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ABSTRACT
Evolutionary biology has entered an era of unprecedented amounts of DNA sequence
data, as new sequencing technologies such as Massive Parallel Sequencing (MPS)
can generate billions of nucleotides within less than a day. The current bottleneck
is how to efficiently handle, process, and analyze such large amounts of data in an
automated and reproducible way. To tackle these challenges we introduce the Sequence
Capture Processor (SECAPR) pipeline for processing raw sequencing data intomultiple
sequence alignments for downstream phylogenetic and phylogeographic analyses.
SECAPR is user-friendly and we provide an exhaustive empirical data tutorial intended
for users with no prior experience with analyzing MPS output. SECAPR is particularly
useful for the processing of sequence capture (synonyms: target or hybrid enrichment)
datasets for non-model organisms, as we demonstrate using an empirical sequence
capture dataset of the palm genus Geonoma (Arecaceae). Various quality control
and plotting functions help the user to decide on the most suitable settings for even
challenging datasets. SECAPR is an easy-to-use, free, and versatile pipeline, aimed to
enable efficient and reproducible processing of MPS data for many samples in parallel.

Subjects Bioinformatics, Computational Biology, Evolutionary Studies, Genetics
Keywords Next generation sequencing (NGS), Exon capture, FASTQ, Contig, Allele phasing,
Phylogenetics, Phylogeography, BAM, Assembly, Target capture

INTRODUCTION
An increasing number of studies apply sequence data generated by Massive Parallel
Sequencing (MPS) to answer phylogeographic and phylogenetic questions (e.g., Botero-
Castro et al., 2013; Smith et al., 2014a; Smith et al., 2014b; Faircloth et al., 2015; Heyduk et
al., 2016). Researchers often decide to selectively enrich and sequence specific genomic
regions of interest, rather than sequencing the complete genome. One reason is that
enriching specific markers leads to a higher sequencing depth for each individual marker,
as compared to the alternative of sequencing full genomes. Sequencing depth is important
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for the extraction of single nucleotide polymorphisms (SNPs) and for allele phasing
(Andermann et al., 2018; Bravo et al., 2018). Additionally, phylogenetic analysis software
usually relies on multiple sequence alignments (MSAs) with homologous sequences across
many taxa, which are simple to recover when specifically enriching these sequences prior
to sequencing.

The enrichment of specific genomic regions (markers) is usually achieved through
sequence capture (synonyms: hybrid enrichment, hybrid selection, exon capture, target
capture) prior to sequencing (Gnirke et al., 2009). This technique applies specific RNA
baits, which hybridize with the target regions and can be captured with magnetic beads.
Sequence capture is gaining popularity as more bait sets for non-model organisms are
being developed. Some bait sets are designed to match one specific taxonomic group
(e.g., Heyduk et al., 2016; Kadlec et al., 2017), while others are designed to function as
more universal markers to capture homologous sequences across broad groups of taxa
(e.g., UCEs, Faircloth et al., 2012). After enrichment of targeted markers with such bait
sets, the enriched sequence libraries are sequenced on a MPS machine (see Reuter, Spacek
& Snyder, 2015).

Despite recent technological developments, analyzing sequencing results is a great
challenge due to the amount of data produced by MPS machines. An average dataset often
contains dozens to hundreds of samples, each with up to millions of sequencing reads.
Such amounts of sequence data require advanced bioinformatics skills for storing, quality
checking, and processing the data, which may represent an obstacle for many students and
researchers. This bottleneck calls for streamlined, integrative and user-friendly pipeline
solutions.

To tackle these challenges, here we introduce the Sequence Capture Processor (SECAPR)
pipeline, a semi-automated workflow to guide users from raw sequencing results to cleaned
and filtered multiple sequence alignments (MSAs) for phylogenetic and phylogeographic
analyses. We designed many of the functionalities of this pipeline toward sequence capture
datasets in particular, but it can be effectively applied to any MPS dataset generated
with Illumina sequencing (Illumina Inc., San Diego, CA, USA). SECAPR comes with a
detailed documentation in form of an empirical data tutorial, which is explicitly written
to guide users with no previous experience with MPS datasets. To simplify the processing
of big datasets, all available functions are built to process batches of samples, rather than
individual files. We developed SECAPR to provide the maximum amount of automation,
while at the same time allowing the user to choose appropriate settings for their specific
datasets. The pipeline provides several plotting and quality-control functions, as well as
more advanced processing options such as the assembly of fully phased allele sequences for
diploid organisms (Andermann et al., 2018).

