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ABSTRACT
Black Band Disease (BBD) is a widely distributed and destructive coral disease that has
been studied on a global scale, but baseline data on coral diseases is missing frommany
areas of the Arabian Seas. Here we report on the broad distribution and prevalence
of BBD in the Red Sea in addition to documenting a bleaching-associated outbreak of
BBD with subsequent microbial community characterization of BBD microbial mats
at this reef site in the southern central Red Sea. Coral colonies with BBD were found
at roughly a third of our 22 survey sites with an overall prevalence of 0.04%. Nine
coral genera were infected including Astreopora, Coelastrea,Dipsastraea,Gardineroseris,
Goniopora, Montipora, Pavona, Platygyra, and Psammocora. For a southern central
Red Sea outbreak site, overall prevalence was 40 times higher than baseline (1.7%).
Differential susceptibility to BBD was apparent among coral genera with Dipsastraea
(prevalence 6.1%), having more diseased colonies than was expected based on its
abundance within transects. Analysis of the microbial community associated with
the BBD mat showed that it is dominated by a consortium of cyanobacteria and
heterotrophic bacteria. We detected the three main indicators for BBD (filamentous
cyanobacteria, sulfate-reducing bacteria (SRB), and sulfide-oxidizing bacteria (SOB)),
with high similarity to BBD-associated microbes found worldwide. More specifically,
the microbial consortium of BBD-diseased coral colonies in the Red Sea consisted of
Oscillatoria sp. (cyanobacteria), Desulfovibrio sp. (SRB), and Arcobacter sp. (SOB).
Given the similarity of associated bacteria worldwide, our data suggest that BBD
represents a global coral disease with predictable etiology. Furthermore, we provide
a baseline assessment of BBD disease prevalence in the Red Sea, a still understudied
region.

Subjects Biogeography, Ecology, Marine Biology, Microbiology
Keywords Coral reef, Coral disease, Red Sea, Coral bleaching, Microbiology, Metabarcoding

INTRODUCTION
The rise of coral disease outbreaks contributes to the decline of coral reefs globally (Cróquer
& Weil, 2009; Harvell et al., 2009; Hoegh-Guldberg, 2012; McLeod et al., 2010; Randall &
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Van Woesik, 2015) and coral disease appears to be the most destructive factor on many
reefs. For instances, the Caribbean has been named a ‘‘disease hot spot’’ due to the fast
emergence, high prevalence, and virulence of coral diseases in this region (Rosenberg &
Loya, 2013). Coral disease outbreaks in the last decades in the Caribbean have resulted in
significant losses in coral cover, diversity, and habitat (Aronson & Precht, 2001; Bruckner,
2002; Hughes, 1994; Precht et al., 2016; Weil, 2002). Following the mass-bleaching event in
2005 in the US Virgin islands, coral disease outbreaks reduced coral cover by more than
50% (Cróquer & Weil, 2009;Miller et al., 2009).

Coral diseases were first reported in the Caribbean in the 1970s, including black band
disease (BBD), which is considered the most studied coral disease due to its widespread
occurrence on reefs around the world (Bourne, Muirhead & Sato, 2011; Richardson, 2004).
Black band disease has been reported from reefs throughout the Caribbean, the Indo-
Pacific regions, the Red Sea, and the Great Barrier Reef (Al-Moghrabi, 2001; Dinsdale,
2002; Green & Bruckner, 2000; Kaczmarsky, 2006; Lewis et al., 2017; Montano et al., 2012;
Page & Willis, 2006; Sutherland, Porter & Torres, 2004; Weil et al., 2012). BBD is the first
described coral disease (Antonius, 1973), affecting scleractinian and gorgonian corals
(Green & Bruckner, 2000; Sutherland, Porter & Torres, 2004; Weil, 2004). BBD prevalence
generally is considered low (Dinsdale, 2002; Edmunds, 1991; Weil, 2002); however, this
disease is a serious threat to coral reef ecosystems worldwide due to its persistence, leading
to coral mortality in the long-term (Bruckner & Bruckner, 1997; Green & Bruckner, 2000;
Kaczmarsky, 2006; Kuta & Richardson, 1996; Page & Willis, 2006; Sutherland, Porter &
Torres, 2004; Zvuloni et al., 2009). Susceptibility to BBD differs between coral taxa and may
result in long-term changes to coral community structure (Bruckner & Bruckner, 1997;
Page & Willis, 2006). The abundance of BBD is affected by several environmental factors,
including seawater temperature, water depth, solar irradiance, host population diversity,
and anthropogenic nutrients (Al-Moghrabi, 2001; Kaczmarsky, 2006; Kuta & Richardson,
2002;Montano et al., 2013). Interestingly, seasonal temperatures influence BBD prevalence,
with increased virulence during warmer summermonths (Richardson & Kuta, 2003;Rützler
& Santavy, 1983; Willis, Page & Dinsdale, 2004), as for example in the Maldives where sea
surface temperatures above 28 ◦C promoted BBD infections (Montano et al., 2013).

BBDmanifests as a dark band that migrates across the coral colony at a rate of >1 cm/day
(Richardson, 1998) leaving behind bare skeleton. The base of the BBDmat is anoxic and high
in sulfide levels, causing damage and necrosis to coral tissue (Ainsworth et al., 2007; Carlton
& Richardson, 1995; Richardson et al., 1997). The BBD mat is composed of a polymicrobial
consortium, dominated by filamentous cyanobacteria, sulfate-reducing bacteria (SRB),
including members ofDesulfovibrio spp., sulfide-oxidizing bacteria (SOB) (Beggiatoa spp.),
and other heterotrophic bacteria (Cooney et al., 2002; Miller & Richardson, 2011; Sato,
Willis & Bourne, 2010). As a result of diel light changes, the microbial members of the BBD
mat undergo vertical migrations, which causes the harmful microenvironment on top of
the coral tissue (Carlton & Richardson, 1995;Miller & Richardson, 2011; Richardson, 1996).
Oxygen depletion and high sulfide concentrations are produced by SRB, which is lethal
to the coral tissues and considered the most important factor in BBD pathogenicity (Glas
et al., 2012; Richardson, 1996; Richardson et al., 1997; Richardson et al., 2009). Although
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the functional composition of the BBD mat is conserved, the diversity of the microbial
consortium in BBD differs according to geographic location and coral species (Cooney et
al., 2002; Frias-Lopez et al., 2004; Sekar et al., 2006).

