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ABSTRACT
Litopenaeus vannamei is one of the most important shrimp species for worldwide
aquaculture. Despite this, little genomic information is available for this penaeid and
other closely related taxonomic crustaceans. Consequently, genes, proteins and their
respective polymorphisms are poorly known for these species. In this work, we used the
RNA sequencing technology (RNA-seq) in L. vannamei shrimp evaluated for growth
performance, and exposed to the White Spot Syndrome Virus (WSSV), in order to
investigate the presence of Single Nucleotide Polymorphisms (SNPs) within genes
related to innate immunity and growth, both features of great interest for aquaculture
activity. We analyzed individuals with higher and lower growth rates; and infected
(unhealthy) and non-infected (healthy), after exposure to WSSV. Approximately 7,000
SNPswere detected in the samples evaluated for growth, being 3,186 and 3,978 exclusive
for individuals with higher and lower growth rates, respectively. In the animals exposed
to WSSV we found about 16,300 unique SNPs, in which 9,338 were specific to non-
infected shrimp, and 7,008 were exclusive to individuals infected with WSSV and
symptomatic. In total, we describe 4,312 unigenes containing SNPs. About 60% of
these unigenes returned GO blastX hits for Biological Process, Molecular Function
and Cellular Component ontologies. We identified 512 KEGG unique KOs distributed
among 275 pathways, elucidating the majority of metabolism roles related to high
protein metabolism, growth and immunity. These polymorphisms are all located in
coding regions, and certainly can be applied in further studies involving phenotype
expression of complex traits, such as growth and immunity. Overall, the set of variants
raised herein enriches the genomic databases available for shrimp, given that SNPs
originated from nextgen are still rare for this relevant crustacean group, despite their
huge potential of use in genomic selection approaches.
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INTRODUCTION
One of the central challenges in shrimp farming is to avoid economical loss due to
animal growth limitations and even population death (Jung et al., 2013; Chen et al., 2015)
commonly caused by pathogens. In an attempt of stop pathogen propagation, the organism
goes into a severe oxidative metabolic stress yielding many Reactive Oxygen Species (ROS),
which may cause cell and DNA structural damages, leading to apoptosis, and consequently
to animal death (Rewitz et al., 2006; Qian et al., 2014).

Shrimp and other crustaceans do not own a real adaptive immune system as mammals,
and are entirely dependent on their innate system, producing a huge variety of immune
proteins, including crustacyanin (Fan et al., 2016) and hemocyanin (Zheng et al., 2016).
The antiviral mechanisms and receptors are not well known in crustaceans and some
strategies involved in immunity have also been reported, such as nucleic acids that when
injected in shrimp organism could be involved in immune gain, as antiviral responses,
suggesting a role similar to those assigned to interferons in mammals (Sadler & Williams,
2008; Nehyba, Hrdličková & Bose, 2009; Kongton et al., 2011). Interference-RNAs (RNAi)
are also linked to immunity in shrimp, representing a sequence-specific protection against
some viral diseases, such as White Spot Syndrome Virus (WSSV) (Xu, Han & Zhang,
2007; Huang & Zhang, 2013; Wang &Wang, 2013a). Mechanisms acting on defense, like
phagocytosis, are triggered by the pathogen recognition, binding and encapsulation, leading
to cell reorganization and subsequent pathogen destruction through protection strategies,
such as acid pH (Wongpanya et al., 2007; Wang et al., 2013b; Liu et al., 2014). Apoptosis
are also extremely efficient in preventing virus propagation in the organism, eliminating
infected cells and providing some possible advantages in host immunity. Moreover, it is
widely known that viral infection and proliferation induces apoptosis in shrimp (Leu et
al., 2013;Wang &Wang, 2013a;Wang et al., 2014). In this way, energy that could be being
spent in growth is required by shrimp immunity when exposed to pathogens (Lv et al.,
2014; Rao et al., 2016). Moreover, external factors, including temperature and inefficient
food supply significantly influences growth performance (Jindra, Palli & Riddiford, 2013),
leading to a not profitable scenario to aquaculture.