MATERIAL & METHODS
The SECAPR pipeline in a nutshell
SECAPR is a platform-independent pipeline written in python, and tested for full
functionality on Linux and MacOS. It can be easily downloaded together with all
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its dependencies as a virtual environment, using the conda package manager (see
‘Availability’). The strength of SECAPR is that it channels the main functionalities of
many commonly used bioinformatics programs and enables the user to apply these to sets
of samples, rather than having to apply different software to each sample individually.
In addition, SECAPR is optimized for high performance computing as it enables
computational parallelization for all major functions, which allows the efficient processing
of datasets encompassing dozens to hundreds of samples in parallel.

The basic SECAPR workflow (Fig. 1) includes the following steps:
1. Quality filtering and adapter trimming ;
2. De novo contig assembly ;
3. Selection of target contigs;
4. Building MSAs from contigs;
5. Reference-based assembly ;
6. Allele phasing.
SECAPR automatically writes summary statistics for each processing step and sample to

a log-file (summary_stats.txt, Table 1). The pipeline includes multiple visualization options
to gauge data quality and, if necessary, adapt processing settings accordingly. SECAPR
comes with a detailed documentation and data tutorial (see ‘Availability’).

Description of the SECAPR workflow
1. Quality filtering and adapter trimming (secapr clean_reads). The SECAPR clean_reads
function applies the software Trimmomatic (Bolger, Lohse & Usadel, 2014) for removing
adapter contamination and low quality sequences from the raw sequencing reads
(FASTQ-format). An additional SECAPR plotting function summarizes FASTQC
(BabrahamBioinformatics) quality reports of all files and produces a visual overview of
the whole dataset (Fig. 2). This helps to gauge if the files are sufficiently cleaned or if the
clean_reads function should be rerun with different settings.
2. De novo contig assembly (secapr assemble_reads). The SECAPR function assemble_reads
assembles overlapping FASTQ reads into longer sequences (de novo contigs) by
implementing the de novo assembly software Abyss (Simpson et al., 2009). Abyss has
been identified as one of the best-performing DNA sequence assemblers currently available
(Hunt et al., 2014). As an alternative to Abyss we also implemented the option to use
the Trinity assembler (Grabherr et al., 2011), which currently is only supported for the
Linux distribution of SECAPR. We do however recommend the use of Abyss as the
preferred assembly-software, firstly due to significantly faster computation and secondly
and more importantly due to the fact that Trinity is intended for the assembly of RNA
transcriptome data, leading to different assumptions about the input data in comparison
to DNA assemblers such as Abyss, as discussed in Haas et al. (2013).
3. Selection of target contigs (secapr find_target_contigs). The SECAPR function
find_target_contigs identifies and extracts those contigs that represent the DNA targets
of interest. This function implements the program LASTZ (formerly BLASTZ, Harris,
2007) by searching the contig files for matches with a user-provided FASTA-formatted
reference library. For sequence capture datasets, a suitable reference library is the reference
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Figure 1 SECAPR analytical workflow. The flowchart shows the basic SECAPR functions, which are sep-
arated into two steps (colored boxes). Blue box (1. reference library from raw data): in this step the raw
reads are cleaned and assembled into contigs (de novo assembly); orange box (2. reference based assembly
with custom reference library): the contigs from the previous step are used for reference-based assembly,
enabling allele phasing and additional quality control options, e.g., concerning read-coverage. Black boxes
show SECAPR commands and white boxes represent the input and output data of the respective function.
Boxes marked in grey represent multiple sequence alignments (MSAs) generated with SECAPR, which can
be used for phylogenetic inference.

