The cranial endocast of the Upper Devonian dipnoan Chirodipterus australis (#23811)

First submission

Editor guidance

Please submit by **11 Mar 2018** for the benefit of the authors (and your \$200 publishing discount).

Structure and Criteria

Please read the 'Structure and Criteria' page for general guidance.

Raw data check

Review the raw data. Download from the location described by the author.

Image check

Check that figures and images have not been inappropriately manipulated.

Privacy reminder: If uploading an annotated PDF, remove identifiable information to remain anonymous.

Files

Download and review all files from the <u>materials page</u>.

9 Figure file(s)

4 Table file(s)

1 Other file(s)

Structure your review

The review form is divided into 5 sections. Please consider these when composing your review:

- 1. BASIC REPORTING
- 2. EXPERIMENTAL DESIGN
- 3. VALIDITY OF THE FINDINGS
- 4. General comments
- 5. Confidential notes to the editor
- You can also annotate this PDF and upload it as part of your review

When ready submit online.

Editorial Criteria

Use these criteria points to structure your review. The full detailed editorial criteria is on your guidance page.

BASIC REPORTING

- Clear, unambiguous, professional English language used throughout.
- Intro & background to show context.
 Literature well referenced & relevant.
- Structure conforms to <u>PeerJ standards</u>, discipline norm, or improved for clarity.
- Figures are relevant, high quality, well labelled & described.
- Raw data supplied (see <u>PeerJ policy</u>).

EXPERIMENTAL DESIGN

- Original primary research within Scope of the journal.
- Research question well defined, relevant & meaningful. It is stated how the research fills an identified knowledge gap.
- Rigorous investigation performed to a high technical & ethical standard.
- Methods described with sufficient detail & information to replicate.

VALIDITY OF THE FINDINGS

- Impact and novelty not assessed.
 Negative/inconclusive results accepted.
 Meaningful replication encouraged where rationale & benefit to literature is clearly stated.
- Data is robust, statistically sound, & controlled.
- Conclusions are well stated, linked to original research question & limited to supporting results.
- Speculation is welcome, but should be identified as such.

Standout reviewing tips

The best reviewers use these techniques

	p

Support criticisms with evidence from the text or from other sources

Give specific suggestions on how to improve the manuscript

Comment on language and grammar issues

Organize by importance of the issues, and number your points

Please provide constructive criticism, and avoid personal opinions

Comment on strengths (as well as weaknesses) of the manuscript

Example

Smith et al (J of Methodology, 2005, V3, pp 123) have shown that the analysis you use in Lines 241-250 is not the most appropriate for this situation. Please explain why you used this method.

Your introduction needs more detail. I suggest that you improve the description at lines 57-86 to provide more justification for your study (specifically, you should expand upon the knowledge gap being filled).

The English language should be improved to ensure that an international audience can clearly understand your text. Some examples where the language could be improved include lines 23, 77, 121, 128 - the current phrasing makes comprehension difficult.

- 1. Your most important issue
- 2. The next most important item
- 3. ...
- 4. The least important points

I thank you for providing the raw data, however your supplemental files need more descriptive metadata identifiers to be useful to future readers. Although your results are compelling, the data analysis should be improved in the following ways: AA, BB, CC

I commend the authors for their extensive data set, compiled over many years of detailed fieldwork. In addition, the manuscript is clearly written in professional, unambiguous language. If there is a weakness, it is in the statistical analysis (as I have noted above) which should be improved upon before Acceptance.

The cranial endocast of the Upper Devonian dipnoan Chirodipterus australis

Struan A C Henderson $^{Corresp.,-1}$, Tom J Challands 1

Corresponding Author: Struan A C Henderson Email address: S.Henderson-16@sms.ed.ac.uk

One of the first endocasts of a dipnoan (lungfish) to be realised was that of the Upper Devonian taxon *Chirodipterus australis*. This early interpretation was based on observations of the shape of the cranial cavity alone and was not based on a natural cast or 'steinkern' nor from serial sectioning. The validity of this reconstruction is therefore questionable and continued reference to and use of this interpretation in analyses of sarcopterygian cranial evolution runs the risk of propagation of error. Here we describe a new detailed anatomical description of the endocast of *Chirodipterus austral* and show that it exhibits a suite of characters more typical of Lower and Middle Devonian dipnoan taxa. Notably, the small utricular recess is unexpected for a taxon of this age, whereas the ventral expansion of the telencephalon is more typical of more derived taxa. The presence of such 'primitive' characters in *C. australis* supports its relatively basal position as demonstrated in the most recent phylogenies of Devonian Dipnoi.

 $^{^{}m 1}$ School of Geosciences, University of Edinburgh, Edinburgh, United Kingdom

1 The cranial endocast of the Upper Devonian dipnoan Chirodipterus

- 2 australis
- 3 STRUAN A. C. HENDERSON¹ and TOM. J. CHALLANDS¹
- 4 ¹University of Edinburgh, School of Geosciences, Grant Institute, James Hutton Road,
- 5 Edinburgh, EH9 3FE, United Kingdom,
- 6 Corresponding Author:
- 7 STRUAN A. C. HENDERSON¹
- 8 Email address: S.Henderson-16@sms.ed.ac.uk

- 9 RH: HENDERSON AND CHALLANDS CRANIAL ENDOCAST OF CHIRODIPTERUS
- 10 AUSTRALIS

11 ABSTRACT

12 One of the first endocasts of a dipnoan (lungfish) to be realised was that of the Upper Devonian taxon Chirodipterus australis. This early interpretation was based on observations of the shape of 13 14 the cranial cavity alone and was not based on a natural cast or 'steinkern' nor from serial 15 sectioning. The validity of this reconstruction is therefore questionable and continued reference to 16 and use of this interpretation in analyses of sarcopterygian cranial evolution runs the risk of 17 propagation of error. Here we describe a new detailed anatomical description of the endocast of 18 Chirodipterus australis and show that it exhibits a suite of characters more typical of Lower and 19 Middle Devonian dipnoan taxa. Notably, the small utricular recess is unexpected for a taxon of 20 this age, whereas the ventral expansion of the telencephalon is more typical of more derived taxa. The presence of such 'primitive' characters in C. australis supports its relatively basal position as 21 22 demonstrated in the most recent phylogenies of Devonian Dipnoi.

23 INTRODUCTION

A monophyletic clade of sarcopterygians, the Dipnoi originated in the Early Devonian around 400 Ma, and are still extant today (Denison 1968; Thomson & Campbell 1971; Campbell & Barwick 1982; 2000; Chang, 1984; Schultze, 2001; Qiao & Zhu, 2015). The extensive lungfish fossil record during their rapid diversification throughout the Devonian Period allows an unprecedented opportunity to examine a discrete evolutionary trajectory of neurocranial

29 development early within a clade's history. Furthermore, examination of lungfish brain morphology indirectly from cranial endocasts of the brain cavity provides important information 30 concerning overall cranial disparity of the Sarcopterygii as a group concomitant with the first 31 32 appearance of tetrapods and tetrapodomorphs (Cloutier & Ahlberg, 1996; Zhu & Yu, 2002; 33 Friedman, 2007). 34 'Dipnoan' was one of the eight basic brain plans of extinct and extant vertebrates proposed 35 by Stensiö (1963), the remaining seven being osteolepiform, porolepiform, actinistian, 36 actinopterygian, elasmobranchiomorph, petromyozontid and myxinoid. The dipnoan 37 endocranium was described as platybasic, where the cavity for the brain projects between the 38 orbits (which are separated) and the endocranium has a broad base, though Stensiö went on to 39 detail definitive neural characters of the 'dipnoan' brain type: (1) overall shape long and narrow; 40 (2) closely separated narrow, deep hemispheres; (3) high cerebral hemispheres extending 41 anteriorly; (4) inverted or slightly inverted telencephalon; (5) anterodorsally situated olfactory 42 bulbs at, or just in front of, the cerebral hemispheres in adult forms; (6) large hypothalamus; (7) 43 reduction or disappearance of the lobus posterior hypothalami; (8) slight development or absence of saccus vasculosus; (9) hypophysis situated posterior to the fundibulum; (10) a narrow 44 45 mesencephalon; (11) a small metencephalon; and (12) a long myelencephalon. It is unlikely, 46 given the lack of histological data from fossils, that these defining characters can easily be applied to endocasts of fossil lungfish. (Stensiö's inferences were largely based on the brains of 47 the extant African [Protopterus annectens] and Australian [Neoceratodus forsteri] lungfish, 48 49 though he also drew comparisons with the Upper Devonian Chirodipterus wildungensis [from 50 Säve-Söderbergh, 1952]). His conclusion that no major changes in gross dipnoan brain 51 morphology had occurred since the Devonian has been challenged in the light of new studies on Early, Middle and Late Devonian lungfish (Campbell & Barwick, 1982; 2000; Clement & 52 Ahlberg, 2014; Challands, 2015; Clement et al., 2016), and is challenged further herein. 53

Comparison of primitive fungtish neural characters with those shared by more basar
sarcopterygians (e.g. Youngolepis) and tetrapodomorphs allows the polarity of endocranial
characters to be ascertained and necessitates the examination of homologous structures in more
basal outgroup taxa. For example, the neurocranium of the early Pragian tetrapodomorph
Tungsenia paradoxa features similar olfactory tract angle, separate pineal and parapineal organs
and similar nerve V positioning to the basal dipnomorphs Youngolepis, Powichthys, Porolepis
and Glyptolepis (Lu et al., 2012) and so these conditions are regarded as primitive for these taxa.
The neural characters of the oldest lungfish, Diabolepis speratus, from Yunnan in South
China (Lochkovian Age) have not currently been determined (Chang, 1984; Smith & Chang,
1990) and so the character states for the most primitive lungfish remain unknown. The primitive
condition of neural features for the Dipnoi were therefore suggested by Campbell & Barwick
(2000) on examination of the internal and external neurocranial features of Dipnorhynchus
kurikae, a basal Early Devonian lungfish, and through comparison with the brain of N. forsteri.
These features were: 1) no ventral expansion of the telencephalon (brain region associated with
olfaction and vision); 2) posterior position of nerve II; 3) small utricular recesses; 4) large
ampulla on the posterior semicircular canal (relative to younger Devonian Dipnoi). They further
suggest that olfactory tracts with pedunculate bulbs (opposed to sessile bulbs sitting in the
forebrain) and narrower semicircular canals are primitive. This model has recently been, for the
best part, validated by the recent digital endocast of Dipnorhynchus sussmilchi (Clement et al.,
2016b) from which other primitive dipnoan endocranial characters were established, notably 1)
the absence of a separate sacculus and lagena; 2) a sinus superior that does not extend dorsally
above the rhombencephalon; 3) a high angle between the anterior and posterior semicircular
canals; 4) the presence of median dorsal canals posterior to pineal – parapineal and, 5) bifurcation
of the anterior cerebral vein within the cranial cavity.

