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ABSTRACT
Cortical morphology is known to differ with age, as measured by cortical thickness,
fractal dimensionality, and gyrification. However, head motion during MRI scanning
has been shown to influence estimates of cortical thickness as well as increase with
age. Studies have also found task-related differences in head motion and relationships
between body–mass index (BMI) and head motion. Here I replicated these prior
findings, as well as several others, within a large, open-access dataset (Centre for Ageing
and Neuroscience, CamCAN). This is a larger dataset than these results have been
demonstrated previously, within a sample size of more than 600 adults across the adult
lifespan.While replicating prior findings is important, demonstrating these key findings
concurrently also provides an opportunity for additional related analyses: critically, I
test for the influence of head motion on cortical fractal dimensionality and gyrification;
effects were statistically significant in some cases, but small in magnitude.

Subjects Neuroscience, Radiology and Medical Imaging, Computational Science
Keywords Head motion, Cortical structure, Fractal dimensionality, Age, Cortical thickness,
Gyrification, Cortical morphology, Movie watching, BMI

INTRODUCTION
Head motion during the acquisition of magnetic resonance imaging (MRI) can lead
to artifacts when estimating brain activity and structure. With functional MRI (fMRI),
volumes are acquired relatively quickly–often every 1–3 s–allowing for the estimation
and correction of head motion artifacts. Using innovative techniques such as prospective
motion correction (Dosenbach et al., 2017;Federau & Gallichan, 2016;Maclaren et al., 2013;
Stucht et al., 2015; Tisdall et al., 2016) and custom-designed, individualized head-cases
(https://caseforge.co), effects of head motion can be attenuated. However, these solutions
are not suitable for large studies of inter-individual differences in brain morphology where
changes to theMRI scan sequence or custom-built equipment for each participant are often
not practical. In the current study, I assessed relationships between age and body–mass
index (BMI) on head motion, task-related differences in head motion, and the influence
of head motion on estimates of cortical morphology. In light of these findings, many of
which are replications, I propose a potential method for attenuating head motion during
structural MRIs, as well as discuss limitations of this method.

Prior studies have demonstrated that older adults tend to have more head motion than
younger adults (Andrews-Hanna et al., 2007; Chan et al., 2014; Savalia et al., 2017; Pardoe,
Hiess & Kuzniecky, 2016). Unfortunately, other studies have also provided evidence that
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head motion can lead to lower cortical thickness estimates (Alexander-Bloch et al., 2016;
Pardoe, Hiess & Kuzniecky, 2016; Reuter et al., 2015; Savalia et al., 2017), as such, age-
related differences in cortical thickness (e.g., Fjell et al., 2009; McKay et al., 2014; Salat
et al., 2004) may be exaggerated by age-related differences in head motion. In addition
to age, obesity has also been associated with head motion (Beyer et al., 2017; Hodgson et
al., 2017). In particular, these associations have been shown with respect to body–mass
index (BMI; kg/m2), which is measured as body weight (in kg) divided by body height
(in m) squared–despite the relatively coarse nature of BMI (e.g., does not differentiate
between muscle vs. fat mass) (Diverse Populations Collaborative Group, 2005; Romero-
Corral et al., 2008). Findings of relationships between obesity and cortical thickness have
been mixed (Shaw et al., 2017; Shaw et al., 2018; Veit et al., 2014). More generally, head
motion has been suggested to be a neurobiological trait–being both stable over time and
heritable (Engelhardt et al., 2017; Hodgson et al., 2017; Zeng et al., 2014).

There is also evidence that fMRI tasks can differ in the degree of associated head
motion (Alexander et al., 2017; Huijbers et al., 2017; Greene et al., 2018; Vanderwal et al.,
2015;Wylie et al., 2014; Yuan et al., 2009). With this in mind, it may be beneficial to present
participants with a task to attend to during structural scans, with the objective of decreasing
head motion; typically structural scans are accompanied by the presentation of a blank
screen or otherwise lack of instruction of attending to a visual stimulus.