Full-size DOI: 10.7717/peerj.5175/fig-1

file that was used for synthesizing the RNA baits, which will return all contigs that match the
enriched loci of interest. The find_target_contigs function identifies potentially paralogous
loci (loci that have several matching contigs) and excludes these from further processing.
It further allows the user to keep or exclude long contigs that match several adjacent
reference loci, which can occur if the reference file contains sequences that are located in
close proximity to each other on the genome (e.g., several separate exons of the same gene).
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Table 1 Summary statistics for all samples, produced by SECAPR. Reported for each sample (1. col-
umn) are the number of sequencing reads in the FASTQ sequencing files, before (2. column) and after (3.
column) cleaning and trimming, the total count of assembled de novo contigs (4. column), the number of
filtered contigs that matched target loci (5. column) and the number of sequencing reads that mapped to
the new reference library generated from the contig MSAs during reference-based assembly (6. column).
These summary statistics are automatically compiled and appended to a log file (summary_stats.txt ) dur-
ing different steps in the SECAPR pipeline.

Sample
ID

FASTQ read
pairs (raw)

FASTQ read
pairs (cleaned)

Total contig
count

Recovered
target contigs

Reads on
target regions

1087 291,089 276,072 277,628 562 22,308
1086 244,726 231,326 230,122 516 17,969
1140 206,106 192,676 153,377 469 18,039
1083 377,228 352,646 309,993 534 31,922
1082 277,999 262,378 258,359 556 19,491
1085 307,671 291,377 309,561 512 22,030
1079 315,801 298,450 306,369 550 13,969
1061 209,586 192,407 177,910 545 14,474
1068 295,402 278,069 264,865 563 22,013
1063 354,795 336,356 356,512 525 20,439
1080 459,485 434,951 433,954 531 41,068
1065 217,725 205,290 204,082 544 13,524
1073 302,798 286,021 289,612 529 15,598
1070 295,822 278,011 295,557 539 19,288
1064 408,723 384,908 405,080 543 21,531
1074 408,370 383,604 398,758 531 25,476
1166 405,667 385,442 410,292 544 29,697

4. Building MSAs from contigs (secapr align_sequences).The SECAPR function align_sequences
builds multiple sequence alignments (MSAs) from the target contigs that were identified
in the previous step. The function builds a separate MSA for each locus with matching
contigs for ≥3 samples.
5. Reference-based assembly (secapr reference_assembly). The SECAPR reference_assembly
function applies the BWA mapper (Li & Durbin, 2010) for reference-based assembly of
FASTQ reads and Picard (broadinstitute.github.io/picard/) for removing duplicate reads.
The function saves the assembly results as BAM files (Fig. 3), transforms them into Variant
Call Format (VCF) format using SAMtools (Li et al., 2009), and generates a consensus
sequence from the read variation at each locus. These consensus sequences have several
advantages over the de novo contig sequences (see ‘Discussion’) and can be used for building
MSAs with the SECAPR align_sequences function.

The reference_assembly function includes different options for generating a reference
library for all loci of interest:

• –reference_type alignment-consensus: The user provides a link to a folder containing
MSAs, e.g., the folder with the contig MSAs from the previous step, and the function
calculates a consensus sequence from each alignment. These consensus sequences are
then used as the reference sequence for the assembly. This function is recommended
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Figure 2 Overview of FASTQc quality test result. (A) Before and (B) after cleaning and adapter trim-
ming of sequencing reads with the SECAPR function clean_reads. This plot, as produced by SECAPR, pro-
vides an overview of the complete dataset and helps to gauge if the chosen cleaning parameters are ap-
propriate for the dataset. The summary plots show the FASTQc test results, divided into three categories:
passed (green), warning (blue) and failed (red). The x-axis of all plots contains the eleven different qual-
ity tests (see legend). The bar-plots (‘count’) represent the counts of each test result (pass, warning or fail)
across all samples. The matrix plots (‘samples’) show the test result of each test for each sample individu-
ally (y-axis). This information can be used to evaluate both, which specific parameters need to be adjusted
and which samples are the most problematic.