The occurrence of BBD in the Red Sea was first recorded by Antonius (1988) where the
severity of BBD was measured from rare to moderate and mostly correllated with elevated
temperatures and seawater pollution. However, baseline data on BBD prevalence in the
Red Sea is still lacking. To fill this gap, we conducted surveys to determine the distribution
and prevalence of BBD across central Red Sea reefs spanning 4 degrees of latitude. We also
detected a bleaching-associated outbreak of BBD on a coral reef in the southern central Red
Sea and characterized the microbial community of BBD microbial mats from Coelastrea
sp., Dipsastraea sp., Goniastrea sp., and Platygra sp. using high-throughput sequencing.
We compared the microbial consortium to that reported from other regions of the world
in order to identify biogeographic patterns in the main BBD consortium members.

MATERIAL AND METHODS
Black band disease surveys
Coral community structure and BBD prevalence was recorded at 22 sites spanning approx.
535 km along the coast of Saudi Arabia in the Red Sea (Fig. 1, Table 1). At least six reefs
per region (Yanbu, Thuwal, Al-Lith) were surveyed with three additional reefs in Thuwal
and one reef in Jeddah (80 km from Thuwal) that were surveyed as time permitted. The
reefs sampled/assessed in this study do not fall under any legislative protection or special
designation as a marine/environmental protected area. Under the auspices of KAUST
(King Abdullah University of Science and Technology), the Saudi Coastguard Authority
issued sailing permits to the sites that include coral collection. At each site, divers counted
coral colonies by genera along two replicate belt transects (25 m × 1 m). At the same
time, point-intercept method was used to characterize the substrate at 25 cm intervals. All
corals with BBD lesions were identified along wider 25× 6 m transects and photographed.
Depending on depth and time limits, the length of transects were adjusted as necessary.
Survey sites ranged in depth between 3 and 7.6 m and all surveys were conducted from
19 October to 3 November 2015. The diver surveys were used to determine average
percent coral cover, coral community composition, and colony densities. Underwater
time constraints prevented counting all colonies within the larger 25 × 6 m belts surveyed
for disease. Therefore, BBD prevalence was estimated by calculating the average colony
density (by genus) within the 25 × 1 m transect and then extrapolating the colony counts
to the wider 25 × 6 m disease survey area and using this as the denominator of prevalence
calculations, i.e., (number of colonies with BBD lesions/total number of estimated colonies)
* 100) (Aeby et al., 2015a). At the outbreak site, diseased coral colonies were so numerous
that only 49 m2 of the transect could be surveyed. The frequency of disease occurrence
(FOC) was calculated by dividing the number of sites having corals with BBD lesions
by the total number of sites surveyed. At the localized BBD outbreak site a chi-square
goodness-of-fit test was used to examine differential distribution of the number of BBD
versus healthy colonies among the coral genera affected by the disease. The chi-square test
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Figure 1 Black band disease survey locations of 22 reef sites along the central Red Sea coast of Saudi
Arabia. Survey points marked for Yanbu region (north), Thuwal (central), and Al-Lith (south). Sites with-
out black band diseased coral colonies marked in black, sites with one or two diseased colonies in blue,
and the site where a localized outbreak of BBD was observed is marked in pink.

Full-size DOI: 10.7717/peerj.5169/fig-1

compares the observed vs. expected number of infected colonies based on the abundance
of each coral genus in the field. Statistical analysis was performed using JMP statistical
software (v. 10.0.2, SAS Institute Inc., Buckinghamshire, UK).

Sample collection of black band disease microbial mats and 16S
rRNA gene sequencing
Microbial mats were collected fromBBD infected coral genera (one colony ofCoelastrea sp.,
two colonies of Dipsastraea sp., three colonies of Goniastrea sp., and one colony of Platygra
sp.) at the site of the observed BBD outbreak (Al-Lith fringing reef 1) in November 2015.
Microbial mats were siphoned off the coral surface with Pasteur pipettes and transferred
into ziplock bags under water. Sample replication was limited by obtainable coral species
on this reef site due to environmental conditions.

Samples were homogenized using bead-beating via TissuLyser II (Qiagen, Hilden,
Germany) twice for 30 sec at 30 Hz, 20 µl of the homogenate were boiled in sterile
Milli-Q water at 99 ◦C for 5 min and subsequently 1 µl was directly used as PCR template.
To amplify the variable region 4 of the 16S rRNA gene, the following primers were
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Table 1 Survey of black band disease (BBD)-affected coral colonies at 22 reef sites in the central Red Sea. Coral genus counts denote number of BBD-affected
colonies.