Madan & Kensinger (2016) showed that a structural metric, fractal dimensionality
(FD), may be more sensitive to age-related differences in cortical structure than
cortical thickness (also see Madan & Kensinger, 2018). In a preliminary analysis to
examine the influence of head motion on age-related differences in cortical fractal
dimensionality, Madan & Kensinger (2016) showed qualitative evidence of age-related
differences in fractal dimensionality in a small sample (N = 7) of post-mortem MRIs.
However, as this sample was small and also less indicative of potential head motion
effects in in vivo MR imaging, further work is necessary. To more directly test for the
additive influence of head motion on estimates of cortical morphology, beyond aging,
here I also tested for a relationship of fMRI-estimated head motion on cortical fractal
dimensionality, as well as on mean cortical thickness. Additionally, as recent studies have
found that gyrification also decreases with age (Cao et al., 2017; Hogstrom et al., 2013;
Madan & Kensinger, 2016; Madan & Kensinger, 2018), it was also included in the analysis
presented here. Test-retest reliability of estimates for these structural measures has recently
been compared (Madan & Kensinger, 2017b), but robustness to head motion has yet to be
assessed.

Using the rich, open-access dataset fromCambridge Centre for Ageing andNeuroscience
(CamCAN) (Shafto et al., 2014; Taylor et al., 2017), here I sought to replicate these myriad
of prior findings, as well as test for influences of head motion on fractal dimensionality
and gyrification.
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METHODS
Dataset
Data used in the preparation of this work were obtained from the Cambridge Centre
for Ageing and Neuroscience (CamCAN) repository, available at http://www.mrc-
cbu.cam.ac.uk/datasets/camcan/ (Shafto et al., 2014; Taylor et al., 2017). The CamCAN
dataset includes structural and functional MRI data for a sample of 648 adults across the
adult lifespan (aged 18–88; Mean (SD) = 54.2 (18.5)). All participants were cognitively
healthy (MMSE > 24) and were free of any neurological or serious psychiatric conditions.
See Shafto et al. (2014) for additional details about the sample inclusion and exclusion
criteria.

A total of eight participants were excluded from further analyses due to problems with
cortical reconstruction or gyrification estimation, yielding a final sample size of 640 adults
(326 female, 314 male). Height and weight measurements were available for 559 of the 648
participants (280 female, 279 male), additionally allowing for the calculation of body–mass
index (BMI) for this subset of participants (also see Ronan et al., 2016).

Structural measures are derived from a T1-weighted volume acquired using a 3 T
Siemens Trio MRI scanner with an MPRAGE sequence. Scan parameters were as follows:
TR = 2,250 ms, TE = 2.99 ms, flip angle = 9◦, voxel size = 1× 1× 1 mm, GRAPPA = 2,
TI = 900 ms. Head motion was primarily estimated from two fMRI scans, during rest
and a movie-watching task. Both scans lasted for 8 min and 40 s (i.e., 520 s total). For
the rest scan, participants were instructed to rest with their eyes closed. For the movie
scan, participants watched and listened to condensed version of Alfred Hitchcock’s (1961)
‘‘Bang! You’re Dead’’ (Campbell et al., 2015; Hasson et al., 2008). Note that different scan
sequences were used for both of these scans, with volumes collected every 1.970 s or 2.470 s
for the rest and movie scans, respectively (see Taylor et al., 2017 for more details); both rest
and movie scans had the same voxel size, 3 × 3 × 4.44 mm (32 axial slices, 3.7 mm thick,
0.74 mm gap).

Preprocessing of the structural MRI data
The T1-weighted structural MRIs were processed using FreeSurfer v6.0 (https://surfer.
nmr.mgh.harvard.edu/) (Dale, Fischl & Sereno, 1999; Fischl, 2012; Fischl & Dale, 2000).
Surface meshes and cortical thickness was estimated using the standard processing pipeline,
i.e., recon-all, and nomanual edits were made to the surfaces. Gyrification was calculated
using FreeSurfer, as described in Schaer et al. (2012).

Fractal dimensionality (FD) is a measure of the complexity of a structure and has
previously been shown to decrease in relation to aging for cortical (Madan & Kensinger,
2016; Madan & Kensinger, 2018) and subcortical (Madan & Kensinger, 2017a; Madan,
2018) structures and has been shown to have high test-retest reliability (Madan &
Kensinger, 2017b). FD was calculated using the calcFD toolbox (http://cmadan.github.
io/calcFD/) (Madan & Kensinger, 2016) using the dilation method and filled structures
(denoted as FDf in prior studies). Briefly, FD measures the effective dimensionality of a
structure by counting how many grid ‘boxes’ of a particular size are needed to contain a
structure; these counts are then contrasted relative to the box sizes in log-space, yielding a
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scale-invariantmeasure of the complexity of a structure. This ismathematically calculated as
FD=−1log2(Count)/1log2(Size), where Size was set to {1,2,4,8,16} (i.e., powers
of 2, ranging from 0 to 4). To correct for the variability in FD estimates associated with
the alignment of the box-grid with the structure, a dilation algorithm was used which
instead relies on a 3D-convolution operation (convn in MATLAB) as this approach
yields more reliable estimates of FD. This computational issue is described mathematical
and demonstrated in simulations in Madan & Kensinger (2016), and empirically shown
in Madan & Kensinger (2017b). See Madan & Kensinger (2016) and Madan & Kensinger
(2018) for additional background on fractal dimensionality and its application to brain
imaging data.