Full-size DOI: 10.7717/peerj.5175/fig-2

when running reference-based assembly for groups of closely related samples (e.g.,
samples from the same genus or family).
• –reference_type sample-specific : From the MSAs, the function extracts the contig
sequences for each sample and uses them as a sample-specific reference library. If
the user decides to use this function it is recommended to only use alignments for
reference that contain sequences for all samples. This will ensure that the same loci are
being assembled for all samples.
• –reference_type user-ref-lib: The user can provide a FASTA file containing a custom
reference library.

An additional SECAPR function (locus_selection) allows the user to select a subset of the
data consisting of only those loci, which have the best read-coverage across all samples.
6. Allele phasing (secapr phase_alleles). The SECAPR phase_alleles function can be used to
sort out the two phases (reads covering different alleles) at a given locus. This function
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Figure 3 Reference-based assembly including heterozygous sites. BAM-assembly file as generated
with the SECAPR reference_assembly function, shown exemplarily for one exon locus (1/837) of one of
the Geonoma samples (1/17). The displayed assembly contains all FASTQ sequencing reads that could
be mapped to the reference sequence. The reference sequence in this case is the de-novo contig that was
matched to the reference exon ‘Elaeis 1064 3’. DNA bases are color-coded (A, green; C, blue; G, black; T,
red). The enlarged section contains a heterozygous site, which likely represents allelic variation, as both
variants A and G are found at approximately equal ratio.

Full-size DOI: 10.7717/peerj.5175/fig-3

applies the phasing algorithm as implemented in SAMtools, which uses read connectivity
across multiple variable sites to determine the two phases of any given diploid locus (He
et al., 2010). After running the phasing algorithm, the phase_alleles function outputs a
separate BAM-file for each allele and generates consensus sequences from these allele
BAM-files. This results into two sequences at each locus for each sample, all of which are
collected in one cumulative sequence file (FASTA). This sequence file can be run through
the SECAPR align_sequences function in order to produce MSAs of allele sequences.
7. Pipeline automation (secapr automate_all). SECAPR provides the automate_all function
that produces contig MSAs and phased allele MSAs from cleaned FASTQ files, only
requiring one single command, automating steps 2–6. The user can choose between three
different settings, namely relaxed,medium or conservative, which run the SECAPR pipeline
with different sensitivity parameters. The relaxed setting is recommended when samples
in the dataset are expected to show considerable genetic variation (e.g., samples from
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different families) or are expected to differ considerably from the provided reference
library used for the extraction of target contigs. The conservative setting on the other
hand uses very restrictive similarity thresholds for the identification of target contigs and
during reference-based assembly and is therefore recommended for datasets containing
closely related samples (within same genus) that are expected to also be similar to the
provided reference library. The medium setting constitutes an intermediate between these
two extremes and is recommendable for datasets, which contain samples of closely related
genera. While in all cases it is recommendable to run the individual SECAPR functions
with customized settings for each specific dataset, the automate_all function can help to get
a first impression of the dataset through the SECAPR-logged sample information (Table
1) and the inspection of the produced MSAs and other, intermediate files, such as the
reference-assembly BAM-files.

Benchmarking with empirical data
We demonstrate the functionalities of SECAPR on a novel dataset of target sequencing
reads of Geonoma, one of the most species-rich palm genera (plant family Arecaceae) of
tropical Central and South America (Dransfield et al., 2008; Henderson, 2011). Our data
comprise newly generated Illumina sequence data for 17 samples of 14 Geonoma species
(Table S1), enriched through sequence capture. The bait set for sequence capture was
designed specifically for palms by Heyduk et al. (2016) to target 176 genes with in total 837
exons. More detailed information about the generation of the sequence data can be found
in Appendix S1. All settings and commands used during processing of the sequence data
can be found in the SECAPR documentation on our GitHub page (see ‘Availability’). An
example of a downstream application of the MSAs produced by SECAPR for phylogeny
estimation can be found in Appendix S2.

RESULTS
The newly generatedGeonoma data used for benchmarking constitute an empirical example
of a challenging dataset, characterized by irregular read coverage and multiple haplotypes.
Despite these challenges, the SECAPRworkflow provides the user all the necessary functions
to filter and process datasets into MSAs for downstream phylogenetic analyses.