Region Reef site GPS
(latitude, longitude)

Depth
(m)

Area colony
count
survey (m2)

Area BBD
survey (m2)
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Total no.
of BBD

Total no.
surveyed

BBD
prevalence
(%)

Yanbu Marker 32 23.8664, 37.8913 4 25 75.6 0 726 0

Marker 35 23.8207, 37.9350 4.6 25 78 0 930 0

Abu Galaba 23.7891, 37.9393 3 21 61.8 0 848 0

Fringing reef 1 24.1362, 37.9396 5.2 25 150 0 1,308 0

Marker 10 24.0189, 37.9666 4.6 25 126 0 1,749 0

Fringing reef 2 24.1452, 37.9149 4.6 25 150 0 1,830 0

Thuwal Abu Madafi 22.0766, 38.7751 4 25 300 1 1 2,184 0.05

Al Fahal 22.1119, 38.8411 4.6 23.5 300 0 6,000 0

Al-Mashpah 22.0772, 38.7744 6.7 25 300 0 4,200 0

Inner Fsar 22.2358, 39.0304 4.6 25 300 1 1 6,852 0.01

Shaab 22.2012, 38.9992 4.6 25 300 1 1 5,778 0.02

Shi’b Nazar 22.3409, 38.8521 4.9 23.5 300 0 3,294 0

Tahlah 22.2750, 39.0497 5.2 25 300 0 3,780 0

Qita al Kirsh 22.4257, 38.9957 4.6 25 300 0 5,748 0

Um Alkthal 22.1653, 38.9391 7.6 25 300 0 5,208 0

Jeddah La Plage 21.7092, 39.0832 4.6 25 300 1 1 474 0.21

Al-Lith Abu Lath 19.9554, 40.1543 5.5 20 240 0 5,556 0

South Reef 19.8985, 40.1514 3.7 20 240 1 1 3,720 0.03

Al-Lith 3 19.8608, 40.2282 5.5 20 240 0 4,320 0

Qita Al Kirsh 20.1407, 40.0931 3 20 240 1 1 6,588 0.02

Fringing reef 1 20.1732, 40.1613 4.5 20 49 1 15 2 1 1 1 1 1 23 1,281 1.72

Whaleshark reef 20.1230, 40.2118 1.8 25 150 1 1 2 1,716 0.12

Notes.
aColonies of Coelastrea and Goniopora were only found outside the survey area.
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used: 515F [5′TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGTGCCAGCMGCC
GCGGTAA′3] and 806RB [5′ GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAG
GGACTACNVGGGTWTCTAAT′3] (Apprill et al., 2015; Caporaso et al., 2012; Kozich et
al., 2013). Primer sequences contained sequencing adaptor overhangs (underlined above;
Illumina, San Diego, CA, USA). Triplicate PCRs were performed for all samples with
0.2 µM of each primer in a total reaction volume of 25 µL using the Qiagen Multiplex
PCR Kit. The following cycling conditions were used: 95 ◦C for 15 min, followed by
27 cycles of 94 ◦C for 45 s, 50 ◦C for 60 s, 72 ◦C for 90 s, and a final extension step of
72 ◦C for 10 min. Amplification was checked visually via 1% agarose gel electrophoresis.
Triplicate samples were pooled and cleaned with ExoProStar 1-Step (GE Healthcare, Little
Chalfont, UK). An indexing PCR was performed on the cleaned samples to add Nextera
XT indexing and sequencing adaptors (Illumina, San Diego, CA, USA) following the
manufacturer’s protocol and followed by sample normalization and library pooling. 16S
rRNA gene amplicon libraries were sequenced on the IlluminaMiSeq platform using 2*300
bp overlapping paired-end reads with a 10% phiX control at the KAUST Bioscience Core
Laboratory. Sequence data determined in this study are available under NCBI Bioproject
ID: PRJNA436216.

Sequence data processing and bacterial community analysis
Processing of raw sequence data was conducted in mothur (version 1.36.1; Schloss et
al., 2009). Using the ‘make.contigs’ command, sequence reads were joined into contigs.
Contigs longer than 310 bp and ambiguously called bases were excluded from the analysis.
Subsequently, sequences that occurred only once across the entire dataset (singletons) were
removed. The number of distinct sequences were identified and counted, and the total
number of sequences per sample was determined using the ‘count.seqs’ command.

The remaining sequences were aligned against SILVA database (release 119; (Pruesse et
al., 2007). Sequences were pre-clustered allowing for up to a 2 nt difference between the
sequences (Huse et al., 2010). Chimeras were removed using UCHIME as implemented
in mothur (Edgar et al., 2011). Next, sequences were classified with Greengenes database
(release gg_13_8_99; bootstrap = 60; McDonald et al., 2012), followed by the removal of
chloroplast, mitochondria, Archaea, and eukaryote sequences. Further, we found three
abundant bacterial families (Dermabacteraceae, Dietziaceae, Brevibacteriaceae) that were
present in all disease samples and at high abundance in our negative control. The negative
control was a sample containing water as a template for the PCR reaction. As these
bacterial families are also known as kit/reagent/lab contaminants, they were excluded
from the dataset (Salter et al., 2014). Some additional bacterial taxa that were found in
high numbers in the negative control with low abundance in coral samples were excluded
(Comamonadaceae, Halomonadaceae, Staphylococcaceae). For further analyses, sequences
were subsampled to 7,328 sequences per sample, which is the lowest number of sequences in
a sample, and then clustered into OTUs (Operational Taxonomic Units) at a 97% similarity
cutoff. Reference sequences for each OTUwere determined by themost abundant sequence
(Data S1). Alpha diversity indices (i.e., Chao1 Chao, 1984, Simpson evenness, and Inverse
Simpson Index Simpson, 1949) were calculated as implemented in mothur.
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For detecting similarity of the three main microbial consortium members in BBD
microbial mats to previously reported taxa from other studies, the representative
sequences of the most abundant OTUs were BLASTed against the NCBI database
(https://blast.ncbi.nlm.nih.gov) using a 98% similarity cutoff. Subsequently, our sequences
were compared to matches of highly similar bacterial taxa by obtaining the respective coral
species, their location, and colony health status. Furthermore, low abundant OTUs not
previously reported from BBD, but with related properties to SRB, SOB, or Cyanobacteria
were also BLASTed against the NCBI database.

16S rRNA sequences of SOB and SRB were aligned and neighbor-joining trees were
constructed based on Jukes-Cantor model with MAFFT (Katoh, Rozewicki & Yamada,
2017; Kuraku et al., 2013). All positions containing gaps and missing data were excluded
and phylogenetic trees were visualized using Archaeopteryx.js.