Estimates of head motion
Head motion was estimated using two approaches:

(1) Measured as the frame-wise displacement using the three translational and three
rotational realignment parameters. Realignment parameters were included as part of the
preprocessed fMRI data (Taylor et al., 2017), in the form of the rp_*.txt output generated
by the SPM realignment procedure. Rotational displacements were converted from degrees
to millimeters by calculating the displacement on the surface of a sphere with a radius of 50
mm (as in Power et al., 2012). Frame-wise displacement was substantially higher between
volumes at the beginning of each scan run, so the first five volumes were excluded. This is
the same approach to estimating headmotion that is commonly used (e.g., Alexander-Bloch
et al., 2016; Engelhardt et al., 2017; Power et al., 2012; Savalia et al., 2017).

(2) Estimated directly from the T1-weighted volume as ‘average edge strength’
(AES) (Aksoy et al., 2012; Zacà et al., in press). This approach measures the intensity of
contrast at edges within an image. Higher AES values correspond to less motion, with image
blurring yielding decreased tissue contrast. AES was calculated using the toolbox provided
by Zacà et al. (in press), on the skull-stripped volumes generated as an intermediate stage
of the FreeSurfer processing pipeline. AES is calculated on two-dimensional image planes
and was performed on each plane orientation (axial, sagittal, and coronal).

Model comparison approach
Effects of head motion on estimates of cortical morphology (thickness, fractal
dimensionality, and gyrification) were assessed using a hierarchical regression procedure
usingMATLAB. Age was first input, followed by BMI (both with andwithout age), followed
by estimates of head motion from each fMRI scan and the related interaction term with
age. In total, eight models were examined, as listed in Table 1. Model fitness was assessed
using both R2 and 1BIC .

Bayesian Information Criterion, BIC , is a model fitness index that includes a
penalty based on the number of free parameters (Schwarz, 1978). Smaller BIC values
correspond to better model fits. By convention, two models are considered equivalent if
1BIC < 2 (Burnham & Anderson, 2004). As BIC values are based on the relevant dependent
variable, 1BIC values are reported relative to the best-performing model (i.e., 1BIC = 0
for the best model considered).
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Table 1 Variance explained andmodel fits of cortical measures by age, BMI, and headmotion estimates. Note that R2 decreases after the inclu-
sion of BMI as models 2 and 3 can only be calculated on a subset of participants (559 out of 640 participants) since height and weight informa-
tion was not available for all participants.

Thickness FD Gyrification

Model Predictors R2 1BIC R2 1BIC R2 1BIC

1 Age .425 6.98 .497 3.15 .192 3.65
2 BMI .029 455.85 .028 805.25 .007 243.17
3 Age+ BMI .425 168.82 .487 454.69 .183 140.23
4 Age+Movement(Rest) .429 10.01 .500 5.65 .192 10.07
5 Age+Movement(Movie) .437 0.00 .504 0.00 .194 8.44
6 Age+Movement(Movie)+ Age×Movement (Movie) .427 11.64 .499 6.58 .205 0.00
7 Age+ AES(axial) .443 0.23 .507 3.18 .194 14.83
8 Age+ AES(axial)+ Age× AES(axial) .428 17.58 .500 12.42 .208 3.76

RESULTS
fMRI-estimated head motion
As shown in Fig. 1, older adults head increased head motion relative to younger adults
in both the rest and movie scans (rest: r(638)= .351, p< .001; movie: r(638)= .430,
p< .001). Head motion was also greater in the rest scan than during the movie watching
(t (639)= 23.35, p< .001, Cohen’s d = 0.99, Mdiff = 1.528 mm/min). Nonetheless, head
motion was correlated between the fMRI scans [r(638)= .484, p < .001]. While this
correlation between scans is expected, particularly since both were collected in the same
MRI session, studies have provided evidence that head motion during scanning may
be a trait (Engelhardt et al., 2017; Hodgson et al., 2017; Zeng et al., 2014). Moreover, this
correlation provides additional evidence that motion during the fMRI scans is consistently
larger in some individuals than others, suggesting it similarly affected the structural scans
more for some individuals than others and appropriate to include as a predictor for the
cortical morphology estimates.