Litopenaeus vannamei (Penaeid, Crustacea) is one of the most important shrimp species
for worldwide aquaculture, owing a high commercial value aggregated and being an
expressive resource for global aquaculture production (Lu et al., 2018; Zhao et al., 2017). In
the meantime, little information is known about the genes and proteins acting on growth
and immune responses of this species (Jung et al., 2013). Before the lack of a reference
shrimp genome, the transcriptomic databases have become essential in identifying new
molecular variants, and also in providing data regarding proteins involved in growth and
immune system issues (Rao et al., 2015; Sun et al., 2015). In this way, RNA-seq approaches,
based on the next generation sequencing (nextgen), has enabled the gene sequencing high
coverage, allowing the large-scale identification of polymorphisms related to economic
characteristics in non-model species, such as crustaceans (Cui et al., 2014; Santos, Blanck
& Freitas, 2014; Yu et al., 2014; Santos et al., 2018). Co-dominant markers, including Single
Nucleotide Polymorphisms (SNPs), are highly informative and abundant in genomes
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(Brookes, 1999; Vignal et al., 2002) and have been shown to be efficient in linkage and
association studies between molecular and phenotypic data in species such as crabs (Cui
et al., 2014) and freshwater prawns (Jin et al., 2013). However, studies regarding SNPs
identified in penaeids by nextgen (Santos, Blanck & Freitas, 2014; Baranski et al., 2014; Yu
et al., 2014; Yu et al., 2017; Santos et al., 2018) and other crustaceans are still incipient until
present.

Considering this scenario, the present study was conducted aiming to identify SNPs
potentially related to immune responses and growth performance in L. vannamei. We
analyzed RNA-seq data obtained from individuals with higher and lower growth rates; and
infected and non-infected with WSSV, a very aggressive disease in crustaceans that causes
enormous losses for shrimp aquaculture industry (Pradeep et al., 2012; Rao et al., 2016;
Yu et al., 2017). Our study allowed to identify thousands of specific SNPs in individuals
with higher and lower growth rates, and also in healthy and unhealthy shrimps exposed
to WSSV. These findings are certainly relevant to be used in further studies considering
association of SNPs with immunity and growth performance traits into breeding programs
assisted by genomic selection.

MATERIAL & METHODS
Biological sampling
The biological samples used in the RNA-seq approach are frommuscle and hepatopancreas
tissues of aquaculture L. vannamei specimens sampled in 2015. We sampled muscle due to
its close relation with growth, considering that a faster muscle development may lead to
bigger and heavier shrimp, in addition to also be a target for white spot disease (Jung et al.,
2013; Shi et al., 2018). On the other hand, hepatopancreas was sampled, given that most
of the immune responses in crustaceans occur in hemocytes, which are produced in this
tissue, responsible for storing these cells and many proteins involved in the recognition
and elimination of pathogens (Guo et al., 2013; Chen et al., 2015). Hemolymph samples for
the RNA isolation were also collected from animals exposed to WSSV. However, due to
the small size of the individuals, and the bad health conditions of the animals with WSSV
symptoms, we had no success in the subsequent labor steps.

Shrimps evaluated for growth performance (growth group)
For this approach, we used pleopod samples from Specific Pathogen Free (SPF) L. vannamei
genetically improved through a selective breeding program conducted for rapid growth
performance and good survival rates in a Brazilian shrimp breeding company.We evaluated
20 families and selected individuals from four families with higher and another four with
lower growth rates, respectively, according to the quantitative parameter criteria established
for the familiar breeding program implemented by the company (data not available).
Muscle tissue samples from a total of 48 shrimps (at 45 days of age), belonging to the eight
families, were collected, stored in RNA later (Thermo Fisher Scientific, Waltham, MA,
USA), and kept in biofreezer (−80 ◦C) for the RNA isolation.
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Shrimps exposed to WSSV (WSSV group)
For the WSSV-exposure experiments we sampled shrimps from a Brazilian commercial
larviculture laboratory. First, SPF commercial Post-Larvae (PLs) were evaluated to
white spot virus by qPCR performed according Silva, Pinheiro & Coimbra (2011). The
primer pair WSS1011F: 5′-TGGTCCCGTCCTCATCTCAG-3′ and WSS1079R: 5′-
GCTGCCTTGCCGGAAATTA-3′ was used in qPCR (OIE, 2018) along with Platinum
SYBR R©Green qPCR Super Mix UDG kit (Thermo Fisher Scientific, Waltham, MA, USA).
After confirming absence or presence of the virus, following recommendations proposed
by Pfaffl, Horgan & Dempfle (2002) and Ririe, Rasmussen & Wittwer (1997), negative PLs
to WSSV (WSSV-negative) were transported to a farming land tank and exposed to WSSV.
Then, we sampled dozens of unhealthy and healthy shrimps at about two months of
age. WSSV symptoms were morphologically detected according Pradeep et al. (2012) and
FAO (2018). Hemolymph samples from 20 symptomatic and asymptomatic shrimps were
collected to perform WSSV-qPCR tests (Silva, Pinheiro & Coimbra, 2011; Pfaffl, Horgan &
Dempfle, 2002; Ririe, Rasmussen & Wittwer, 1997), and confirm the presence or absence
of the virus. Muscle and hepatopancreas samples were collected for RNA analyses. These
samples were stored in RNA later (Thermo Fisher Scientific, Waltham, MA, USA) and
maintained at −80 ◦C. After qPCR confirmation, we selected WSSV positive and negative
samples for the RNA essay.