An extensive µCT cranial endocast of *Dipterus valenciennesi*, a Middle Devonian

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

lungfish, revealed crucial anatomical features that realised polarity of phylogenetically informative endocast characters in the Dipnoi (Challands, 2015). These characters differ subtly from the predictions of Campbell & Barwick (2000) and include: ventral expansion of the telencephalon seen in *Rhinodipterus kimberlyensis* and extant dipnoans (derived), but lacking in the basal Dipnorhynchus sussmilchi and Dipterus valenciennesi (primitive); numerous dorsomedial canals (primitive) and a shared pineal-parapineal recess (derived) in all lungfish crownward of Dipnorhynchus sussmilchi (Dipterus valenciennesi is intermediate having one medial canal and a shared recess); enlarged utricular recess (derived - extant lungfish have large utricular recesses relative to Dipterus valenciennesi and Rhinodipterus kimberlyensis, which have enlarged recesses relative to *Dipnorhynchus kurikae*); size of theposterior semicircular canal ampullae(inflated is the primitive condition seen in Dipnorhynchus kurikae while small and deflated is the derived condition seen in younger lungfishes). Challands (2015) corroborates conclusions that younger Devonian lungfish (*Rhinodipterus kimberlyensis* [Clement & Ahlberg, 2014], Chirodipterus wildungensis [Säve-Söderbergh, 1952] and Griphognathus whitei [Miles, 1977]) had derived brains. In light of this new information, the current study provides a detailed anatomical description of the endocast of *Chirodipterus australis* to further assess the polarity of neural characters, but also to ultimately contribute new information to determining the true relationships of this genus which is regarded as being polyphyletic (Friedman, 2007; Challands, 2015).

Chirodipterus australis and the genus Chirodipterus

Chirodipterus australis Miles 1977 is a Late Devonian (mid-Frasnian) short-snouted lungfish from Gogo, north Western Australia (Fig. 1). Several well preserved three dimensional specimens of *Chirodipterus australis* have been collected from this locale and are ideal for detailed study using µCT scanning to reveal the endosseous cranial features.

103	Miles (1977) assigned C. australis to Chirodipterus based on entopterygoid structure,
104	conjoined denticles and possession of one subopercular bone. The phylogenetic position of
105	Chirodipterus australis and its belonging to the genus Chirodipterus is, however, debated
106	(Friedman, 2007). Indeed, monophyly of Chirodipterus does not stand up to scrutiny and
107	Chirodipterus australis, alongside C. wildungensis, C. liangchengi, C. onawayensis and C.
108	potteri, likely comprise a relatively derived, yet polyphyletic lungfish genus restricted to the
109	Middle-Late Devonian. An extensive review of the morphology of four Gogo dipnoans (C.
110	australis, Gogodipterus paddyensis, Griphognathus whitei, Holodipterus gogoensis) highlighted
111	some differences in the tooth-plates, nerves and vessels between C. australis and C. wildungensis
112	(Miles, 1977), suggesting they belong to different genera - Chirodipterus australis dentition is
113	undoubtedly unlike C. wildungensis and C. liangchengi (Kemp, 2001). Inclusion of recent
114	character data in phylogenetic analyses places C. wildungensis close to the crown of Devonian
115	lungfish (Challands, 2015). Further, C. liangchengi has been found to resolve in a polytomy
116	between the most primitive and most derived Devonian Dipnoi, being recurrently placed basal to
117	C. wildungensis (Friedman, 2007; Clement, 2012; Challands, 2015; Clement et al., 2016). The
118	most recent published Devonian lungfish phylogeny (Clement et al., 2016) recovers either a
119	monophyletic grouping of Chirodipterus australis and Gogodipterus paddyensis within this
120	polytomy, or places G. paddyensis basal to C. australis.
121	The type species of Chirodipterus, Chirodipterus wildungensis, possesses a cranial
122	endocast similar to Rhinodipterus kimberleyensis lement & Ahlberg, 2014) and
123	'Chirodipterids' (and 'dipterids') have been suggested to occupy a phylogenetic position between
124	basal Devonian lungfish (e.g. Dipnorhynchus, Uranolophus) and derived Upper Devonian taxa
125	(e.g. Griphognathus), with the proviso that Chirodipterus wildungensis is the only valid species
126	of Chirodipterus (Friedman, 2007). The high quality of Chirodipterus australis specimens, has
127	caused further confusion by leading researchers to typically refer to material of C. australis when

discussing the genus *Chirodipterus*, rather than the type species *Chirodipterus wildungensis*. If *C. australis* is a true member of the genus it would be predicted to possess a similar derived brain morphology to *Chirodipterus wildungensis* and *Rhinodipterus kimberlyensis*. Conversely, given its current phylogenetic position as being more basal, and polyphyletic, to *C. wildungensis* (Clement *et al.*, 2016) the null hypothesis is that it comprises a melange of derived and primitive endocranial characters more akin to *Dipterus valenciennesi*. The description of the endocast of *Chirodipterus* presented here provides a test of this hypothesis.

MATERIALS AND METHODS

To account for intraspecific variation as best possible, two individual *Chirodipterus* australis specimens, NHMUK PV P56035 and NHMUK PV P56038, were analysed (Fig. 2). These two specimens comprise complete and uncrushed crania previously prepared and exposed from the matrix by acid etching. NHMUK PV P56035 and NHMUK PV P56038 were two of twenty specimens studied by Miles (1977) for his extensive review on the cranial features of Gogo dipnoans, although neither specimen received particular examination in his study.

Scanning and segmentation

NHMUK PV P56035 and NHMUK PV P56038 were scanned at the Natural History Museum, London, UK, using a Metris X-Tek HMX ST 225 CT system. The scanning parameters for NHMUK PV P56035 were: 210 kV; 200 μ A; 2.5 mm copper filter; x-offset = -0.043; y-offset = -0.043; z-offset = 0.043; source to object = 253 mm; source to detector = 1170 mm; and mask radius = 43.1652, 3142 projections with an angular step of 0.115°. For NHMUK PV P56038, the scanning parameters were: 210 kV; 200 μ A; 2.0 mm copper filter; x-offset = -0.049; y-offset = -0.049; z-offset = 0.049; source to object = 285 mm; source to detector = 1170 mm; and mask

radius = 48.7117, 3142 projections with an angular step of 0.115°. The CTPro package with Beam hardening type = simple, was used to construct the projections. Voxel size was 43 µm for NHMUK PV P56035 and 49 µm for NHMUK PV P56038. The raw sinogram µCT data was reconstructed as 32-bit greyscale tiff files, which were rotated and cropped in ImageJ (Schneider, Rasband & Elicieri, 2012). The tiff image stack produced was then rendered and segmented using Materialise's Interactive Medical Image Control System (MIMICS®) Research v18.0.0.525 (biomedical materialise.com/mimics, Materialise NV, Leuven, Belgium), to produce a three dimensional (3D) endocast mode Segmented images were also imported into the open-source software Drishti Volume Exploration and Presentation Tool v.2.0 (Limaye, 2012) to calculate the volumes of neural structures.

Measurements

Measurements were made on the endocasts of *Chirodipterus australis* specimens

NHMUK PV P56035 and NHMUK PV P56038. The measurements taken on the ossified labyrinth were as follows: angles between anterior-posterior, anterior-lateral and posterior-lateral semicircular canals (SCCs); internal circumferences of anterior, lateral and posterior SCCs; length of arc of lateral SCC; major axis of lateral SCC fenestra; minor axis of lateral SCC fenestra; radius of arc of lateral SCC; surface area of anterior, lateral and posterior SCC ampullae; volume of anterior, lateral and posterior SCC ampullae; surface area of utricular recess; volume of utriculuar recess; surface area of sacculolagenar; volume of sacculolagenar.

Measurements are identical to those in Challands 2015 (fig. 2) on the endocast of *Dipterus valenciennesi* allowing direct comparisons of *Chirodipterus australis* with *Dipterus valenciennesi*, yet also with *Protopterus dolloi* and *Neoceratodus forsteri*, for which measurements of the endosseous labyrinths were also reported. In addition to these measurements, ratios of the volume and surface area of the utriculus to that of the sacculus were

calculated.