As expected based on prior literature (Beyer et al., 2017; Hodgson et al., 2017), head
motion was also correlated with body–mass index (BMI) (rest: r(557)= .456, p< .001;
movie: r(557) = .335, p < .001) (Fig. 1). While BMI was also correlated with age
(r(557)= .274, p< .001), BMI-effects on head motion persisted after accounting for
age differences (rest: rp(555)= .340, p< .001; movie: rp(555)= .249, p< .001).

While head motion was substantially lower in the movie condition than during rest, it
was relatively stable over time (e.g., it does not tend to decrease over time). However, in
the movie watching task, there is evidence of systematic stimuli-evoked increases in head
motion (Fig. 2), e.g., around 280 s and 360 s. These periods of increased head motion
correspond to events within the movie; in the first period, the boy is loading the real gun
with bullets, the second, more prominent period is a suspenseful scene where it appears
that the boy may accidentally shoot someone. Moreover, these events also correspond to
fMRI differences in attentional control and inter-subject synchrony (see Campbell et al.,
2015).
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Figure 1 Age-related differences in headmotion. Correlations between average head motion (mm/min)
with age for the (A) rest and (B) movie fMRI scans, with (D–E) body–mass index (BMI), (C) between
fMRI scans, and (F) between age and BMI. Head motion axes are log-10 scaled to better show inter-
individual variability.

Full-size DOI: 10.7717/peerj.5176/fig-1

T1-estimated head motion
Head motion was also estimated directly from the T1-weighted volume as the average edge
strength (AES), following from Zacà et al. (in press); higher AES values correspond to less
motion. Here I calculated AES for each plane orientation. AES in the axial and sagittal
planes was moderately related to age (axial: r(639)= .493, p< .001; sagittal: r(639)= .525,
p< .001) (Fig. 3); AES in the coronal was only weakly correlated with age (r(639)=−.131,
p< .001). AES in the axial and sagittal planes were strongly correlated with each other
(r(639)= .702, p< .001).

Interestingly, AES was relatively not related to BMI (all |r |’s < .2). AES was also
relatively unrelated to fMRI-estimated head motion (rest: r(639)= .112, p= .005; movie:
r(639)= .148, p< .001). Thus, while AES is sensitive to an MR image property related to
age, it seems to be distinct from fMRI-estimated head motion. A likely possibility is that
AES here is detecting age-related differences in gray/white matter contrast ratio (GWR),
as have been previously observed (Knight et al., 2016; Magnaldi et al., 1993; Salat et al.,
2009). In contrast, the mechanism for the correlation between BMI and fMRI-estimated
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Figure 4 Age- and BMI-related differences in the three cortical morphology measures examined here:
(A, D) thickness, (B, E) fractal dimensionality, and (C, F) gyrification.

Full-size DOI: 10.7717/peerj.5176/fig-4

head motion is likely apparent–rather than real–head motion caused by respiratory chest
motion producing susceptibility variations in the B0 field (Raj, Anderson & Gore, 2001;
Van de Moortele et al., 2002; Van Gelderen et al., 2007).

Cortical morphology
As shown in Fig. 4,mean cortical thickness significantly decreasedwith age (r(638)=−.652,
p< .001, −0.0432 mm/decade), as did fractal dimensionality (r(638)=−.705, p< .001,
−0.0097 FDf /decade) and gyrification (r(638)=−.427, p< .001, −0.0372 GI /decade).
All three slopes (change in metric per decade) are nearly identical to those first calculated
by Madan & Kensinger (2016), as is the finding of higher age-related differences in fractal
dimensionality and weaker differences in gyrification (also see Madan & Kensinger, 2018).
However, it is also worth acknowledging that AES in the axial and sagittal planes were
comparably correlated with age as gyrification. Effects of BMI on all three measures of
cortical morphology were relatively weak (thickness: r(557)=−.169, p< .001; fractal
dimensionality: r(557)=−.168, p< .001; gyrification r(557)=−.083, p= .049).
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Of particular interest, I examined the influence of head motion on the cortical
morphology estimates. For all three measures, head motion explained only a small amount
of additional variance beyond age, as shown in Table 1. Nonetheless, head motion from
the movie scan did explain significant additional variance, as measured by 1BIC, however,
this only accounted for an additional 1% variance in the cortical morphology measures. In
the model of cortical thickness including head motion from the movie scan (but not the
interaction), age related changes corresponded to−0.0398 mm/decade, while head motion
contributed −0.0135 mm/(mm/min).