RNA isolation and cDNA library construction
We isolated total RNA using the Trizol R©/chloroform protocol proposed by Chomczynski &
Mackey (1995), and checked RNA quality, quantity and integrity in a Q µbit fluorometer
(Thermo Fisher Scientific), a NanoDrop spectrophotometer (Thermo Fisher Scientific),
and a BioAnalyser equipment (Agilent Technologies Inc., Santa Clara, CA, USA),
respectively. Samples with RNA Integrity Number (RIN) >6,0 were considered proper
for later analysis.

We constructed 64 libraries, using a TruSeq RNA Library Preparation V2 kit (Illumina
Inc., San Diego, California, USA), for the tissue samples obtained from both growth
and WSSV groups. Forty-eight libraries were established for the growth group from (i) 24
muscle samples obtained of animals from the four higher growth families (six shrimps from
each family), and (ii) 24 muscle samples of animals from the four lower growth families
(six shrimps from each family). Sixteen libraries were established for the WSSV group
from (iii) four hepatopancreas samples and (iv) four muscle samples, obtained of four
WSSV-positive unhealthy individuals with WSSV symptoms; and (v) four hepatopancreas
and (vi) four muscle samples of four WSSV-negative healthy individuals without WSSV
symptoms. All animals exposed to WSSV and selected for the library construction were
evaluated by qPCR. The unhealthy animals were all positive to WSSV, and the healthy
animals were all negative to the virus. We did not find WSSV-positive healthy animals.
A small number of WSSV-positive samples from unhealthy shrimps that showed white
spot disease symptoms and high quality of RNA was obtained after the trial, limiting the
population size for this approach.
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Sequencing, mapping and SNP identification
All cDNA libraries were grouped and sequenced on an Illumina HiSeq 2500 Platform
(with 2 × 100 bp paired-end), using a TruSeq SBS V3 kit (Illumina Inc., Thermo
Fisher Scientific). The quality of the raw data generated after sequencing was checked
in the FastQC software (version 0.10.1) (http://www.bioinformatics.babraham.ac.
uk/projects/fastqc/). All reads were filtered for Phred quality (QS) 23 (sequence
average) and 30 (sequence edges), and minimum length of 65 bp, using the SeqyClean
(v.1.9.9) (https://github.com/ibest/seqyclean). This same software was used to remove
contaminant sequences (primers and vectors) listed at the Univec database (https:
//www.ncbi.nlm.nih.gov/tools/vecscreen/univec/). All reads, available at Sequence Read
Archive (SRA-NCBI) under number SRP128934 (BioProject PRJNA428228), were mapped
against the reference transcriptome previously de novo assembled for L. vannamei by Santos
et al. (2018).

For the mapping, Bowtie2 v.2.2.6 was applied (Langmead & Salzberg, 2012), and
the alignment files were used to identify the SNPs. Samtools package (version 1.3)
(Li et al., 2009) was used to detect SNPs through the mpileup command, using the
following parameters: -g -u (calculate the probabilities of the genotypes and generate
an uncompressed BCF file), - q20 (minimum mapping quality value for an alignment),
-Q20 (minimum quality value of a base), -C50 (minimum mapping quality value used to
disregard reads with many mismatches), -A (do not ignore pairs of reads with problems)
and -B (do not enable probabilistic realignment, avoiding detection of false SNPs by errors
in alignment). SNPs were called through Bcftools (version 1.3) (Li et al., 2009). SNPs
with variant base quality <30 and sum of the coverage of reads with alternative alleles
in the forward and reverse (DP4) strands <10 were excluded from the analyzes to avoid
artifacts. Only the variants with aminimumof 50% frequency in each group (higher growth
individuals, lower growth individuals, healthy individuals, and unhealthy individuals) were
considered for posterior analysis. SNPs with frequency of 50% or more within the animals
of each group were selected for analysis in order to increase the reliability of polymorphisms
identified, remaining an adequate number of SNPs for further statistics.