175	The following measurements were taken from the forebrain (telencephalon and
176	diencephalon) of the specimens: length of olfactory nerve canals from the nasal capsule to
177	olfactory bulbs; length of the olfactory nerve canals from nasal capsule to telencephalon;
178	diameter of olfactory nerve canals (taken from mid-point of olfactory nerve canals); angle of
179	direction of the olfactory nerve canals from the telencephalon; angle between olfactory nerve
180	canals; length of olfactory bulbs; volume of the olfactory bulbs; volume of the ventral expansion
181	of the telencephalon; width of nerve II; depth of nerve II. The ventral expansion of the
182	telencephalon was defined (following Fig. 5, Clement & Ahlberg, 2014) as the region of the
183	endocast anterior and ventral to the ventral margin of the roots of the optic nerves and posterior
184	and ventral to the ventral union of the olfactory bulbs and telencephalon. The olfactory bulbs
185	were defined as from where the olfactory nerve canals begin to expand (dorso-ventrally and
186	latero-medially) to the union with the main body of the forebrain.
187	In the hindbrain (rhombencephalon) measurements were taken for: width (medio-lateral
188	direction) of the endolymphatic ducts; depth (antero-posterior direction) of the endolymphatic
189	ducts.
190	The volumes of the telencephalon, diencephalon, mesencephalon and rhombencephalon
191	were calculated with definitions of the regions as follows (see also, Clement & Ahlberg, 2014,
192	fig. 5): telencephalon (excluding olfactory nerve canals) - region anterior to a line drawn from the
193	root of nII to the anterior base of the pineal-parapineal recess, and posterior to the emanation of
194	the olfactory bulbs; diencephalon - region between the posterior margin of telencephalon and a
195	line drawn from the posterior base of the hypophyseal recess to the beginning of the dorsal
196	expansion of the endocast; mesencephalon - region between the posterior margin of the
197	diencephalon and the union of the main body of the endocast and the labyrinth; rhombencephalon
198	- region posterior to the posterior margin of the mesencephalon (excluding the labyrinth);

labyrinth - regions lateral to the rhombencephalon, specifically, lateral to the anterior division of the supraotic cavities. Results of all measurements are presented in tables 1-4.

Phylogenetic methods

The matrix of Clement *et al.* (2016) comprising characters derived from endocasts was used with the addition of *Chirodipterus australis*. This matrix was analysed using parsimony analysis conducted using the implicit enumeration method in TNT V1.5 (Goloboff, 2008). The implicit enumeration method finds an exact solution and all trees using branch and bound. Parsimony analysis was also conducted using stepwise addition with 10,000 random addition sequence replicates holding five trees at each step, with tree bisection and reconnection (TBR) enabled. Bremer indices were calculated using the *bsupport* command for trees suboptimal by 20 steps. The Late Devonian coelacanth *Diplocercides* was designated as the outgroup

Preservation of specimens

The neurocranium of NHMUK PV P56035 is well preserved in 3D, with most of the cranial cavity preserved completely. Only small sections of the neurocranial walls are damaged, most noticeably in the hypophyseal recess and the skull roof anterior to the otic region. The neurocranium surrounding the hypophyseal recess has collapsed and is open to the parasphenoid, with no bone found anterior to the otic region and damage extending forwards to the mesencephalon. Matrix fills the majority of the cranial cavity and few pyrite concretions are found within the neurocranium. Acid preparation has been performed on this specimen, however where the acid has not been reached the contrast of the μ CT scan data is low.

NHMUK PV P56038 is less well preserved. The specimen has been compressed dorsoventrally and has sustained considerable damage in the left postero-lateral region of the neurocranium such that the left labyrinth could not be segmented. A large crack runs parallel to

the endocast through the region of the left labyrinth with the resultant space being filled with sediment. In this region, to the left and right of the midbrain, and in the rostral region surrounding the olfactory nerve canals, there are large concentrations of pyrite. These concretions are an impediment to the interpretation and segmentation. This specimen has also been acid prepared and contrast in the μ CT scan data is low where the acid has not reached and the sediment has not been dissolved. Contrast is particularly low in the postero-ventral portion of the neurocranium and, as such, the notochord is not visible and cannot be segmented.

Institutional abbreviations

ANU, Australian National University, Canberra, Australia; MCZ, Museum of
Comparative Zoology, Harvard University, Cambridge, Massachusetts, USA; NHMUK, Natural
History Museum, London, UK; NMS, National Museums Scotland, Edinburgh, UK; PIN,
Palaeontological Institute, Moscow, Russia; WAM, West Australian Museum, Perth, Australia.

RESULTS

Endocast anatomical description

The following description provides a detailed account of endocast morphology of *Chirodipterus australis*, building upon interpretations made by Miles (1977). All features presented herein relate not to the true cranial nerves, vessels or brain, but to the endocast, however the endocast is regarded as being indicative of actual brain morphology in lungfish (Clement *et al.*, 2015). The endocast of NHMUK PV P56035 is approximately 41 mm in length (from the bottom of olfactory nerve canals to the spinal cord) and 28 mm at its widest (across the semicircular canals), while NHMUK PV P56038 is 55 mm long and 30 mm wide. Both endocasts display slight asymmetry, which is known to occur in animals inhabiting stressed environments

244 (Parsons, 1992), and is consistent with other specimens from the Gogo formation (Long & Trinajstic, 2010). This asymmetry is not an impediment to interpretation however. Volumes of the brain regions are presented in Table 1.

247 *Nasal capsule*: The nasal capsules (nc, Figs. 3-8) are large and open ventrally, with a convex dorsal surface and no observable divisions. Miles (1977) states, however, that they are ovoid (see 248 cav.nc, figs. 18 & 64, Miles, 1977), yet both specimens investigated in this study possess 249 250 triangular-shaped nasal capsules (nc, Figs. 5 & 7). The olfactory nerve canals (nI) exit the nasal 251 capsule postero-dorsally and are large (nI, Figs. 3-8; Table 2). Lateral to the point at which nI 252 exits the nasal capsule, another canal emerges postero-laterally, which is interpreted as the orbitonasal canal (c.on, Figs. 3-8; labelled V₂, figs. 65 & 66 in Miles, 1977). This passes postero-253 254 laterally for a short distance before entering the cavum epiptericum. Another canal emanates from 255 the posterior margin of the nasal capsule that would have housed the medial branch of the nasal 256 vein. This canal bifurcates into posteriorly and postero-laterally directed branches (l.v.na, m.v.na, 257 Figs. 3-8). The more lateral of these is the canal for the lateral branch of the nasal vein, which 258 continues postero-laterally yet also branches again back postero-medially rejoining the medial 259 branch (l.v.na, Figs. 5-8). The medial branch continues into the common chamber for the palatine 260 artery, ramus palatinus and nasal vein (co.ch, Figs. 7 & 8). From this chamber the canal for the 261 ramus palatinus VII (which also houses the palatine artery) carries postero-medially, travelling 262 towards the hypophyseal recess (r.pal.VII, Figs. 7 & 8) in accordance with the position in Miles 263 (VII_p, fig. 64, Miles, 1977). Dorsal to the canal for the lateral branch of the nasal vein and the 264 orbitonasal canal sits the antero-posteriorly directed median branch of the ramus opthalmicus 265 profundus V (r.op.p.V, Figs. 6-8) which passes over the nasal capsule. The configuration of the 266 orbitonasal canal and ramus opthalmicus profundus V confirm prior interpretations (Miles, Fig 267 66, 1977), with interpretation of the other ethmoidal canals herein building upon that of Miles

289

290

268 (1977).

269	Olfactory nerve canals: Rising posteriorly from the nasal capsules, the olfactory nerve canals
270	extend to where they meet the anterior margin of the telenecephalon (nI, Figs. 3-5; Table 2).
271	There is a slight swelling of nI prior to the union with the forebrain (Table 2) which are here
272	interpreted as sessile olfactory bulbs (b.olf, Figs. 3-7). Olfactory tracts, or peduncles, are absent
273	in Chirodipterus australis. The olfactory nerve canals project ventrally at a greater angle in
274	NHMUK PV P56035 than they do in NHMUK PV P56038 (Table 2), most likely due to the
275	dorso-ventral compression of NHMUK PV P56038. The olfactory nerves also diverge from each
276	other at the rostral margin of the forebrain (Table 2).
277	From the juncture of the olfactory bulbs and the telencephalon the anterior cerebral vein
278	emanates in a dorso-lateral direction before descending ventro-laterally in NHMUK PV P56035
279	(c.v.acv, Figs. 3-5). A single canal emanates from the point at which the olfactory tracts diverge in
279 280	(c.v.acv, Figs. 3-5). A single canal emanates from the point at which the olfactory tracts diverge in NHMUK PV P56038, and this may be a branch of the anterior cerebral vein (c.v.acv, Figs. 6 &
J	
280	NHMUK PV P56038, and this may be a branch of the anterior cerebral vein (c.v.acv, Figs. 6 &
280 281	NHMUK PV P56038, and this may be a branch of the anterior cerebral vein (c.v.acv, Figs. 6 & 7). A small canal emerges from the ventral margin of the telencephalon, anterior to the ventral
280 281 282	NHMUK PV P56038, and this may be a branch of the anterior cerebral vein (c.v.acv, Figs. 6 & 7). A small canal emerges from the ventral margin of the telencephalon, anterior to the ventral expansion of the telencephalon, which has not been observed in any dipnoan cranial endocast
280 281 282 283	NHMUK PV P56038, and this may be a branch of the anterior cerebral vein (c.v.acv, Figs. 6 & 7). A small canal emerges from the ventral margin of the telencephalon, anterior to the ventral expansion of the telencephalon, which has not been observed in any dipnoan cranial endocast before and may have been a canal for a small blood vessel (c.bv, Fig. 4). No bifurcation of the
280 281 282 283 284	NHMUK PV P56038, and this may be a branch of the anterior cerebral vein (c.v.acv, Figs. 6 & 7). A small canal emerges from the ventral margin of the telencephalon, anterior to the ventral expansion of the telencephalon, which has not been observed in any dipnoan cranial endocast before and may have been a canal for a small blood vessel (c.bv, Fig. 4). No bifurcation of the olfactory nerve canals is seen at, or prior to, the meeting with the nasal capsule in NHMUK PV
280 281 282 283 284 285	NHMUK PV P56038, and this may be a branch of the anterior cerebral vein (c.v.acv, Figs. 6 & 7). A small canal emerges from the ventral margin of the telencephalon, anterior to the ventral expansion of the telencephalon, which has not been observed in any dipnoan cranial endocast before and may have been a canal for a small blood vessel (c.bv, Fig. 4). No bifurcation of the olfactory nerve canals is seen at, or prior to, the meeting with the nasal capsule in NHMUK PV P56035 as seen in <i>Dipterus</i> . Bifurcation is, however, observed in both the left and right olfactory