RESULTS
Distribution and prevalence of black band disease on Red Sea reefs
We identified 30 coral genera within transects across 22 reef sites (Fig. 1) with an average
density of 16 coral colonies / m2 (SE ± 1.2) and an average coral cover of 43.8% (SE
± 4.3). Colonies with BBD were found at 8 of 22 sites (Table 1, Fig. 1). Over all study
sites, nine coral genera were infected and include Astreopora, Coelastrea, Dipsastraea,
Gardineroseris, Goniopora, Montipora, Pavona, Platygyra, Psammocora. Approximately
74,090 colonies were examined for disease and overall BBD prevalence over all sites was
low (0.04%) because most sites had no signs of BBD. At the sites where BBD occurred,
seven of the eight sites had one to two colonies infected within survey areas (up to 300 m2)
(avg. prevalence = 0.064%) and one site had a localized BBD outbreak (Al-Lith fringing
reef 1) where 21 infected colonies were found within 49 m2 of the transect (prevalence
= 1.7%) and an additional two colonies outside the transect (Table 1). At this site, 18
coral genera were found within transects, but only nine coral genera exhibited signs of
disease suggesting differential BBD susceptibility among coral genera (x2= 45.67 df = 6,
P < 0.001). Dipsastraea appeared to be the most susceptible (prevalence = 6.1%) with
more diseased colonies than expected based on its abundance within transects (Table 2).
Dipsastraea represented 18.6% of the coral colonies within transects but 68.2% (15 of 22)
of the BBD colonies.

Bacterial community composition of black band disease
microbial mats
Besides the ecological survey of BBD prevalence, we investigated the microbial consortium
of the BBD mat of corals from the outbreak site in the southern central Red Sea that was
also subject to a bleaching event (Al-Lith fringing reef 1). We assessed whether the same
bacterial taxa are associated with BBD in the Red Sea in comparison to other sites globally.
Seven coral BBD microbial mat samples from the outbreak site included one colony of
Coelastrea sp., two colonies of Dipsastraea sp., three colonies of Goniastrea sp., and one
colony of Platygra sp., which together yielded 555,093 raw 16S rRNA gene sequences with
a mean length of 298 bp (Table 3). After quality filtering and exclusion of chimeras and
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Table 2 Survey of black band disease-affected coral genera at an outbreak site in the southern central
Red Sea (Al-Lith fringing reef 1, Saudi Arabia).

Coral species No. of coral
colonies/survey area
(20 m2)

% of coral
community

No. of BBD
cases/survey area
(49 m2)

Prevalence %

Astreopora 23 4.24 1 1.8

Coelastreaa 0 – 1 –

Dipsastraea 101 18.63 15 6.1

Gonioporaa 0 – 1 –

Montipora 11 2.03 1 3.7

Pavona 5 0.92 1 8.2

Platygyra 28 5.17 1 1.5

Psammocora 28 5.17 2 2.9

Other coral genera 346 63.80 0 0

Totala 542 100 23 1.7

Notes.
aColonies of Coelastrea and Goniopora were only found outside the survey area and were not counted towards totals.

Table 3 Summary of sequencing information and alpha diversity measures of bacterial communities
associated with black band disease microbial mats from coral colonies at an outbreak site in the south-
ern central Red Sea (Al-Lith fringing reef 1, Saudi Arabia).

Sample No. of
sequences

No. of
OTUsa

Chao1a Inv.
Simpsona

Simpson
evennessa

Coelastrea 17,869 149 203 14.10 0.095

Dipsastraea 1 7,328 146 240 22.33 0.153

Dipsastraea 2 15,919 122 160 7.71 0.063

Goniastrea 1 16,201 120 152 8.18 0.068

Goniastrea 2 15,743 113 161 9.49 0.084

Goniastrea 3 14,466 136 159 11.57 0.085

Platygra 20,037 98 125 8.50 0.087

Notes.
aAfter subsampling to 7,328 sequences. Total number of OTUs: 315.

contaminant sequences, we retained 107,613 sequences for analysis of the BBD microbial
mat microbiome. To assess bacterial community composition, sequences were classified
to family level considering bacterial families that comprised >1% of the total sequence
reads (Fig. 2). The presence of cyanobacteria, SRB, and SOB was confirmed but at varying
abundance. For instance, Cyanobacteria such as Phormidiaceae ranged in proportion
between 0 and 3.9%, SRB such as Desulfovibrionaceae between 0.9 and 33.8%, and SOB
such as Campylobacteraceae between 15 to 45%. After subsampling to 7,328 sequences per
sample, we found 351 distinct OTUs across the entire dataset (Data S1). Species richness
(Chao1) and bacterial diversity (Inverse Simpson) were relatively similar between samples,
ranging from 98 to 149 OTUs per sample (Table 3).

Black band disease representative bacterial consortia
We compared the sequences from representative bacterial BBD consortiummembers found
in four coral genera in the southern central Red Sea to sequences obtained from other
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Figure 2 Bacterial community composition of black band disease microbial mats from four coral gen-
era. (one colony of Coelastrea, two colonies of Dipsastraea, three colonies of Goniastrea, and one colony
of Platygyra) from an outbreak site in the southern central Red Sea (Al-Lith fringing reef 1, Saudi Arabia).
Taxonomy stacked column plot on the phylogenetic level of family or to lowest resolved taxonomic level
(f, family; o, order; p, phylum). Each color represents one of the 17 most abundant families. Remaining
taxa are grouped under category ‘others’.