SNP data statistics and functional annotation
Regarding the unigenes with SNPs only, the -max-missing 0.5 command was used in
vcftools (version 0.1.14) (Danecek et al., 2011) to filter polymorphisms with frequency
≥50%. The number of SNPs, transitions and transversions rate (ts:tv) and multi-allelic
sites statistics were computed in bcftools using the –stats command for the SNPs of each of
the four groups separately. The Minor Allele Frequency (MAF) was calculated in vcftools
with maf 0.05 command, with cutoff value of 5%.

All unigenes, including those with SNPs, were submitted to analysis in the TransDecoder
package (http://transdecoder.sourceforge.net/), which was used to identify the contigs
candidate coding regions. Meanwhile, Trinotate pipeline (https://trinotate.github.io/)
was employed for annotation of the sequences through the following databases: Uniprot
(uniref90 + SwissProt) with cut-off value of 1e10−5, Gene Ontology (GO) (Ashburner et al.,
2000) for the GO terms Biological Process, Molecular Function and Cellular Component

Santos et al. (2018), PeerJ, DOI 10.7717/peerj.5154 5/19

https://peerj.com
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://github.com/ibest/seqyclean
https://www.ncbi.nlm.nih.gov/tools/vecscreen/univec/
https://www.ncbi.nlm.nih.gov/tools/vecscreen/univec/
https://www.ncbi.nlm.nih.gov/sra?term=SRP128934
http://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA428228
http://transdecoder.sourceforge.net/
https://trinotate.github.io/
http://dx.doi.org/10.7717/peerj.5154


Table 1 Unigenes with SNPs functional annotation.Overview of SNPs number and functional annotation for the Litopenaeus vannamei RNA-seq
data obtained from samples evaluated for growth performance and WSSV-exposure.

Not redundant unigenes (trimmed for >95% similarity and isoforms). Used in SNPs calling. 20,865

Trinotate proteins functional annotation
BlastX hits unigenes (nr) 11,256 (79%)

SNPs (frequency≥50%)
Growth WSSV-exposed

Higher Lower Healthy Unhealthy
Unigenes with SNPs 2,300 3,807
Total unique unigenes with SNPs for growth and WSSV groups 4,312

Higher Lower Healthy Unhealthy
Exclusive SNPs number 3,186 3,978 9,338 7,008
Total Exclusive SNPs number by group 7,164 16,346
Unigenes with GO hits and containing SNPs for growth and WSSV groups 2,557 (59%)
Unigenes with KEGG hits and containing SNPs for growth and WSSV groups 844 (20%)
Total unique KOs number 512
Total unique KEGG metabolic pathways 275

and KEGG (Kyoto Encyclopedia of Genes and Genomes) (Kanehisa et al., 2012), with the
identification of KOs (KEGG Ortology) followed by the main participating metabolic
pathways.

RESULTS
Mapping and SNPs data
The 24 libraries constructed from higher growth samples had 831,930,442 mapped reads,
whilst 796,126,113 reads were mapped for the 24 libraries from lower growth samples
(96% of the 1,697,401,992 filtered reads). For the WSSV-exposed group, 191,577,540 and
180,169,952 reads were mapped for the muscle tissue of healthy and unhealthy shrimps,
respectively. For hepatopancreas, we had 200,513,272 and 183,685,654 reads mapped
for healthy and unhealthy individuals, respectively. Therefore, 755,946,418 (96%) reads
of samples were mapped against the 786,662,168 reads after SeqyClean filtering. In this
way, 2,484,064,160 reads were mapped against 20,865 unigenes previously to SNP calling.
Functional annotation against the GO base and identification of KEGG pathways in the
Trinotate package were also performed (Table 1).

We identified 3,186 and 3,978 exclusive SNPs (frequency ≥ 50%) (Table S1) for the
higher and lower growth samples, respectively, including 123 multi-allelic, gathered in
2,300 unigenes (Table 1). The number of SNPs per unigene ranged from 1 to 18, with 473
(20%) unigenes containing a minimum of five SNPs per unigene (Table S1). Concerning
the substitution of bases, the transitions (ts): transversions (tv) rate were of 1.99:1 and
1.97:1 for higher and lower growth samples, respectively (Table 2). MAF was calculated for
higher and lower groups highlighting that 98% of all loci in each group shows the second
most common allele with frequency greater than 0.5 in the growth population.
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Table 2 Substitution statistics found in L. vannamei SNPs. Transition and transvertions rates observed in the SNPs identified on Litopenaeus
vannamei transcriptome data obtained for samples evaluated for growth performance and WSSV-exposure.

