic and
socio-economic factors has improved global models (e.g., Aström et al., 2012; Mordecai et
al., 2017), its application in Argentina would require a district detail to account for the
internal heterogeneity in, for example, the geographical distribution of income along the
country.

The systematic data gathering of dengue cases in a country-wide system allows for the
constant updating of the epidemiological situation, as well as the identification of high
risk areas to prioritize prevention and control measures both at the communitarian and
individual levels. The strength of the 2016 outbreak manifests the flaws of the mitigation
strategies. This, in conjunctionwith a higher dengue incidence in neighboring countries and
the introduction of other arboviruses transmitted by the same vector (Zika, chikungunya,
and potentially yellow fever), forecast a complex scenario which claims for an integrative
research approach with joint work from the areas of education, infrastructure and health.
Along with the need to develop better and faster diagnostic methods, we need to achieve
consciousness in the population, whose contribution is essential. The optimal use of models
to inform policy decisions requires a continuous dialogue between the multidisciplinary
infectious disease dynamics community and decision makers (Heesterbeek et al., 2015),
essential to plan and put into practice adequate prevention and control measures for each
jurisdiction.

CONCLUSION
In the southernmost extreme of epidemic transmission in the Americas, the pattern of
dengue cases concentrated during the warm season was associated with different proxies for
temperature conditions during the previous autumn and virus pressure from neighboring
endemic countries. This provides a valuable opportunity to prepare in advance for a
qualitatively strong epidemic during the following summer if the autumn of a given year
is propitious for transmission, and enable the onset of early alerts by close follow up of the
situation in endemic bordering countries.
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