Full-size DOI: 10.7717/peerj.5169/fig-2
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locations and coral taxa that were affected by BBD on a global scale. Coral disease microbial
mat-associated OTUs that represent the three main bacterial consortium members in BBD
were successfully identified in our samples:

Sulfide oxidizing bacteria (SOB)
Beggiatoa sp., a commonBBD-SOBmember was absent in our samples, despitemicroscopic
white filaments in the disease lesions which suggested its presence. Another SOB-
consortium member Arcobacter sp. was present in all samples, which has been associated
previously with BBD and with white plague disease (WPD)(Sunagawa et al., 2009). The
SOB-classified OTUs were the most abundant taxa in the dataset. Several OTUs were found
to be associated with all coral genera (i.e., Coelastrea,Dipsastraea, Goniastrea, and Platygra)
with proportions of up to 22.6% in all coral samples (OTU0001, 2, 4, 11, 16: all Arcobacter
sp., OTU0010: Sulfurospirillum sp.). These SOB-associated OTUs were found to be similar
to those found in different places around the world (e.g., Philippines (Garren et al., 2009)
and in the Caribbean including the Netherlands Antilles (Klaus, Janse & Fouke, 2011), US
Virgin Islands (Cooney et al., 2002), and Puerto Rico (Sunagawa et al., 2009) (Table 4),
where they were associated with varying coral species (Fig. 3A).

Sulfate-reducing bacteria (SRB)
Two abundant OTUs were found to be associated with BBD samples. These OTUs
were annotated to Desulfovibrio sp. (OTU0005, OTU0006) with abundance ranges of
0.01–30.7% in all coral samples. Similar SRB-OTUs were found in the Caribbean (Sekar,
Kaczmarsky & Richardson, 2008; Sunagawa et al., 2009) and Japan in different coral species
(e.g., Montipora sp., Orbicella faveolata, and Siderastrea sidereal, Table 4). OTU0005
(Desulfovibrio dechloracetivorans) clustered together with SRB previously found in corals
diseased with WPD (Sunagawa et al., 2009) and BBD (Sekar et al., 2006), while OTU0006
(Desulfovibrio marinisediminis) clustered away (Fig. 3B), indicating that this is not a typical
BBD consortium member.

Cyanobacteria
One cyanobacterium (OTU0023, Oscillatoria sp.) was found at proportions of up to 4%
in our coral samples. Cyanobacteria of the same genus (99% sequence similarity) have
previously been found in BBD infected Pavona sp. in the GBR (Buerger et al., 2016) and
from other regions, e.g., the Caribbean (Casamatta et al., 2012), Hawaii (Aeby et al., 2015b),
and Palau (Sussman, Bourne & Willis, 2006) (Table 4).

Others
Although not belonging to the three main BBD bacterial consortium members, Firmicutes
have previously been reported in coral BBD (Barneah et al., 2007; Cooney et al., 2002;
Klaus, Janse & Fouke, 2011). Members were also found in our dataset at proportions of
up to 24.8% (OTU0003, OTU0009, OTU0013, OTU0018). Furthermore, the Firmicutes-
associated OTUs in our data were similar to those found in Porites white patch syndrome
(PWPS) (Séré et al., 2013) and WPD (Roder et al., 2014; Sunagawa et al., 2009) (Table 4).

We also retrieved sequences of Vibrio sp. (OTU0015, OTU0029) from our dataset, at
proportions of up to 12.8%. These OTU sequences also had a high similarity (98–99%)
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Table 4 Summary of bacterial taxa (OTUs) associated with black band disease (BBD) in corals from the southern central Red Sea and comparison with similar taxa
from around the world, based on BLAST results (accession number, identity) of the BBD consortium of sulfide-oxidizing bacteria (SOB), sulfate-reducing bacteria
(SRB), cyanobacteria, Firmicutes, and Vibrio sp.

OTU Count Taxonomy Identity GenBank
Acc No.

Reference Health
state

Host & location

SOB

Otu0001 913 Arcobacter sp. 99% EF089456 Barneah et al. (2007) BBD Favites and Dipsastraea, Red Sea

KC527436 Roder et al. (2014) WPD Pavona duerdeni and Porites lutea,West Pacific

HM768631 Klaus, Janse & Fouke (2011) BBD Faviidae, Meandrinidae, Gorgoniidae, Caribbean

Otu0002 625 Arcobacter sp. 99% GU319311 Meron et al. (2010) Healthy Acropora eurystoma, Red Sea

FJ203140 Sunagawa et al. (2009) WPD Orbicella faveolata, Caribbean

AB235414 Yasumoto-Hirose et al. (2006) – Non-coral species

Otu0004 336 Arcobacter sp. 99% KT973145 Couradeau et al. (2017) – Non-coral species

JF344171 Acosta-González, Rosselló-Móra & Marqués (2012) – Non-coral species

FJ949362 Suárez-Suárez et al. (2011) – Non-coral species

Otu0010 246 Sulfurospirillum sp. 98% LC026456 K Yamaki, F Mori, R Ueda, R Kondo, U
Umezawa, H Nakata & MWada (2015,
unpublished data)

– Non-coral species

AF473976 Cooney et al. (2002) BBD Faviidae, Caribbean

GU472074 L Arotsker, D Rasoulouniriana, N Siboni, E Ben-
Dov, E Kramarsky-Winter, Y Loya & A Kush-
maro (2010, unpublished data)

BBD –

Otu0011 208 Arcobacter sp. 99% HM768558 Klaus, Janse & Fouke (2011) BBD Faviidae, Meandrinidae, and Gorgoniidae, Caribbean

GQ413587 Garren et al. (2009) – Porites cylindrica, West Pacific

Otu0016 117 Arcobacter sp. 98% LC133150 S Iehata, Y Mizutani & R Tanaka (2016, unpub-
lished data)

– Non-coral species

HE804002 C Chiellini, R Iannelli, F Verni & G Petroni
(2012, unpublished data)

– Non-coral species

KF185679 J Vojvoda, D Lamy, E Sintes, JA Garcia, V Turk &
GJ Herndl (2013, unpublished data)

– Non-coral species

SRB

Otu0005 322 Desulfovibrio dechloracetivorans 98% AB470955 K Yoshinaga, BE Casareto & Y Suzuki (2008, un-
published data)

Healthy Montipora sp., West Pacific

FJ202627 Sunagawa et al. (2009) WPD Orbicella faveolata, Caribbean

EF123510 Sekar, Kaczmarsky & Richardson (2008) BBD Siderastrea siderea, Caribbean