DISCUSSION
In the current study, I replicated several prior findings as well as tested for a few novel
effects of head motion. First I outline the key findings of prior studies that were replicated
here:
(1) Increased head motion in older adults (replicating Savalia et al., 2017; Pardoe, Hiess &

Kuzniecky, 2016).
(2) BMI is correlated with fMRI-estimated head motion (replicating Beyer et al., 2017;

Hodgson et al., 2017).
(3) Less head motion occurs when watching a movie than during rest (replicating

Vanderwal et al., 2015; Huijbers et al., 2017).
(4) Head motion in different scans from the same individuals is correlated and indexes

reliable inter-individual differences (replicating Zeng et al., 2014; Engelhardt et al.,
2017; Hodgson et al., 2017).

(5) Cortical thickness decreases with age (replicating Fjell et al., 2009; Salat et al., 2004).
(6) Fractal dimensionality and gyrification also decrease with age (replicating Madan &

Kensinger, 2016; Madan & Kensinger, 2018; Hogstrom et al., 2013).
(7) More head motion leads to lower estimates of cortical thickness (replicating Reuter et

al., 2015; Savalia et al., 2017).
In addition to these replications, the new findings were:

(8) Head motion leads to nominally lower estimates of fractal dimensionality and
gyrification.

(9) Head motion estimated from the structural volume itself (i.e., average edge strength
[AES]) correlated with age, but not BMI.

(10) AES may be sensitive to gray/white matter contrast ratio (GWR).
(11) AES was only weakly related to fMRI-estimated head motion.
(12) Global cortical morphology is weakly related to BMI.

Likely most important, I found significantly more movement during resting state than
watching a movie, but are quite correlated still (replicating the findings of Huijbers et al.,
2017; Greene et al., 2018). Based on this evidence, I would recommend that participants
be given movie-watching task during structural scans to reduce movement during these
longer volume acquisitions and improve scan quality. Suggestions of potential systematic
increases in head motion, however, suggest that less eventful movie content may be
preferable for both maintaining participants’ attention and minimizing movement-
based reactions (e.g., see Vanderwal et al., 2015). While this approach is not common,
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it has been used in some recent large-scale studies, such as the Human Connectome
Project (HCP) (Marcus et al., 2013) and Adolescent Brain Cognitive Development
(ABCD) study (Casey et al., in press), and has also been suggested and used elsewhere,
particularly in MRI studies with children (Greene, Black & Schlaggar, 2016; De Bellis et
al., 2001; Howell et al., in press; Overmeyer, 1996; Pliszka et al., 2006; Raschle et al., 2009;
Theys, Wouters & Ghesquière, 2014; Von Rhein et al., 2015; Wu Nordahl et al., 2008).
However, it is also important to consider the context that this movie watching would
occur in. For instance, if the structural scan is followed by a resting-state fMRI scan,
cognitive processes related to the movie watching will ‘spill over’ and influence patterns of
brain activity in a subsequent rest period (e.g., Tambini & Davachi, 2013; Van Kesteren et
al., 2010; Eryilmaz et al., 2011).

Estimates of cortical thickness were significantly influenced by head motion (replicating
Savalia et al., 2017;Reuter et al., 2015), though the influence of this appeared to be relatively
small. Effects of head motion on fractal dimensionality were also significant, but even
smaller in magnitude, while head motion did not significantly influence estimates of
gyrification. The results here also served as a replication age-related differences in fractal
dimensionality and gyrification (Madan & Kensinger, 2016; Madan & Kensinger, 2018).

Interestingly, average edge strength (AES) did not correlate well with fMRI-estimated
motion, but did correlate with age. This may be related to age-related differences in
gray/white matter contrast ratio (GWR), as AES corresponds to the degree of tissue
intensity contrast. This finding may be important when examining differences in AES
between different samples (e.g., patients vs. controls).

While the results here are predominately replications of prior work, they nonetheless
integrate the key findings of several papers through a single, open-access dataset, that also
has a larger sample size than these previous studies. Moreover, these results serve as an
example to highlight the benefits of open data sharing on improving our understanding of
brain morphology (seeMadan, 2017 for a detailed discussion).

CONCLUSION
Head motion influences estimates of cortical morphology, but can be attenuated by using
an engaging task, such as movie watching, rather than merely instructing participants to
rest. Decreasing head motion is particularly important when studying aging populations,
where head motion is greater than for young adults, but considerations are necessary to
see how this may ‘carry over’ and influence a subsequent scan, such as resting-state fMRI.
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