Forebrain (telencephalon & diencephalon): Directly posterior to the junction of the olfactory nerve canals and the forebrain there is a ventral expansion of the telencephalon (Table 1), which steeply recedes at its posterior end (ven.exp.t, Figs. 5 & 7). Just dorsal to the posterior margin of

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

the ventral expansion there is a large canal of nerve II (nII) approximately 3 mm posterior to the olfactory bulbs, which extends antero-laterally (nII, Figs. 3-8). Dorsal to nII in NHMUK PV P56035, and postero-dorsal to nII in NHMUK PV P56038, lies another canal emanating dorso-laterally from the forebrain. This canal would have housed the oculomotor nerve III (nIII, Figs. 3-4 & 6-7).

On the dorsal surface of the diencephalon, the shared pineal-parapineal recess is directed anterodorsally and does not penetrate the dermal bones (rec.pp, Figs. 3-4 & 6-7). Posterior to the pineal-parapineal recess, the dorsal surface is flat for approx. 5 mm before rising gradually. On the ventral side of the diencephalon, posterior to nII, the hypophyseal recess extends ventrally (rec.hyp, Figs. 4-5 & 7-8). Some of the hypophyseal region could not be segmented due to damage in the ventral portion of the cranial cavity, however a significant portion can be resolved. The segmented region reveals paired thin canals emerging antero-laterally from the anterior lateral margin of the recess, which housed the opthalmic arteries (c.a.opth, Figs. 3-5 & 7-8). Posterior to the origin of these canals, paired canals leave the hypophyseal recess posterolaterally. These posterior canals continue for 4.5 mm before turning dorsally 22° and bifurcating into the ventro-medially directed internal carotid artery and the postero-dorsally directed pseudobranchial artery (c.a.ic.pb, Figs. 5-6 & 8; c.a.ic, Figs. 4 & 7). The pseudobranchial artery joins another canal, which originates ventral to the facial nerve (nVII) in the mesencephalon (described below). Another pair of canals are observed directed anteriorly from a more medial position than the opthalmic arteries. These do not emanate from the hypophyseal recess however, but intersect the common chamber for the nasal veins and are interpreted as canals for the ramus palatinus VII and the palatine artery (r.pal.VII, Figs. 7 & 8; see also fig. 4, Challands, 2015). Dorsal to the hypophyseal recess of NHMUK PV P56035 is the canal for the pituitary vein, which extends antero-ventro-laterally (c.v.pit, Figs. 3-5). On the right of the endocast,

316

335

336

337

338

anterior and dorsal to the canal for the pituitary vein, another canal is directed laterally and anteriorly, housing nerve IV (nIV, Figs. 3-4).

317 *Midbrain (mesencephalon)*: The transition from the diencephalon to the mesencephalon in C. 318 australis is indicated by a steady posterior incline on the dorsal surface of the endocast, which is accompanied by lateral expansion of the endocast. On the ventral margin of the endocast, the 319 mesencephalon can be seen to begin at the posterior limit of the hypophyseal recess. The 320 321 beginning of the mesencephalon has been associated with a rise in the brain roof from the optic 322 tectum, which is also signified by lateral expansion of the endocast (Northcutt, 1986; 323 Nieuwenhuys, Hans & Nicholson, 2014). Furthermore, the endocast possesses a large dorsal 324 swelling at the pinnacle of the dorsal mesencephalon, indicating the presence of optic lobes (optic 325 lobe, Figs. 4 & 7). 326 The canal for the trigeminal nerve complex emanates ventral and lateral to the pinnacle of 327 the mesencephalon, posterior to the canal for the pituitary vein. On both sides of the endocast, 328 this canal bifurcates into one canal travelling anteriorly and laterally, for the ophthalmicus 329 profundus nerve (nV_1) , and another postero-laterally, which held both the maxillaris nerve (nV_2) 330 and the mandubularis nerve (nV_3 ; nV_1 and nV_2 , nV_3 , Figs. 3-8). The canal for the ophthalmicus 331 profundus (nV₁) continues antero-laterally until joining the canal for the jugular vein. Postero-332 dorsal to the origin of the trigeminal complex is another canal projecting postero-laterally, that 333 would have housed the facial nerve (nVII, Figs. 3-8). This canal remains separated from the 334 posterior branch of the trigeminal initially, yet the two soon merge to form one large laterally

directed canal (Fig 3). Union of these canals suggests that nVII, nV₂ and nV₃ were housed in the

same canal as they left the neurocranium, though loss of a dividing wall between these canals

during fossilisation could produce such a structure as an artefact. The former interpretation is

supported by observations made by Miles (fig. 17, 1977) who recognised that these canals are

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

separated, yet exit the neurocranium via one large foramen (along with the canal for nV₁ before it joins the jugular canal). Posterior to the bifurcating canal of the trigeminal complex is another canal directed postero-laterally from the endocast (this canal is depicted in fig. 9 of Säve-Söderbergh, 1952, but is not labelled, and is labelled by Stensiö, 1963 as a "canal probably for a ... middle cerebral vein?"). On the right side of the endocast of NHMUK PV P56038, this canal continues for 3.5 mm before meeting the canal for the pseudobranchial artery, which originates at the hypophyseal recess, and ultimately the canal for the jugular vein (c.v.mcv, Figs. 3, 5-6, & 8; nVI, Figs. 6 & 8). This canal likely represents that for the middle cerebral vein as suggested by Stensiö (1963) and Miles (fig 47, 1977) rather than the canal for the abducens nerve nVI as interpreted by Challands (2015) for a similar structure in *Dipterus*. Furthermore, in NHMUK PV P56038, a separate canal also emerges from the main body of the endocast posterior and ventral to nerve VII and the canal for the middle cerebral vein. This likely represents the true root of the abducens (nVI) as seen in the endocast of a fossil lungfish and the identification made by Challands (2015) appears to have been made in error. A branch of the orbital artery runs alongside and slightly dorso-lateral to the jugular vein (c.a.orb, Figs. 6 & 8). Anteriorly, however (in line with the anterior margin of the labyrinth), the orbital artery passes over the dorsal surface of the jugular vein. The observed layout here confirms the configuration noted in Miles (1977), where the jugular vein, orbital artery and the nerves of the trigeminal complex are represented by separate foramina in the cavum epiptericum. *Hindbrain (rhombencephalon)*: The supraotic cavities are small, however large endolymphatic ducts emerge from them postero-dorsally (cav.so, Figs, 3 & 6; d.end, Figs. 3-4 & 6-7; Table 2). The canal for the glossopharyngeal nerve (nIX) emanates from the posterior region of the sacculus and is directed postero-ventrally, ventral to the junction of the lateral and posterior semi-

circular canals and dorsal to the posterior limit of the sacculolagenar (nIX, Figs. 4-5 & 7-8). It

does not divide as suggested by Miles (1977).

364 Dorso-medially to nIX, a large canal directed postero-ventrally exits the hindbrain which, 365 then joins another large canal that originates in the otic region posterior and ventral to the 366 endolymphatic ducts and proceeds postero-ventro-laterally. The union of these two canals lies 367 postero-medially to the meeting of the posterior and lateral semicircular canals, although it is separated from the ampullae. These two canals are interpreted as confirmation of the separate 368 369 dorsal and ventral divisions of the vagus nerve (nX, Figs. 4-8) outlined by Miles (p. 38-43, fig. 370 15, 1977). The divisions are separated by what Miles termed the paravagal process, with vascular 371 tissue and blood vessels, notably the posterior cerebral vein, housed in the dorsal division and the 372 ventral division containing nervous tissue. Level with and posterior to the origin of the nervous 373 division of nX, the first spino-occipital nerve exits the spinal cord postero-laterally (sp.occ.1, 374 Figs. 3, 5 & 8). Dorsal and posterior to the first spino-occipital nerve is the second spino-occipital 375 nerve, which bifurcates into dorsally and ventrally directed branches exiting the neurocranium 376 (sp.occ.2d.2v, Figs. 7 & 8), as figured by Miles (sp.occ.2d and sp.occ.2v, fig. 15, 1977). Further 377 dorsally lies the third spino-occipital nerve, which follows a similar configuration to the second, 378 with dorsal and ventral divisions (sp.occ.3d.3v, Figs. 3, 6 & 8; sp.occ3d and sp.occ3v, fig. 15, 379 Miles, 1977). 380 Ventral to the spinal cord (sc, Fig. 4) is the notochord (nt, Figs. 4-5). These two structures 381 are separated from each other by an ossified shelf shown by the separated spinal cord and 382 notochord in the posterior region of the hindbrain. The notochord appears to merge with the 383 sacculi in the endocast, though the two would have been separate in life, and extends anteriorly as 384 far forward as the anterior limit of the sacculolagenar, providing an exact description of the 385 anterior margin of the notochord which Miles (1977) was unable to discern. The notochord 386 would, however, have had a thick lining of cartilage in life, meaning that the canal observed 387 herein will be slightly reduced compared to the true size. Ventro-lateral to the notochord is the

occipital artery, which originates from the posterior junction of the hindbrain and labyrinth, running postero-ventro-laterally before turning medially to pass closely to the lateral margins of the notochord (c.a.occ, Figs. 4-5).