(continued on next page)
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Table 4 (continued)
OTU Count Taxonomy Identity GenBank

Acc No.
Reference Health

state
Host & location

Otu0006 294 Desulfovibrio marinisediminis 99% MF039931 R Keren, A Lavy, I Polishchuk, B Pokroy & M
Ilan (2017, unpublished data)

– Non-coral species

KY771114 H Zouch, F Karray, A Fabrice, S Chifflet, A
Hirschler, H Kharrat, W Ben Hania, B Ollivier,
S Sayadi & M Quemeneur (2017, unpublished
data)

– Non-coral species

KT373805 K Alasvand Zarasvand & VR Rai (2015, unpub-
lished data)

– Non-coral species

Cyanobacteria

Otu0023 81 Oscillatoria sp. 99% KU579394 Buerger et al. (2016) BBD Pavona, Great Barrier Reef

HM768593 Klaus, Janse & Fouke (2011) BBD Faviidae, Meandrinidae, Gorgoniidae,Caribbean

GU472422 L Arotsker, D Rasoulouniriana, N Siboni, E Ben-
Dov, E Kramarsky-Winter, Y Loya & A Kush-
maro (2010, unpublished data)

BBD –

Firmicutes

Otu0003 344 family JTB215 99% DQ647593 R Guppy & JC Bythell (2006, unpublished data) – –

KC527313 Roder et al. (2014) WPD Pavona duerdeni and Porites lutea, Caribbean

HM768569 Klaus, Janse & Fouke (2011) BBD Faviidae, Meandrinidae, Gorgoniidae, Caribbean

Otu0013 199 Fusibacter sp. 99% GQ413281 Garren et al. (2009) – Porites cylindrica, West Pacific

FJ202930 Sunagawa et al. (2009) WPD Orbicella faveolata, Caribbean

Otu0018 112 Fusibacter sp. 99% KF179748 Séré et al. (2013) PWPS Porites lutea, Western Indian Ocean

GU472060 L Arotsker, D Rasoulouniriana, N Siboni, E Ben-
Dov, E Kramarsky-Winter, Y Loya & A Kush-
maro (2010, unpublished data)

BBD –

EU780347 SE Godwin, J Borneman, E Bent & L Pereg-Gerk
(2008, unpublished data)

SWS Turbinaria mesenterina,

EF089469 Barneah et al. (2007) BBD Favites, Dipsastraea, Red Sea

Otu0022 82 family Lachnospiraceae 99% HM768582 Klaus, Janse & Fouke (2011) BBD Faviidae, Meandrinidae, Gorgoniidae, Caribbean

98% AF473930 Cooney et al. (2002) BBD Faviidae, Caribbean

DQ647585 R Guppy & JC Bythell (2006, unpublished data) – –

Otu0027 62 Fusibacter sp. 99% JX391361 YYK Chan, AL Li, S Gopalakrishnan, RSS Wu, SB
Pointing & JMY Chiu (2012, unpublished data)

– Non-coral species

HM768587 Klaus, Janse & Fouke (2011) BBD Faviidae, Meandrinidae, Gorgoniidae, Caribbean

FJ202981 Sunagawa et al. (2009) WPD Orbicella faveolata, Caribbean

Otu0031 48 WH1-8 sp. 99% KF179804 Séré et al. (2013) PWPS Porites lutea, Western Indian Ocean

KC527300 Roder et al. (2014) WPD Pavona duerdeni and Porites lutea, West Pacific

FJ203165 Sunagawa et al. (2009) WPD Faviidae, Caribbean
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Table 4 (continued)
OTU Count Taxonomy Identity GenBank

Acc No.
Reference Health

state
Host & location

Otu0039 30 Defluviitalea saccharophila 99% DQ647556 R Guppy & JC Bythell (2006, unpublished data) – –

FJ202907 Sunagawa et al. (2009) WPD Orbicella faveolata, Caribbean

AF473925 Cooney et al. (2002) BBD Faviidae, Caribbean

Vibrio sp.

Otu0015 170 Vibrio sp. 99% KT974549 Couradeau et al. (2017) – Non-coral species

98% GU471972 L Arotsker, D Rasoulouniriana, N Siboni, E Ben-
Dov, E Kramarsky-Winter, Y Loya & A Kush-
maro (2010, unpublished data)

BBD –

98% MF461384 Keller-Costa et al. (2017) – Eunicella labiata

Otu0029 56 order Vibrionales 99% JQ727003 Witt, Wild & Uthicke (2012) – Non-coral species, GBR

HM768601 Klaus, Janse & Fouke (2011) BBD Faviidae, Meandrinidae, Gorgoniidae, Caribbean

FJ202558 Sunagawa et al. (2009) WPD Orbicella faveolata, Caribbean
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KT373805.1 Desulfovibrio oceani_strain_GSR_20, unpublished*

Otu0006 Desulfovibrio marinisediminis, BBD, Red Sea

KY771114.1 Uncultured_bacterium_clone_510396, unpublished*

MF039931.1 Uncultured_Desulfovibrio sp. clone_Otu112, unpublished*

92

74

100

EF123510.1 Uncultured_delta_proteobacterium_clone_STX_48f, BBD, Siderastrea siderea, Caribbean

FJ202627.1 Uncultured_bacterium_clone_SGUS668, WPD, Orbicella faveolata, Caribbean

AB470955.1 Desulfovibrio sp. r02, Montipora sp., West Pacific

0.01

100

Otu0005 Desulfovibrio dechloracetivorans, BBD, Red Sea

100

B

100

GQ413587.1 Uncultured_bacterium_clone_2NT1c8_D01, healthy, Porites cylindrica, West Pacific

HM768558.1 Uncultured_bacterium_clone_CD02008D11, BBD, Faviidae, Meandrinidae, Gorgoniidae, Caribbean