After de novo assembly (secapr assemble_reads) we recovered an average of 535 (stdev
= 22) contigs per sample (secapr find_target_contigs) that matched sequences of the 837
targeted exons (Table 1, Fig. 4A, Table S2). In total 120 exons were recovered for all samples.
Many of the recovered target contigs spanned several reference exons (all samples: mean
= 100, stdev = 25) and hence were flagged as contigs matching multiple loci (Table S3).
Since these contigs may be phylogenetically valuable, as they contain the highly variable
interspersed introns, we decided to keep these sequences. We extracted these longer contigs
together with all other non-duplicated contigs that matched the reference library (secapr
find_target_contigs) and generated MSAs for each locus that could be recovered in at least
three Geonoma samples (secapr align_sequences). This resulted in contig alignments for 692
exon loci (Fig. 4A).
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Figure 4 Overview of sequence yield forGeonoma sample data, produced with SECAPR. The matrix
plots show an overview of the contig yield and read-coverage for all targeted loci (A+ B) and for the selec-
tion of the 50 loci with the best read coverage (C+ D), selected with the SECAPR function locus_selection
(see Table S5 for loci-names corresponding to indices on x-axes). (A) and (C) show if de novo contigs
could be assembled (blue) or not (white) for the respective locus (column) and sample (row). Contig
MSAs were generated for all loci that could be recovered for at least three samples (green). (B) and (D)
show the read coverage (see legend) for each exon locus after reference-based assembly. The reference li-
brary for the assembly consisted of the consensus sequences of each contig MSA, and hence is genus spe-
cific for Geonoma.

Full-size DOI: 10.7717/peerj.5175/fig-4

During reference-based assembly (secapr reference_assembly) we mapped the reads
against the consensus sequence of the contig MSAs for all loci. We found an average of 454
exon loci (stdev = 108) per sample that were covered by more than three reads (average
coverage across complete locus, Fig. 4B). A total of 67 exon loci had an average read
coverage of more than three reads across all samples (Table S4). We extracted the 50 loci
with the best coverage across all samples (secapr locus_selection), as shown in Figs. 4C and
4D. In cases of irregular read-coverage across samples (as in our sample Geonoma data),
we strongly recommend the use of the locus_selection function before further processing
the data, as demonstrated in our tutorial (see ‘Availability’).
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The results of the reference-based assembly also revealed that our sample data showed
more than two haplotypes for many loci. Future research may clarify whether this is the
result of various paralogous loci in the dataset or if ourGeonoma samples are polyploid due
to a recent genome duplication or hybridization event in the ancestry of the genus. Due to
the presence of more than two haplotypes at various loci, the results of the allele-phasing
step (secapr phase_alleles) are to be viewed critically, since the algorithm is built for phasing
the read data of diploid organisms or loci only. Hence, the allele-phasing results are not
reported or discussed in the scope of this manuscript. All phased BAM files and the
compiled allele MSAs are available online (see ‘Availability’).

DISCUSSION
De novo assembly vs. reference-based assembly
There are several ways of generating full sequences from raw FASTQ-formatted sequencing
reads. The SECAPR pipeline contains two different approaches, namely de novo assembly
and reference-based assembly (Fig. 1). De novo assembly can be directly applied to any raw
read data while reference-based assembly requires the user to provide reference sequences
for the assembly. We find for the Geonoma example data that reference-based assembly
results into recovering themajority of all target sequences per sample (Fig. 4D) and provides
the user a better handle on quality and coverage thresholds. It is also computationally much
less demanding in comparison to de novo assembly.

However, reference-based assembly is very sensitive toward the user providing
orthologous reference sequences that are similar enough to the sequencing reads of
the studied organisms. If the reference sequences are too divergent from the sequenced
organisms, only a small fraction of the existing orthologous sequencing reads will be
successfully assembled for each locus. In contrast, when relaxing similarity thresholds and
other mapping parameters too much (e.g., to increase the fraction of reads included in
the assembly) there is a higher risk of assembling non-orthologous reads, which can lead
to chimeric sequences being assembled. This can be a problem, particularly in cases of
datasets containing non-model organisms, since suitable reference sequences for all loci
usually do not exist.