Type Transitions (ts) Transvertions (tv)

Polymorphism CT GA AC AT GC GT Rate (ts:tv)

Higher growth 1,127 (33,7%) 1,096 (32,8%) 275 (8,2%) 390 (11,6%) 200 (5,9%) 253 (7,5%) 1.99
Lower growth 1,140 (33,6%) 1,402 (32,7%) 335 (7,8%) 516 (12%) 287 (6,7%) 303 (7%) 1.97
WSSV healthy 3,479 (34,2%) 3,262 (32%) 800 (7,8%) 1,155 (11,3%) 662 (6,5%) 815 (8%) 1.96
WSSV unhealthy 2,584 (32,6%) 2,606 (32,9%) 623 (7,8%) 988 (12,4%) 499 (6,3%) 605 (7,6%) 1.91

Exclusive SNPs (frequency≥ 50%) could also be identified for theWSSV-exposed group,
highlighting 9,338 and 7,008 variants for healthy and unhealthy shrimps, respectively
(Table 1 and Table S1). We found 434 multi-allelic SNPs distributed in 3,807 unigenes.
We identified 1 to 42 SNPs/locus for WSSV-exposed shrimps, with 1,027 (27%) unigenes
with five or more SNPs per locus (Table S1). The ts:tv substitution rates were of 1.96:1
and 1.91:1 for healthy and unhealthy samples, respectively (Table 2). Regarding the MAF,
healthy and unhealthy animals showed 96% and 97% of loci with the second most frequent
allele greater than 5%.

Uniprot blastX hits on arthropod species
Following the alignment of sequences against Uniprot database, focus was given on genes
showing hits for arthropod species and fitness-related functions, such as growth and disease
resistance. Among the higher growth shrimp sampling, the SNPs are mostly located in
protein genes, such as: actin (ACTY), astakine (ASTA) and ryanodine receptor 44 (RY44).
On the other hand, for the lower growth sampling our data showed that the SNPs are
mostly in genes of chitinase (CHIT3), chitin deacetylase, hemolymph clottable (CLOT)
and cuticle (CU17, CUIA and CUPA3) proteins. For the most frequent exclusive SNPs
identified in genes from theWSSV-exposed shrimps we found SNPs in the heat shock stress
22 (HSP22), 60 (CH60) and 67B2 (HS6B), death-associated inhibitor of apoptosis 1 (IAP1),
C-type lectin, crustacyanin (CRA2), crustin, hemocyanin (HCYC) and clottable (CLOT)
genes only for healthy animals (Table 3). Exclusive SNPs located in relevant protein genes
for all shrimp groups analyzed herein were identified. The unigenes with more SNPs per
loci and with fitness related functions proteins are listed in Table 3 and Table S1 .

Functional annotation in GO and analysis of metabolic pathways
After detection of the SNPs, 4,312 unique unigenes containing SNPs (frequency ≥ 50%)
were established (with hits for any species) and 2,557 returned hits (59%) against the
GO database at level 2, considering both samples evaluated for growth performance and
exposure to WSSV. The GO results obtained when the groups were analyzed separately are
showed in Fig. 1, and also in Supplemental Material for the animals with higher (Table S2)
and lower (Table S3) growth performances, andhealthy (Table S4) andunhealthy (Table S5)
after exposure to WSSV. The main and most frequent ontologies for the shrimps evaluated
for growth performance, considering the higher and lower samples, are available in Fig.
1 and Tables S2 and S3. About the WSSV-exposed group, the most relevant ontologies
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Table 3 Main exclusive SNPs identified in unigenes of higher and lower growth performance group and healthy and unhealthy shrimp after
WSSV-exposure. Loci with the highest number of SNPs exclusive to samples evaluated for growth performance and WSSV-exposed that returned
blastX hits for arthropod species. The name of the protein and the number of SNPs/locus are also detailed.