Otu0011 Arcobacter sp., BBD, Red Sea 

99

JF344171.1 Uncultured_epsilon_proteobacterium_clone_PET-047, North Atlantic*

FJ949362.1 Uncultured_Campylobacteraceae_bacterium_clone_MS-A250, Mediterranean* 

KT973145.1 Uncultured_prokaryote_clone_239833, Caribbean*

Otu0004 Arcobacter sp., BBD, Red Sea

100

LC133150.1 Uncultured_Arcobacter sp. isolate_RW4, unpublished*

KF185679.1 Uncultured_marine_bacterium_clone_J8-A10, unpublished*

HE804002.1 Uncultured_Campylobacterales_bacterium_isolate_2.1_clone_124b, unpublished*

96

Otu0016 Arcobacter sp., BBD, Red Sea

63

74

50

Otu0002 Arcobacter sp., BBD, Red Sea

GU319311.11 Uncultured_marine_bacterium_clone_A5M_UNP2_G11, healthy, Acropora eurystoma, Red Sea

AB235414.1 Epsilon_proteobacterium_PO-40, Pacific*

FJ203140.1 Uncultured_bacterium_clone_SHFG542, WPD, Orbicella faveolata, Caribbean

96

28

53

KC527436.1 Uncultured_bacterium_clone_Thai12_C12, WPD, Pavona duerdeni & Porites lutea, West Pacific

HM768631.1 Uncultured_bacterium_clone_CD02013E10, BBD, Faviidae, Meandrinidae, Gorgoniidae, Caribbean

EF089456.2 Uncultured_bacterium_clone_BB2S16SI-13, BBD, Favites/Favia sp., Red Sea

Otu0001 Arcobacter sp., BBD, Red Sea 

98

AF473976 Uncultured_epsilon_proteobacterium, Faviidae, Caribbean

LC026456 Bacterium_enrichment_culture_clone_OB150, West Pacific*
42

66

Otu0010 Sulfospirillum sp., BBD, Red Sea

GU47207 Uncultured_bacterium_clone, BBD, unpublished 

100

0.01

A

Figure 3 Overview and phylogenetic relationship of coral black band disease bacterial consortium
members from the southern central Red Sea (Al-Lith, Saudi Arabia) and other regions. (A) Sulfide-
oxidizing bacteria (SOB); (B) Sulfate-reducing bacteria (SRB). Phylogenetic trees were calculated using
the neighbor-joining method, bootstrap values are indicated at the branches. The phylogenetic trees show
NCBI accession numbers and sample name, health state of the coral species, host name, and region. Se-
quences from this study are in bold. The ‘*’ indicates that the bacterial species were not found in coral
species.

Full-size DOI: 10.7717/peerj.5169/fig-3

to sequences from BBD and WPD (Klaus, Janse & Fouke, 2011; Sunagawa et al., 2009)
(Table 4).

DISCUSSION
In this study, we report on the distribution and prevalence of coral black band disease in
the Red Sea. Our surveys ranged from 19.9 to 24.1 degrees of latitude and confirm the
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presence of BBD across the central Red Sea. Molecular characterization of the bacterial
community identified the three main bacterial members of the disease consortium across
coral species at a BBD outbreak site in the southern central Red Sea.

Black band disease distribution and prevalence in the Red Sea
in comparison to other global sites
BBD is a global disease found in numerous regions, but its prevalence on coral reefs is
generally low compared to other diseases such as white syndrome (WS) (Dinsdale, 2002;
Edmunds, 1991; Page & Willis, 2006; Willis, Page & Dinsdale, 2004). The low prevalence
recorded in this study is similar to levels reported elsewhere across the globe (Sutherland,
Porter & Torres, 2004) with localized outbreaks of BBD also reported in the GBR (Sato,
Bourne & Willis, 2009), Hawaii (Aeby et al., 2015b), Jamaica (Bruckner & Bruckner, 1997),
Venezuela (Rodríguez & Cróquer, 2008), and the Red Sea (Al-Moghrabi, 2001). In the Red
Sea, BBD was first discovered in the 1980s (Antonius, 1981) and our study confirms that
BBD is a chronic threat to coral reefs in the Red Sea with localized outbreaks continuing
to occur.

BBD is not a selective disease; multiple species and various levels of severity can affect
colonies within and between coral species and across reefs (Bruckner, Bruckner & Williams,
1997; Dinsdale, 2002; Green & Bruckner, 2000; Peters, 1993). This was also observed in our
study, where multiple species were infected, but with differences in prevalence among coral
taxa. At the outbreak site, we found BBD prevalence to be highest in the genus Dipsastraea,
which suggests that this genus may be an important host for BBD in the Red Sea. Our
observations match previous reports and shows that this pattern is consistent through time
(Antonius, 1985). Interestingly, although differential susceptibility to BBD among coral
taxa has been found globally, the most vulnerable taxa differ by region. For example, in
the Caribbean Montastraea/Orbicella are commonly infected (Bruckner & Bruckner, 1997;
Porter et al., 2001), Montipora in Hawaii (Aeby et al., 2015b), and Acropora on the GBR
(Page & Willis, 2006). It would be fruitful to examine the underlying defense mechanisms
in the different coral taxa that lead to these differences in BBD occurrence.