Labyrinth: The labyrinth system of *Chirodipterus australis* has previously been figured by Miles (figs. 47 & 48, 1977). The endocast described here is in agreement with Miles regarding the relative dimensions and positioning of the semicircular canals, utricular recess and sinus superior, however the sacculi are presented here in greater detail.

The dorsal-most point of the sinus superior, where the anterior and posterior semicircular canals meet, is lower than the dorsal-most point of both the anterior and posterior semicircular canals (ascc, Figs. 3-4 & 6-7; pscc, Figs. 3-4 & 6-7; Table 4). The sinus superior does, however, extend dorsally beyond the roof of the hindbrain. There is a slight dorsal expansion where the sinus superior meets the hindbrain, anterior to the base of the endolymphatic ducts, which designates an anterior division of the supraotic cavity, despite previous indications that *Chirodipterus australis* lacks such a division (Miles, 1977).

There is no observable deflection of the anterior semi-circular canal (SCC), yet there is a large ampulla at its antero-ventral margin before it communicates with the lateral SCC (amp.ascc, Figs. 3-4 & 7; Table 4). Just posterior and lateral to this junction, the lateral SSC also exhibits a large ampulla (amp.lscc, Figs. 3-8; Table 4). These two canals intersect with the dorsal surface of the utricular recess, which is small (Table 4) and extends laterally from the sacculolagenar (rec.utr, Figs. 4 & 7). The posterior SCC also exhibits an ampulla at the intersection with the lateral SCC (amp.pscc, Figs. 4-7; Table 4), a feature not clearly depicted by Miles (1977). This character was coded in Friedman (2007) stating that *Chirodipterus australis* lacks a major expansion at the intersection of the posterior SCC and the sacculus. Here, however, there appears to be expansion in this region (Table 4). Also *contra* Miles (1977), the sacculus of *C. australis* is

slightly elongated and ovoid, extending both anteriorly and posteriorly (rec.sacc.lag, Figs, 4-5 & 7-8). The anterior margin of the sacculus extends beyond that of the utriculus, unlike the depiction in Miles (fig. 48, 1977), and posteriorly, the sacculi extend until they are vertically in line with the posterior margin of the lateral SCC. The bone on the base of the sacculus is very thin, providing poor density contrast. Problems with density contrast in segmentation of the endosseous labyrinth have been highlighted by Walsh, Luo & Barrett (2013), however the margins of the sacculus were identifiable and show a relatively simple rounded shape similar to modern lungfish (Jorgensen & Joss, 2010). No notch is observed separating the sacculus and lagena as in *Rhinodipterus* kimberleyensis and *Dipterus*.

DISCUSSION

Morphological comparisons with other taxa

Endocasts of fossil Devonian dipnoans ilable for comparison with Chirodipterus australis include Chirodipterus wildungensis (Säve-Söderbergh, 1952), Dipnorhynchus sussmilchi (Campbell & Barwick, 1982; Clement et al., 2016), Rhinodipterus kimberleyensis (Clement & Ahlberg, 2014 ipterus valenciennesi (Challands, 2015). Comparison of the endosseous labyrinth is possible with Griphognathus whitei (Miles, 1977, fig. 46). Furthermore, comparison of the endocasts herein with the previous endocast interpretation of Chirodipterus australis by Miles (1977) is also possible.

Chirodipterus australis displays lateral compression of the fore- and midbrain, and small optic lobes characteristic of fossil dipnoan endocasts (Stensiö, 1963; Northcutt, 1986). Similar to Dipterus valenciennesi, the ventral margins of the diencephalon, mesencephalon and metencephalon are not deep, though the hypophyseal recess is well developed, similar to the

osteolepid condition exemplified by Eusthenopteron foordi (Stensiö, 1963, fig. 50A). The

435 endocast of *Chirodipterus wildungensis* (Säve-Söderbergh, 1952) appears to be further expanded 436 ventrally in these divisions of the endocast, though this difference may be due to both the higher 437 resolution of digital endocasts relative to physical endocasts, and also poor preservation of the C. 438 wildungensis fossil material pis latter factor is important in comparison with the digital endocast of Rhinodipterus kimberleyensis (Clement & Ahlberg, 2014), in which ventra 439 440 expansion of the midbrain may be an artefact of preservation; the fidelity of the data in this 441 region is poor. 442 Nasal capsule: Unlike Dipnorhynchus sussmilchi, in which the nasal capsule is directed medially and is elongated antero-posteriorly (Thomson & Campbell, 1971, fig. 29), the ingular nasal 443 444 capsule of C. australis extends laterally as well as anteriorly similar to Dipterus valenciennesi 445 (Challands, 2015), Porolepis spitsbergensis (Jarvik, 1972) and Youngolepis praecursor (Chang, 446 1982). The nasal capsule of C. australis also differs from that of G. whitei, with its defined solum 447 nasi and posterior opening, as described by Miles (1977). While similarly large and open 448 ventrally comparison with the ventral depiction of the anterior cranial cavity of C. wildungensis (Säve-Söderbergh, 1952, fig. 3) shows that this species may have had nasal capsules resembling 449 450 C. australis, though their exact shape is not described. 451 Within Devonian Dipnoi, the positioning of the orbitonasal canal is identical to that in Holodipterus gogoensis (Miles, 1977, figs. 69 & 70) and similar to G. whitei, in which it enters 452 the posterior nasal capsule (labelled V₂, Miles, 1977, fig. 63). Furthermore, the condition in C. 453 454 wildungensis appears similar to C. australis in that it enters the nasal capsule, though it enters ventral to the opening in the nasal capsule for the olfactory nerve (Säve-Söderbergh, 1952), not 455 456 laterally to the olfactory nerve in C. wildungensis. It is, however, unlike Dipterus valenciennesi, in which the orbitonasal canal circumvents the nasal capsule antero-medially (Challands, 2015, 457 fig. 4), and *Dipnorhynchus sussmilchi*, in which the orbitonasal canal joins the palatine artery 458

459 (labelled the groove for the subnasal vein, gr. subn. v, and f. pal. VII, respectively, Thomson & 460 Campbell, 1971, fig. 29; this structure was not segmented in Clement et al., 2016). The 461 orbitonasal canal in *C. australis* also differs to that of *Porolepis spitsbergensis*, a Devonian 462 porolepiform, in which the orbitonasal circumvents the nasal capsule postero-medially (Jarvik, 463 1972, fig. 14), and Guiyu oneiros, a primitive sarcopterygian, which displays medial positioning of the orbitonasal canal (Qiao & Zhu, 2010). It therefore appears that crownward dipnoans 464 possess orbitonasal canals that enter the nasal capsule, whereas in more basal dipnoans and 465 466 primitive sarcopterygians the nasal capsule is circumvented. There is therefore potential for this 467 character to be phylogenetically informative, with the former configuration being derived and 468 latter primitive, however determination of the state in other Devonian Dipnoi is required before 469 this is conclusive. 470 The canal for the ramus opthalmicus profundus V in C. australis resembles all other 471 Upper Devonian dipnoans (Säve-Söderbergh, 1952, fig. 4; Miles, 1977, figs. 63 & 69), Dipterus 472 valenciennesi (Challands, 2015, fig. 4), and also Youngolepis praecursor (Chang, 1982, figs. 14 473 & 17), in passing dorsally over the nasal capsule. This is unlike the condition observed in 474 Dipnorhynchus kurikae (Campbell & Barwick, 2000, fig. 7) and Dipnorhynchus sussmilchi 475 (Thomson & Campbell, 1971, fig. 29; Clement et al., 2016, fig. 3), where this canal joins the 476 nasal capsule posteriorly. That this union of the ramus opthalmicus profundus V and the nasal 477 capsule is contained within the monophyletic *Dipnorhynchus* (at least within Dipnoi), while all 478 other dipnoans share the state of Youngolepis praecursor, suggests that separation of the two 479 structures is the ancestral state and that it is an autapomorphy in *Dipnorhynchus* (Challands, 480 2015). Determination of the configuration of this character in other basal dipnoans, such as 481 Diabolepis and Uranolophus, may resolve the polarity of this character and allow for it to be 482 coded confidently in phylogenetic analyses. 483 The nasal vein in C. australis appears to be in close agreement with that of Dipterus