Locus ID Protein Exclusive SNP number

Growth performance

Higher Lower

Locus_30356.0|BlastHit|gi|1729925|sp|Q05187.1|TGMH_TACTR Hemocyte protein-glutamine
gamma-glutamyltransferase

18 –

Locus_22356.0|BlastHit|gi|728798|sp|P41341.1|ACTY_LIMPO Actin 11 –
Locus_30736.0|BlastHit|gi|215273952|sp|Q9W5U2.2|CHIT3_DROME Chitinase – 11
Locus_26398.0 chitin deacetylase 9 precursor [Tribolium castaneum] Chitin deacetylase 1 10
Locus_28272.0|BlastHit|gi|74897764|sp|Q56R10.1|ASTA_PENMO Astakine 10 –
Locus_30850.0|BlastHit|gi|46396031|sp|Q9U572.1|CLOT_PENMO Clottable – 10
Locus_31209.0|BlastHit|gi|33112444|sp|Q24498.3|RY44_DROME Ryanodine 10 –
Locus_28234.0|BlastHit|gi|3913391|sp|O02387.1|CU17_BOMMO Constituent of cuticle – 6
Locus_28640.4|BlastHit|gi|3287772|sp|P81384.1|CU1A_HOMAM Constituent of cuticle – 6
Locus_29583.1|BlastHit|gi|5921937|sp|P81577.1|CUPA3_CANPG Constituent of cuticle – 6
Locus_24086.0 antimicrobial peptide type 2 precursor IIc [Pandalopsis_japonica] Antimicrobial peptide – 5
Locus_29787.0|BlastHit|gi|59797979|sp|Q9W092.1|CHIT2_DROME Chitinase 2 –

WSSV-exposed
Healthy Unhealthy

Locus_30670.0|BlastHit|gi|55977856|sp|Q24306.2|IAP1_DROME Death-associated inhibitor of
apoptosis 1

28 26

Locus_31211.0|BlastHit|gi|56405335|sp|P37276.2|DYHC_DROME Dynein – 33
Locus_31257.0|BlastHit|gi|152031623|sp|P02515.4|HSP22_DROME Heat shock 22 42 5
Locus_31208.0|BlastHit|gi|152031623|sp|P02515.4|HSP22_DROME Heat shock 22 4 14
Locus_30588.0|BlastHit|gi|75026464|sp|Q9V895.1|AN32A_DROME Acidic leucine-rich 17 –
Locus_31209.0|BlastHit|gi|33112444|sp|Q24498.3|RY44_DROME Ryanodine 16 –
Locus_23466.0 antilipopolysaccharide fator isoform 5 [Fenneropenaeus_chinensis] Anti-lipopolysaccharide factor – 8
Locus_21474.0 C-type lectin [Penaeus_monodon] Lectin – 6
Locus_30118.0|BlastHit|gi|117330|sp|P80007.1|CRA2_HOMGA Crustacyanin – 5
Locus_25051.0|BlastHit|gi|3024418|sp|P81060.1|PEN3C_LITVA Peneidin – 4
Locus_30564.1|BlastHit|gi|122797|sp|P80096.1|HCYC_PANIN Hemocyanin 4 2
Locus_23573.0 C-type lectin 1 [Marsupenaeus_japonicus] Lectin 9 –
Locus_30850.0|BlastHit|gi|46396031|sp|Q9U572.1|CLOT_PENMO Clottable 4 –
Locus_25051.0|BlastHit|gi|3024356|sp|P81057.1|PEN2A_LITVA Peneidin 1 –

related to fitness are showed in Tables S4 and S5 Basically, for unhealthy animals the most
common Biological Processes identified were the same as those for healthy with chitin
binding (GO:0008061) being highlighted as a Molecular Function (Table S5) (Fig. 1).
When searching for the protein sequences predicted for L. vannamei against the KEGG
database, hits were found for 844 (19.5%) unigenes with SNPs, consisting of 512 unique
KEGG Orthologies (KO) distributed in 275 pathways mapped in the KEGG database
(Table S6) (Fig. 2).
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DISCUSSION
BlastX arthropods performance proteins
Shrimps evaluated for growth performance (growth group)
For animals with higher growth performance we found a greater amount of SNPs in
genes, such as actin (ACTY), astakine (ASTA) and ryanodine receptor (RY44) (Table 1
and Table S2). Actin is a classic muscle constituent protein certainly linked to growth.
This protein was reported to reach higher mRNA levels in the L. vannamei shrimp during
intermolt and premolt periods, suggesting higher growth rates in shrimp abdominal muscle
in these stages (Cesar & Yang, 2007). The ryanodine protein is also an important protein
acting mainly in the muscle, and its function within the invertebrate group is assumed to be
conserved (Maryon, Saari & Anderson, 1998). In Drosophila melanogaster, previous reports
have shown that when ryanodine receptors are blocked, disruption of muscle contraction
occurs (Littleton & Ganetzky, 2000; Sullivan et al., 2000), and consequent impairment of
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muscle function. Even though these allelic variants could be observed in unigenes among
individuals with higher growth rates only, these data can be useful in further studies
considering association of these polymorphisms with growth. Additionally, we also found
polymorphisms related to cell maintenance and immunity in higher growth performance
shrimps. The astakines are cytokines related to hematopoiesis and antiviral immune
responses in crustaceans, participating in the signaling of cell-to-cell responses during
immune activation (Hsiao & Song, 2009; Liang et al., 2015).