For this reason, the SECAPR workflow encourages the user to use these two different
assembly approaches in concert (Fig. 1). Our general suggestion is to first assemble contig
MSAs for all regions of interest, resulting from de novo assembly and then use these MSAs
to build a reference library for reference-based assembly. In that case SECAPR produces a
reference library from the sequencing data itself, which is specific for the taxonomic group
of interest or even for the individual sample.

A common approach is to stop data processing after the de novo assembly step and then
use the contigMSAs for phylogenetic analyses (e.g., Faircloth et al., 2012; Smith et al., 2014a;
Smith et al., 2014b; Faircloth, 2015). Here we take additional processing steps, including
generating new reference libraries for all samples and using these for reference-based
assembly. There may be several reasons for carrying out these additional steps:
1. Sensitivity: In order to identify de novo contigs that are orthologous to the loci of

interest, the user is usually forced (because of the lack of availability) to use a set of
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reference sequences for many or all loci that are not derived from the studied group.
Additionally these reference sequences may bemore similar to some sequenced samples
than to others, which can introduce a bias in that the number of recovered target loci
per sample is based on how divergent their sequences are to the reference sequence
library. In other words, the ‘one size fits all’ approach for recovering contig sequences
is not the preferred option for most datasets and may lead to taxonomic biases. For this
reason it is recommended to generate family, genus or even sample-specific reference
libraries using the recovered contigs, and use these to re-assemble the sequencing reads.

2. Intron/exon structure: The advantage of creating a new reference library from the
contig data, rather than using alternatively available sequences as reference (e.g., the
RNA bait sequences) for reference-based assembly, is that available reference sequences
often constitute exons, omitting the interspersed intron sequences (as in the case of
bait sequences). The more variable introns in between exons are usually not suitable for
designing baits, they are too variable, but are extremely useful for most phylogenetic
analyses because they have more parsimony informative sites. There is a good chance
that the assembled contigs will contain parts of the trailing introns or even span across
the complete intron, connecting two exon sequences (e.g., Bi et al., 2012). This is
why it is preferable to use these usually longer and more complete contig sequences
for reference-based assembly, rather than the shorter exon sequences from the bait
sequence file, in order to capture all reads that match either the exon or the trailing
intron sequences at a locus.

3. Allelic variation: Remapping the reads in the process of reference-based assembly will
identify the different allele sequences at a given locus. This can also aid in the evaluation
of the ploidy level of samples and in identifying loci potentially affected by paralogy.

4. Coverage: Reference-based assembly will give the user a better and more intuitive
overview over read-depth for all loci. There are excellent visualization softwares (such
as Tablet, by Milne et al., 2013) that help interpret the results.

Novelty
Several pipelines and collections of bioinformatics tools exist for processing sequencing
reads generated by MPS techniques, e.g., PHYLUCE (Faircloth, 2015), GATK (McKenna
et al., 2010) and ‘reads2trees’ (Heyduk et al., 2016). In contrast to some of these existing
pipelines, SECAPR (i) is targeted towards assembling full sequence data (as compared to
only SNP data, e.g., GATK); (ii) is intended for general use (rather than project specific, e.g.,
reads2trees); (iii) is optimized particularly for non-model organisms and non-standardized
sequence capture datasets (as compared to specific exon sets, e.g., PHYLUCE); (iv) allows
allele phasing and selection of the best loci based on read coverage, which to our knowledge
are novel to SECAPR. This is possible due to the approach of generating a clade- or even
sample-specific reference library from the sequencing read data, which is then used for
reference-based assembly; (v) offers new tools and plotting functions to give the user an
overview of the sequencing data after each processing step.
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CONCLUSIONS
The SECAPR pipeline described here constitutes a bioinformatic tool for the processing
and alignment of raw Illumina sequence data. It is particularly useful for sequence capture
datasets and we show here how it can be applied to even challenging datasets of non-model
organisms.

AVAILABILITY
The SECAPR pipeline is open source and freely available, and can be found together
with installation instructions, a detailed documentation and an empirical data tutorial at
http://www.github.com/AntonelliLab/seqcap_processor.
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