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

valenciennesi (Challands, 2015, fig. 4). Both possess a common chamber for the palatine artery, medial nasal vein and ramus palatinus VII, however they differ in that C. australis has only one emanating vein from the posterior nasal capsule where *Dipterus valenciennesi* has three. This is quite possibly due to the fact that, in C. australis, there are two unions of the lateral branch of the nasal vein and the medial branch prior to the meeting with the nasal capsule - lateral and anterior to the common chamber - whereas in *Dipterus valenciennesi* there is just one, lateral to the common chamber. Such differences may be explained by the fact that minor changes in ossification in this region could easily shift the position of canals, and, particularly where canals are in such close proximity, cause the union of multiple canals. It is also possible for these venous canals to be absorbed into the orbitonasal canal in species where the orbitonasal joins the nasal capsule, or in *Dipnorhynchus*, into either the canal for the ramus opthalmicus profundus V or the ramus opthalmicus mandibularis V. Determination of the configuration of such canals within other dipnoans may find that the number and identity of canals entering the nasal capsule posteriorly could be used as an additional character in phylogenetic study though this requires detailed segmentation of high quality µCT data. Olfactory nerve canals: The bifurcation of the olfactory nerve canals prior to the nasal capsule now observed in C. australis is a characteristic shared, among the Dipnoi, only with Dipterus valenciennesi (Challands, 2015, figs. 6 & 7) and Dipnorhynchus (sussmilchi - described in text, Thomson & Campbell, 1971; kurikae - Campbell & Barwick, 2000, fig. 6b). With the most recent phylogenies placing C. australis in ever more basal positions, it is worth taking into consideration that no endocast of any dipnoan between *Dipnorhynchus* and *C. australis* other than *Dipterus* valenciennesi has been described (Clement et al., 2016). Miles (1977) did not identify a bifurcating canal in *Gogodipterus paddyensis*, often placed as the sister taxon to *C. australis*, although this was also the case in his more detailed examination of C. australis, which included the specimens used here. This proves that characters can remain elusive even under rigorous

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

scrutiny of fossil material, particularly those concerned with a thin separating layer of bone. R. kimberleyensis has been µCT scanned, however the specimen was missing the snout tip and the anterior reaches of the olfactory nerve canals could not be examined (Clement & Ahlberg, 2014). Bifurcation was not observed in the endocast of C. wildungensis (Säve-Söderbergh, 1952), though this feature would unlikely manifest in a physical endocast, and definitely not where the specimen is incomplete (Miles, 1977). From this analysis, we conclude that bifurcating olfactory nerve canals are a primitive character in Dipnoi, and that extant forms exhibit the derived state. The basal dipnomorph Youngolepis praecursor displays no bifurcation (Chang, 1982, fig. 18) and neither do the porolepiform Porolepis spitsbergensis, nor osteolepiform Eusthenopteron foordi (Jarvik, 1972, fig. 69). These observations may again be inaccurate due to imperfect preservation in the rostral region of the specimens examined or actually indicate that this character is autapomorphic to the Dipnoi. The digital endocast of *Tungsenia paradoxa*, an Early Devonian tetrapodomorph, also showed no such bifurcation in its short olfactory nerve canals which otherwise resemble basal dipnomorphs (Lu et al., 2012), further suggesting that bifurcation may be autapomorphic to dipnoans. It is clear that except in circumstances where exceptional preservation is combined with µCT scanning this character is difficult to identify, and as such validation of this as an informative character will require further research in dipnoans lying basal to C. australis. The orientation of the olfactory nerve canals in NHMUK PV P56035 deserves brief discussion. Downward projecting olfactory canals at such a high angle as seen in C. australis has not been observed in the endocast of any dipnoan. The dorso-ventral compression of NHMUK PV P56038 prevented accurate determination of this trait, and neither the account of C. wildungensis (Säve-Söderbergh, 1952) nor Miles' (1977) description of C. australis mention descending olfactory nerve canals. The perfect three-dimensional nature of specimen NHMUK PV P56035, however, precludes this feature being an artefact of compression or preservation.

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

While at this stage of our understanding in the relationship between neurocrania and endocast accounting for such a structure is speculative, it is possible that the ventrally directed olfactory tracts are a product of accommodating a short-snouted skull. Rather than secondarily shortening the olfactory tracts, they have become ventrally oriented to accommodate the same length in a shorter space. In contrast the olfactory canals of G. whitei are extremely elongated to account for the lengthening of the snout.

Telencephalon: Chirodipterus australis possesses some ventral expansion of the telencephalon, unlike the basal Youngolepis praecursor and Dipterus valenciennesi, which lack expansion of this region (Chang, 1982; Challands, 2015). Extant lungfish, Neoceratodus and the Lepidosireniformes, both exhibit extreme expansion of the telencephalon (Northcutt, 1986), as does *Rhinodipterus kimberleyensis*, though not to the extent of extant taxa (Clement & Ahlberg, 2014). These observations have confirmed that ventral expansion is a derived feature in Dipnoi, present in all dipnoans from the Upper Devonian onwards. It has been inferred that this is due to an increasing volume of the subpallium, related to olfaction, corresponding with the evolution of the palatal bite and autostyly (Clement & Ahlberg, 2014).

Chirodipterus australis has sessile olfactory bulbs, a trait shared with the Devonian dipnoans Dipterus valenciennesi (Challands, 2015), Rhinodipterus kimberleyensis (Clement & Ahlberg, 2014), Griphognathus whitei (unpublished data) and Dipnorhynchus sussmilchi (Clement et al., 2016), and with the extant Lepidosireniformes (Northcutt, 1986). The condition in C. wildungensis is unclear, with Säve-Söderbergh (1952) suggesting that the bulbs were lodged in the olfactory canals and therefore pedunculate as in *Neoceratodus*, though Miles (1977) notes that it is equally plausible that they sat on the rostral portion of the telencephalon (sessile). The polarity of this character is still not unequivocal, because as yet, no Devonian dipnoan endocast has clearly displayed pedunculate olfactory bulbs. However, with *Dipnorhynchus* also displaying

578

579

580

581

558 sessile olfactory bulbs the traditional view of pedunculate bulbs being the primitive state, which 559 is based on the fact that they are observed in the coelacanth Latimeria chalumnae and the 560 primitive extant lungfish *Neoceratodus* (Northcutt, 1986), must be questioned. The current lines 561 of evidence suggest that sessile bulbs are plesiomorphic to the Dipnoi, and that *Neoceratodus* 562 displays the derived condition of the trait. In the description of Youngolepis praecursor, Chang (1982) did not identify the olfactory bulbs, and so identification of this structure in in 563 564 Youngolepis will further define polarity of this character in the Dipnomorpha. The porolepiforms 565 Glyptolepis groenlandica and Porolepis spp. were, however, shown to have sessile olfactory 566 bulbs (Jarvik, 1972, fig. 17), which suggests that sessile bulbs are plesiomorphic for the 567 Dipnomorpha and that the pedunculate bulbs of *Latimeria* are apomorphic for Actinistia. 568 Also of note concerning the olfactory tracts is the relative positioning of the anterior 569 cerebral vein. The position and form of this structure is variable, both within specimens (compare 570 right and left side of the endocast in NHMUK PV P56035, Fig. 3), within species (between 571 NHMUK PV P56035 and NHMUK PV P56038, Figs. 3 & 6) and between species (Dipterus 572 valenciennesi, Challands, 2015, fig. 8). However, in no Devonian dipnoan does the anterior 573 cerebral vein emanate from the lateral margin of the main body of the forebrain as depicted in C. 574 wildungensis (Säve-Söderbergh, 1952, fig. 9). This would suggest that the endocast of C. 575 wildungensis is somewhat ineccurate, and expanded outwards beyond the true margin of the 576 cranial cavity, at least in the region of the forebrain.

Diencephalon: The position of the optic (nII) and trochlear (nIV) nerves in *C. australis* agree with that of *C. wildungensis*, although the canal for the oculomotor (nIII) is further posterior and ventral in *C. wildungensis*. Nerve III also exits the neurocranium of *G. whitei*, *Dipnorhynchus sussmilchi* and *Dipterus valenciesnni* similarly to *C. wildungensis*.

The shared pineal-parapineal recess of *C. australis* is the derived condition, in contrast to

582 the separate pineal and parapineal of *Dipnorhynchus* (Campbell & Barwick, 1982). Clement et al. (2016b) did not recognise separate pineal and parapineal canals in their rendering of the endocast 583 584 of Dipnorhynchus sussmilchi, but did recognise further medial canals posterior to the pineal 585 canal. C. australis lacks these dorso-medial canals posterior to the pineal canal. One additional 586 medial canal is found in *Dipterus valenciennesi*, with Challands (2015) noting that Dipnorhynchus sussmilchi must be primitive in this regard, and Dipterus valenciennesi 587 intermediate. The condition of this multistate character in R. kimberleyensis was unobservable 588 589 due to damage in this region. 590 Despite there being damage to the hypophyseal recess of specimens examined in this 591 study, it is clear the hypophyseal did not extend as far ventrally as that of *Dipnorhynchus* 592 (Thomson & Campbell, 1971; Campbell & Barwick, 1982; 2000; Clement et al., 2016). Neither 593 C. australis, nor the two published endocasts of Devonian dipnoans Dipterus valenciennesi 594 (Challands, 2015) and *Rhinodipterus kimberleyensis* (Clement & Ahlberg, 2014) exhibit such 595 extension, and it is plausible that this is a trait that has been lost in younger Dipnoi. Stensio's 596 (1963) presentation of the brain and cranial nerves of fossil vertebrates shows that there was 597 ventral projection of the hypophysis in Porolepiformes (Glyptolepis groenlandica, Jarvik, 1972, 598 fig. 72a), Osteolepiformes (Eusthenopteron foordi, Jarvik, 1972, fig. 72b) and Actinistia 599 (Latimeria), and the recent endocast of the onychodont Qingmenodus also displays ventral 600 extension of the hypophysis (Lu et al., 2016). This potentially indicates that this feature was 601 present in the common ancestor of *Dipnorhynchus* and these species. The hypophysis of 602 Youngolepis praecursor, a basal dipnomorph, more closely resembles that of C. australis and the Upper Devonian dipnoans than Dipnorhynchus (Chang, 1982). These facts point towards either 603 retention of a primitive state in *Dipnorhynchus*, acquisition of a derived character in both 604 605 Youngolepis and dipnoans crownwards of Dipnorhynchus, or a secondarily derived extension in 606 Dipnorhynchus.