Therefore, these higher growth performance shrimps seem to be indirectly selected to
immune response as well, though this information should be more explored in further
studies regarding such approach. The muscle tissue may be a target for many diseases, such
as WSSV, and hemocytes are spread all over the crustacean body, what may explain these
polymorphisms in immune genes found here. Another point is that animals used in our
study are SPF shrimps evaluated for good survival rates too. Thus, finding allele variants
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that may confer some immune advantages in individuals with higher growth and survival
rates becomes an interesting strategy in increasing productivity (Argue et al., 2002; Cock
et al., 2009).

For the lower growth animals, we highlight the polymorphisms observed into chitinase
and cuticle genes. Chitinase proteins in general are known for causing the rupture of the
bounds between chitin molecules and/or breaking the chitin molecules into smaller sugar
carbohydrates. The exoskeleton, which is mostly formed by chitin, is digested during the
arthropod molt, allowing the body to grow, at the same time that makes the organism
highly vulnerable to external adversities, such as diseases (Proespraiwong, Tassanakajon
& Rimphanitchayakit, 2010). Therefore, a precise balance is required for the animal to
grow without being injured. The variants present in CHIT and chitin deacetylase genes,
along with the ones in cuticle genes (CU17, CUIA and CUPA3) may be perhaps partially
responsible for the lower growth performance of the animals sampled from families with
lower growth means. In the case of the exoskeleton takes a longer time to recover after
molt, due to chitin formation limitation or chitinase not working efficiently in digesting
the cuticle for molt, could be possible reasons for growth deficiency observed in these
shrimps (Zhang et al., 2014; Li et al., 2015). However, the allelic variants observed in these
genes and their relation in favoring body growth needs to be investigated in details.

Shrimps exposed to WSSV (WSSV group)
Proteins related to immune activation and responses were the majority identified in the
WSSV-exposed and mostly observed in healthy shrimp. The heat shock proteins (HSPs
22, 60 and 67B2) were the most abundant ones. These proteins often act in conditions of
severe stress and are triggered when animals are exposed to environmental disturbances
(Feder & Hofmann, 1999), showing roles closely linked to proper protein folding and
conformation (Kregel, 2002; Tiwari et al., 2015). Thus, polymorphisms located in these
protein genes, in healthy animals, may provide some benefit in allowing and keeping
the protein conformation, even before stress conditions caused by diseases, resulting in
an easier and more efficient manner to maintain cell homeostasis and activate immune
responses.

Other relevant genes that presented SNPs in L. vannamei exposed to WSSV and healthy
were death-associated inhibitor of apoptosis, hemocyanin, crustin, crustacyanin and lectin
protein coding ones. There is a considerable chance that some of the polymorphisms
found in this work are related to pathogen recognition inducing phagocytosis, such
as lectins (Song et al., 2010), with some variants maybe implying some immunological
advantages. In arthropods, one of the most common forms of defense against opportunistic
microorganisms is endocytosis with consequent encapsulation and destruction of the
pathogen (Wongpanya et al., 2007). Although, endocytosis may be followed by cell
apoptosis, what may not be interesting for the animal as whole, given that when an
amount of cells are triggered to death all at the same time, the tissue and later the organism,
may be injured, leading even to the animal death (Liu et al., 2014). On the other hand,
the death-associated inhibitor of apoptosis 1 (IAP1) protein may contribute to reduce the
cell damage by acting in apoptosis impairment. As reported in Wang et al. (2013c), when
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the expression of LvIAP1 gene was knocked down by dsRNA-mediated gene injection,
the level of expression of some genes related to WSSV proteins had their levels increased,
emphasizing the role of IAP1 in protection against WSSV. In the case of WSSV-infected
shrimp it is suggested that IAP1 protein acts preventing apoptosis of infected cells and
avoiding the virus to spread even quicker in the organism, as a result of cell lysis (Leu et
al., 2013;Wang et al., 2013c).