BBD, climate change, and coral bleaching
The occurrence of BBD has been linked to elevated seawater temperatures (Boyett, Bourne
& Willis, 2007; Kuta & Richardson, 2002;Muller & Van Woesik, 2011). The occurrence of a
BBD outbreak during a bleaching event in the present study reflects previous reports from
the Caribbean, where the positive correlation between bleaching events and BBD incidence
was proposed first (Brandt & McManus, 2009; Cróquer & Weil, 2009). For instance, in the
Florida Reef Tract, the prevalence of BBD increased from 0 to 6.7% following bleaching
events in 2014 and 2015 (Lewis et al., 2017). Also,Cróquer & Weil (2009) found a significant
linear correlation between coral bleaching and the prevalence of two other virulent diseases
(yellow band disease and white plague) affectingMontastraea/Orbicella species. This further
supports a strong relationship between bleaching events and the emergence of some coral
diseases on a global scale. Understanding how climate change-related thermal anomalies
and coral bleaching drive the emergence and virulence of coral diseases is essential for
future research.
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It has further been suggested that other anthropogenic activities, such as coastal pollution
or ocean acidification, contribute to the increase of coral disease incidents (Jackson et al.,
2001; Muller et al., 2017; Rosenberg & Ben-Haim, 2002). The surveyed outbreak area was
adjacent to the outflow of a large aquaculture facility, which might have further aggravated
the effects of the bleaching event due to increased nutrient availability (Roder et al.,
2015; Ziegler et al., 2016). In comparison, other reefs in the Al-Lith area that were farther
away from the coast displayed similar levels of bleaching, but BBD prevalence stayed
at baseline levels in these locations. This suggests that bleaching alone was not the only
factor that could have contributed to the BBD outbreak. The synergistic effects of high
temperatures and nutrient pollution find further support in the Caribbean where BBD
prevalence increased in reef sites with direct sewage input compared to control sites (Sekar,
Kaczmarsky & Richardson, 2008) and in the Bahamas where BBD migration was faster
in nutrient-enriched areas (Voss & Richardson, 2006). Further work is needed to directly
examine the relationship between bleaching, nutrient stress, and BBD susceptibility.

Bacterial community composition of BBD microbial mats from the
southern central Red Sea reflects global microbial patterns with
local characteristics
Our results verify the presence of the three main consortium members in BBD microbial
mats (Cyanobacteria, SOB, SRB) of corals from the southern central Red Sea. We identified
Oscillatoria sp. as a BBD-associated cyanobacterium, which is similar to the BBD-associated
cyanobacteria in other regions of the world (Aeby et al., 2015b; Arotsker et al., 2015;
Buerger et al., 2016; Casamatta et al., 2012; Cooney et al., 2002; Frias-Lopez et al., 2003;
Gantar, Sekar & Richardson, 2009; Glas et al., 2010; Meyer et al., 2016; Miller & Richardson,
2011; Rasoulouniriana et al., 2009; Sato, Willis & Bourne, 2010; Sussman, Bourne & Willis,
2006). However, we retrieved only a low number of cyanobacterial sequences, although
cyanobacterial filaments were visually abundant in the sampled microbial mats, which
could possibly be related to primer amplification bias. In addition, members of the SOB
and SRB functional groups (Arcobacter sp. and Desulfovibrio sp., respectively) from BBD
microbial mats in the southern central Red Sea were similar to those found in other BBD-
affected corals worldwide (Barneah et al., 2007; Cooney et al., 2002; Klaus, Janse & Fouke,
2011; Sekar, Kaczmarsky & Richardson, 2008). This confirms that BBD-associated bacteria
are not restricted to a specific coral species or region (Barneah et al., 2007; Cooney et al.,
2002; Dinsdale, 2002; Frias-Lopez et al., 2003). Interestingly, we did observe white filaments
within lesions that weremorphologically similar to Beggiatoa, a sulfide-oxidizing bacterium
associated with BBD in other regions (Cooney et al., 2002; Miller & Richardson, 2011; Sato,
Willis & Bourne, 2010). However, we found no sequences aligning with Beggiatoa in our
study. This suggests that either the white filaments were not Beggiatoa or that the methods
used were not adequate to extract and identify Beggiatoa. Aeby et al. (2015b) sequenced
Beggiatoa from BBD lesions in Hawaii by first culturing the white filaments from lesions
and then using universal bacterial primers 8F and 1513R for sequencing. However, they
found that no DNA sequences were available for Beggiatoa found in BBD from other
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regions even though numerous studies using molecular techniques have been published.
Further work is needed to clarify these discrepancies.

Besides the three main bacterial consortium members that dominate BBD microbial
mats, we detected other bacterial families as part of the BBD consortium. Members of
the Firmicutes were abundant in BBD microbial mats, which is consistent with other
studies (Arotsker et al., 2016; Arotsker et al., 2009; Barneah et al., 2007; Cooney et al., 2002;
Frias-Lopez et al., 2002; Miller & Richardson, 2011; Richardson, 2004; Sekar, Kaczmarsky &
Richardson, 2008). In addition, we detected the presence ofVibrio species. The pathogenicity
of this genus has been documented previously in corals and other marine organisms (Ben-
Haim, Zicherman-Keren & Rosenberg, 2003; Harvell et al., 1999; Kushmaro et al., 1996),
and more broadly Vibrios have been characterized as opportunistic taxa (Cervino et al.,
2004; Rosenberg & Falkovitz, 2004; Thompson et al., 2004; Ziegler et al., 2016). To date it
is unknown whether this group plays a role in the etiology of BBD (Arotsker et al., 2009;
Barneah et al., 2007) (Meyer et al., 2016), or whether the high number of Vibrios could be
related to seasonal increases in the coral microbiome and coral bleaching (reviewed in
Rosenberg & Koren, 2006; Tout et al., 2015).

CONCLUSIONS
Our study represents the first comprehensive assessment of Black Band Disease in the
central Red Sea. Elucidation of the bacteria associated with BBDmicrobial mats of corals at
a southern reef site confirms that BBD represents a disease with predictable etiology where
the three main bacterial players are globally distributed with regional differences. Notably,
our reef survey data, in line with data from other regions, identify BBD as a widespread
disease, but as one with low prevalence in comparison to other coral diseases. Additional
surveys including other coral diseases as well as pathogen infection experiments with
Red Sea corals could further increase our understanding of coral stress tolerance in this
understudied coral reef region. Importantly, the prevalence of BBD might increase with
ongoing ocean warming and thermal anomalies, as supported by the here-documented
disease outbreak coinciding with a thermal anomaly and widespread coral bleaching. The
collection of long-termmonitoring disease data in the Arabian Seas is important in order to
establish baselines, which can then assist in more accurate prediction of disease prevalence
and potential impact of climate change on coral communities in this region.
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