Unlike *Dipterus valenciennsi* (Challands, 2015) and *Rhinodipterus kimberleyensis*(Clement & Ahlberg, 2014), the pituitary vein of *C. australis* emanates dorsal to the beginning of the hypophyseal recess. The exit of this canal from the neurocranium of *C. wildungensis* is in agreement with that of *C. australis* however the exact point of exit is not observed. In comparing the endocast of the brain cavity with the true brain of *Neoceratodus*, the region surrounding the hypophysis was found to fit less closely than the forebrain and endosseous labyrinth (Clement *et al.*, 2015). This may imply that the pituitary vein of *C. australis* did emanate from the hypophyseal recess, as would be expected, but has not manifested in the endocast due to discrepancies between the morphology of the cranial cavity and the true extent of the brain.

The ophthalmic arteries are arranged as in *Griphognathus whitei* (Miles, 1977, figs. 35 & 56), *Dipnorhynchus sussmilchi* (Thomson & Campbell, 1971, fig. 28; Campbell & Barwick, 1982, fig. 25; Clement *et al.*, 2016) and *Dipnorhynchus kurikae* (Campbell & Barwick, 2000, fig. 4).

Mesencephalon: Nieuwenhuys, Hans & Nicholson (2014) noted that a rise in the brain roof from the optic tectum marks the diencephalon-mesencephalon boundary in lungfish while Northcutt (1986) noted that, in Neoceratodus, the diencephalon and mesencephalon can also be differentiated by a widening observed in dorsal view. A widening and rising on the dorsal surface are pronounced in NHMUK PV P56035 in the region that would be expected to correspond to the mesencephalon-diencephalon. These swellings likely correspond to the optic lobes, which appear unified in C. australis in contrast to Dipterus valenciennesi, where paired swellings are observed laterally on the dorsal surface of the endocast (Challands, 2015, fig. 6a). This region could not be segmented in Rhinodipterus kimberleyensis as a result of damage to the material (Clement & Ahlberg, 2014), but Clement et al, 2016, fig. 2a) noted a slight swelling in the mesencephalon region posterior to the pineal-parapineal recess that may represent the region of the optic lobes.

631	Nonetheless, the proposed optic lobes of <i>C. australis</i> appear to be slightly enlarged dorsally
632	relative to other Devonian lungfish, though considerably less than contemporary actinopterygians
633	in which the optic lobes occupy the majority of the midbrain (Mimipiscis, Giles & Friedman,
634	2014, fig. 4; Raynerius, Giles et al., 2015, fig. 3; Giles, Rogers & Friedman, 2016).
635	In Chirodipterus australis the orientation of the brain regions anterior to the
636	mesencephalon is markedly different to that of the mesencephalon and more posterior
637	rhombencephalon. Both specimens of Chirodipterus australis exhibit a ventral deflection of the
638	brain regions anterior to the mesencephalon. This is also seen in <i>Dipnorhynchus</i> and
639	Rhinodipterus kimberleyensis wnereas in other underformed dipnoan endocasts the brain regions
640	all lie in the same plane. Eusthenopteron also possesses this character and so it is not limited to
641	lungfish, and in Qingmenodus the brain regions are aligned in the same plane but the olfactory
642	tracts and olfactory bulbs are inclined ventrally.
643	The arrangement of the trigeminal complex and the facial nerve in <i>C. australis</i> is identical
644	to that seen in Dipterus valenciennesi, Chirodipterus wildungensis, Dipnorhynchus and
645	Rhinodipterus kimberlyensis (Challands, 2015; Säve-Söderbergh, 1952; Campbell & Barwick,
646	1982; 2000; Clement & Ahlberg, 2014). The trigeminal was not described as branching in
647	Rhinodipterus kimberleyensis (Clement & Ahlberg, 2014, fig. 2c), however both separate
648	branches can be seen to be present as in C. australis. In Griphognathus whiteii, the anterior
649	branch of the trigeminal, the profundus (V ₁), exits further to the posterior than in C. australis and,
650	currently, seems to be the only dipnoan exhibiting such an arrangement. In Gogodipterus
651	paddyensis and Holodipterus gogoensis the profundus (V1) exits more anteriorly (Miles, 1977,
652	figs. 21 & 22 respectively). Nonetheless, the similarities in the arrangement of the trigeminal
653	complex between the Devonian Dipnoi indicate a relatively conserved trigeminal and facial nerve
654	canal arrangement in the endocast. This is further corroborated by a comparable configuration in
655	Neoceratodus (Northcutt, 1986, fig. 3). In contrast, the Devonian actinopterygian Mimipiscis

656 toombsi, displays a different configuration for the profundus (V_1) , mandibularis and maxillaris (V₂, V₃) and facial (VII) nerves, in which the roots of these nerves are separate (Giles & 657 Friedman, 2014). C. australis also differs from the type species C. wildungensis, in which the 658 659 antero-dorsal portion of the orbital artery sits further laterally away from the nerve canals. 660 Rhombencephalon: In the hindbrain, the endolymphatic ducts are large and leave the 661 cranial cavity from paired supraotic cavities and join the temporalis fossa in a similar manner to 662 Holodipterus gogoensis, Griphognathus whitei (Miles, 1977) and Dipterus valenciennesi 663 (Challands, 2015). The diameter of the canals for the endolymphatic ducts is, however, much 664 greater in C. australis than in these other taxa. The position of the glossopharyngeal nerve (nIX), in C. australis is similar to that of Dipterus valenciennesi, Chirodipterus wildungensis (Säve-665 Söderbergh, 1952), *Dipnoryhnchus* (Empbell & Barwick, 1982; 2000), and *Griphognathus* 666 667 whitei (Miles, 1977). Unlike *Dipterus valenciennesi* however, this canal is not seen to bifurcate. 668 Comparison of this nerve canal with *Rhinodipterus kimberleyensis* is harder to ascertain ashe 669 sacculus of R. kimberleyensis displays no emanating canals, and there is no canal that could correspond with nIX can be can all for the glossopharyngeal nerve nIX is also observed in the same 670 671 position within the Devonian actinopterygian Mimipiscis toombsi (Giles & Friedman, 2014, fig. 672 4), implying conservation of the topology of this character between basal actinopterygians and 673 sarcopterygians. 674 Division into dorsal and ventral branches of the vagus nerve (nX) canal has not been noted in the digital endocast of any dipnoan, although it was described in C. australis by Miles 675 676 (1977). The division, however, has been noted in actinopterygians (Stensiö, 1927), although the 677 most recent published accounts of Palaeozoic actinopterygian endocasts, while noting the 678 position of a single canal for nX, do not report a division (Giles & Friedman, 2014; Giles et al., 679 2015). C. australis therefore appears unique regarding nX, and future endocast studies will prove 680 interesting in determining whether it will remain a unique character.

682

683

684

685

686

The spino-occipital nerves presented here are in accordance with the description by Miles (1977), who also detailed the arrangement in *G. whitei*. He did, however, note that the spino-occipital nerves vary both intra- and interspecifically in both extant and fossil taxa. Furthermore, it would be impossible to determine that differences in these fine canals were not due to preservation or poor density contrast in CT scans. Suffice to say, *C. australis* possesses a compliment of spino-occipital nerves not unlike that seen in other Devonian lungfish endocasts.

687 Labyrinth: The sinus superior of C. australis clearly extends beyond the dorsal limit of the 688 hindbrain which is considered to be the primitive state for osteichthyans (Giles & Friedman, 689 2014). This feature is noted amongst the Dipnoi in *Chirodipterus wildungensis* (Säve-Söderbergh, 1952), Dipterus valenciennesi (Challands, 2015, fig. 9), Dipnorhynchus sussmilchi (Campbell & 690 691 Barwick, 1982), Griphognathus whitei and Orlovichthys limnatis (personal observations). It is 692 also observed in Youngolepis praecursor (Chang, 1982, fig. 19) and Eusthenopteron foordi 693 (Stensiö, 1963, fig. 50a). 694 Miles' (1977) interpretation of the labyrinth of C. australis was accurate regarding the 695 general morphology, however he failed to pick up on some of the finer details pertaining to 696 phylogenetically informative characters, which, at the time, was not the aim of the study. No 697 posterior ampulla is depicted in his schematic (Miles, 1977, fig. 48), yet is clearly present in the 698 endocasts of the specimens studies herein. Miles' (1977) inaccurate interpretation led subsequent 699 studies to consider C. australis as being derived for this character by lacking an enlarged 700 posterior ampulla (Campbell & Barwick, 2000; Friedman, 2007). C. australis does in fact possess 701 a posterior ampulla of noteworthy size, as in *Dipnorhynchus kurikae* (Campbell & Barwick, 702 2000), Eusthenopteron foordi (Stensiö, 1963, fig. 50a), Youngolepis praecursor (Chang, 1982, 703 fig. 19) and Dipterus valenciennesi (Challands, 2015), and should therefore be coded as primitive 704 for this character. The possession of an enlarged posterior ampulla in C. australis further