Proteins, such hemocyanin, crustin and crustacyanins have a wide range of action against
virus, especially WSSV, acting on animal stress and survival responses (Fan et al., 2016),
agglutination of the pathogen on hemolymph and cell lysis (Cheng et al., 2008; Shockey et
al., 2009; Zheng et al., 2016). The animals used in this work were all obtained from a captive
environment and some exposed to a lethal pathogen, what certainly triggers stress responses
on their organisms. Thus, the polymorphisms identified in these genes can constitute an
important source of information for future studies that evaluate the association of these
variants with the immune response.

GO and KEGG blastX hits
When considering the unigenes, returning blastX for all species, with the most allelic
variants that compose the GO terms found for animals evaluated for growth performance,
a more active metabolism can be observed in higher growth shrimps, with response to
oxidative stress, myofibril assembly, muscle development and innate immune responses
as the main events occurring at the cell. In animals with lower growth rates, a more basal
metabolism seems to predominate, with transcription leading the BP rank. Nonetheless,
response to drugs and proteolysis are also observed as frequent events, maybe illustrating
the organism acting in an unexpected way before external disturbances except drugs
exposure, such as oxidative stress, high population densities and/or few food supply, what
demands higher energy waste and stress, leading to limitations in performance.

Regarding the GO terms identified for the WSSV-exposed shrimps, the healthy
individuals showed SNPs mainly in genes related to protein folding and actin cytoskeleton
organization. These results may show an intense metabolism with a big amount of energy
being required, along with an effective maintenance in protein conformation and function
despite the contact with the White Spot Virus, in addition to pathogen endocytosis. In
unhealthy animals the events take place more frequently in myofibril assembly and muscle
development, together with chitin binding activity. The reason for these GO ontologies
may be linked to muscle and exoskeleton cuticle is probably because these are some of the
central targets of WSSV in shrimp organism, with the eruption of necrosis white spots in
muscle and exoskeleton (Pradeep et al., 2012), reflecting a scenario where the animals are
showing to be in a constant attempt of recovering themselves from damages caused by the
syndrome.

After KEGG blastX hits, 844 unigenes with 512 and 275 unique KOs and pathways,
respectively, were identified. In what regards the number of pathways mapped in the
KEGG, the value found here was close to other penaied Illumina transcriptomes, such as in
(Yu et al., 2014; Shi et al., 2018), in which 240 for L. vannamei and 295 for Fenneropenaeus
chinensis pathways were mapped in KEGG database. These results agreed with the GO
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annotation previously described here, that highlighted functions related to an intense
protein production and metabolism, central roles in redox signaling before external
disturbances, such as diseases, and in dealing with not-recognized particles, such as
pathogens. The number of KOs in the pathways, including metabolism, biosynthesis of
secondary compounds and ribosome, suggests a high carbohydrate metabolism, for the
production of energy, and proteins to supply processes as growth and immune defense. The
animals evaluated here were submitted to selection for rapid growth, which characterizes
the intense demand for proteins and energy for weight gain. However, the distribution
of KOs along the mapped pathways varied widely, as can be seen from the number of
pathways with correspondence found (Table S6). The absence of a reference genome and
the still small number of transcriptome data in crustacean may restrict a more detailed
understanding of the role of some proteins within specific metabolic pathways of more
closely related species.

CONCLUSIONS
The RNA-seq analyses performed herein, using several individuals of L. vannamei evaluated
for different performance features of interest for aquaculture, enabled the identification
of SNPs in important genes related to growth and immunity in crustaceans. In addition,
a wide variety of genes with potential fitness-related functions presented several unique
SNPs identified for shrimp samples evaluated for (i) higher and (ii) lower growth and (iii)
infected (unhealthy) and (iv) non-infected (healthy) after contact with WSSV. Thus, the
data generated in this study add relevant information to penaeid transcriptomes, since
reports of SNPs detected by nextgen in L. vannamei are still rare in the literature. The RNA
sequencing provided a wide coverage allied with high resolution of the generated reads,
allowing a significant accuracy, reliability and robustness for the SNPs identified here. These
polymorphisms may be potentially applied in high-density chips and high-density linkage
maps for GenomeWide Association Studies (GWAS) (Baranski et al., 2014; Yu et al., 2014),
providing a base for association analysis between complex traits genotypes and phenotypes.
This set of SNPs could be also interesting for allelic-specific expression studies (Bell & Beck,
2009), given that all these polymorphisms are located in coding regions and can directly
act in phenotype expression. For that, we recommend specific population validations to
confirm the presence of such polymorphisms in other L. vannamei populations, including
outbreed ones, and also related species.
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