706 supports a more basal phylogenetic position as suggested by recent analyses (Challands, 2015; 707 Clement et al., 2016). 708 In the uncrushed NHMUK PV P56035, the posterior SCCs have the largest arc of the 709 three SCCs. This contrasts *Dipterus valenciennesi* and *Neoceratodus* in which the lateral SCC is the largest in the endocast, but resembles *Protopterus dolloi* (Challands, 2015, table 1). Arc 710 length is considered to be important in sensing angular acceleration (Popper et al., 2003) and it 711 712 has been suggested that the lengths of the SCCs relative to each other indicate differences in 713 ecological pressure to detect yaw (sensed by the lateral SCC), pitch (sensed up by the anterior 714 SCC) and roll (sensed by the posterior SCC) to varying degrees (Popper et al., 2003; Challands, 715 2015). 716 Unlike the three previously published digital endocasts of fossil dipnoans (*Rhinodipterus* 717 kimberleyensis, Clement & Ahlberg, 2014; Dipterus valenciennsi, Challands, 2015); 718 Dipnorhynchus sussmilchi (Clement et al., 2016), C. australis, like the primitive Dipnorhynchus 719 sussmilchi, shows no ventral notch in the sacculolagenar pouch and C. australis appears similar 720 to modern lungfish in this regard. The condition in *Dipnorhycnhus* sussmilchi is hard to discern 721 as the available data analysed by Clement et al. (2016b) did not contain the entire sacculolagenar. 722 Campbell & Barwick (1982) reconstructed the sacculolagenar in Dipnorhynchus sussmilchi as 723 being contiguous and if correct would suggest that separation into differentiated saccular and 724 lagenar pouches is the derived condition for this character. Clement & Ahlberg (2014, fig. 4) 725 reviewed the morphology of the labyrinths of eight dipnomorphs, and it appears, currently, that 726 Rhinodipterus kimberleyensis and Dipterus valenciennesi are unique in this trait for Devonian 727 lungfish. Youngolepis praecursor may possess a slight notch in the sacculolagenar, however the 728 vestibular fontanelle obscures the ventral portion of the sacculolagenar making such a claim 729 unsubstantiated.

emphasises the retention of several primitive endocranial features in this taxon and potentially

				_
730	Phylog	enetic	resu	lts

731 The phylogenetic analysis under implicit enumeration produced a single most parsimonious tree 732 of length 36 steps (CI = 0.639, RI = 0.667) with *Chirodipterus australis* resolving as the more 733 basal sister taxon to *Chirodipterus wildungensis* and in a more derived position to *Dipterus* (Fig. 9). This result is identical to that of Clement et al (2016), but differs from that of Challands and 734 735 Den Blauuwen (2016) where *Chirodipterus australis* resolved more basally to *Dipterus*. 736 Parsimony analysis using the 'Traditional search' in TNT also produced a single tree of the same 737 length, CI and RI and resolved the same topology as Challands and Den Blauuwen (2016; see 738 supplementary information Figure 1). 739 The Dipnoi are characterised by two unambiguous endocranial characters; character 1 740 (ventral face of the nasal capsule unossified) and character 11 (notochord does not extend to or 741 beyond the level of n.V. Character 2 (buccohypophyseal canal does not pierce parasphenoid) is 742 found in all lungfish crownward of *Dipnorhynchus* though is noted to be polymorphic for 743 Dipterus. The presence of a separate foramina for the internal carotid artery and efferent 744 pseudobranchial artery is also characteristic of all lungfish except for *Neoceratodus* in which the 745 condition is reversed.

Discussion

746

747

748

749

750

751

The labyrinth in Devonian lungfishes

Besides the sacculus and lagena, the utricular recess senses acceleration in the vestibular system and the size of this organ, relative the otoconial mass it contains, is a function of sensitivity to acceleration (Challands, 2015). Miles' (1977) depiction of the size and shape of the utricular recess was accurate, with *C. australis* displaying a surprisingly small utriculus for its Upper

752	Devonian age. Extant dipnoans possess vastly enlarged utriculi, with <i>Rhinodipterus</i>
753	kimberleyensis (Clement & Ahlberg, 2014), Dipterus valenciennesi (Challands, 2015),
754	Griphognathus whitei and Orlovichthys limnatis (unpublished data) exhibiting enlargement to a
755	slightly lesser degree. Comparison with Dipterus valenciennesi, Neoceratodus and Protopterus of
756	the surface area of the utricular recess to the sacculolagenar show C. australis to have the
757	smallest ratio, further corroborating its unique state. Campbell & Barwick (2000) state that
758	Dipnorhynchus kurikae possesses a large utricular recess, however, a rendering of the anterior
759	region of the vestibular region in Dipnorhynchus sussmilichi by Clement et al. (2016) reveals a
760	distinctively small utricular recess. Until the condition can be unequivocally confirmed for
761	Dipnorhycnhus kurikae, we consider the rendering of Clement et al. (2016) to be the most
762	reliable, and a definite indicator that the condition of the utricular recess in the primitive dipnoan
763	genus Dipnorhycnhus is of the primitive state i.e. small and reduced.
764	Patterns in Devonian dipnoan endocast evolution
765	The endocast of <i>Chirodipterus</i> appears unusual for the Dipnoi in possessing ventrally-directed
766	olfactory tracts though this character is actually seen in other Devonian lungfish (Dipnorhynchus
767	and Rhinodipterus kimberleyensis) and also Eusthenopteron. Odipterus wildungensis does not
768	exhibit this condition lending further morphological support for Chirodipterus actually
769	representing more than one genus. This inclination of the anterior brain regions may be a product
770	of shortening of the cheek region that has occurred in <i>Chirodipterus</i> (Campbell & Barwick, 1982)
771	though Dipnorhynchus and Rhinodipterus kimberleyensis do not possess similar shortening.
772	
773	Indeed, Rhinodipterus kimberleyensis is considered as a long-snouted form. Shortening of the
773	endocranial cavity in dipnoans was noted by Clement <i>et al.</i> (2016) to be convergent with
774	

776 endocranial cavity. In this respect, lungfish may have adopted a similar strategy to birds where the brain becomes 'folded' to accommodate the increase in size of the cerebrum (Balanoff et al. 777 778 2013). The current phylogenetic analysis recognises shortening of the endocranial cavity as a 779 synapomorphy for the Dipnoi as all lungfish possess a notochord that does not extend beyond n. 780 V. The shortening of the cheek region and indeed the short snout in *Chirodipterus* to produce the 781 unusual ventrally directed olfactory tracts appears to be independent of this character as it is shared with the tetrapodomorph *Eusthenopteron* which possesses an intercranial joint. 782 783 The phylogenetic placement of *Chirodipterus australis* under stepwise addition and TBR 784 ('Traditional search' in TNT) is consistent with previous Devonian lungfish phylogenies 785 (Challands and Den Blauuwen, 2016; Clack et al. in review) and demonstrates the relatively 786 basal position of *Chirodipterus australis*. This result is important for two reasons. Firstly, it 787 suggests that several features pertaining to the neurocranium are homoplastic. *Dipterus* is 788 bracketed by two species of *Chirodipterus* that both lack a buccohypophyseal foramen in the 789 parasphenoid and so this character must have evolved independently in both species of 790 Chirodipterus. Secondly separation of Chirodipterus australis from Chirodipterus wildungensis 791 provides further indication that *Chirodipterus* is a polyphyletic genus and warrants the need for a 792 renewed analysis and definition of this group. This is further supported by morphological features 793 of the endocast that are not coded in the character matrix i.e. the ventral deflection of the anterior 794 brain regions present in *Chirodipterus australis* but absent in *Chirodipterus wildungensis*. 795 The implicit enumeration parsimony analysis further supports *Chirodipterus* as an 796 unnatural grouping. Whereas this analysis recovers the same length, CI and RI with 797 Chirodipterus australis as the basal sister taxon to Chirodipterus wildungensis, the genus is found 798 to be paraphyletic. The node support (Bremer decay indices) for Chirodipterus australis and 799 Dipterus in their respective trees is weak indicating the instability of these two taxa. The implicit 800 enumeration analysis resolving both species of *Chirodipterus* as sister taxa does not resolve the

problems concerning homoplasy mentioned above. Rather different characters (characters 7 and 12) become homoplastic instead of the character pertaining to the buccohypophyseal foramen (character 3).

The definitions of suitable phylogenetically informative characters from endocast data in early osteichthyans are still undergoing refinements as new data comes to light. The present analysis demonstrates that the reasonably high consistency index (low homoplasy index = 0.361) of the single resulting tree indicates a strong phylogenetic signal using all the endocranial characters defined by Clement *et al.* (2016). However, it is important to note that the penetration of the parasphenoid by the buccohypophyseal canal (character 3) is not clear from the endocast alone – it must be judged in the context of the parasphenoid as well. The same applies to character 6, the presence/absence of a pineal foramen. To test whether or not these characters had an overt effect on grouping the lungfish as a monophyletic unit we conducted a further analysis under the same conditions as stated above but eliminating these characters. The new trees produced under both implicit enumeration and stepwise addition + TBR have exactly the same topology albeit with a slightly lower CI and RI (0.618 and 0.639 respectively). This result provides a good test for the phylogenetic efficacy in primitive osteichthyans of characters derived purely from the cranial endocast without reliance on coevolution between extraneous bones.

CONCLUSIONS

This study has shown that the endocast of *Chirodipterus australis* displays a combination of derived and primitive neural characters. More primitive characters are observed than previously thought, such as the enlarged posterior ampulla and small utriculus, which will imply placement of *C. australis* in more basal phylogenetic positions. Differences with the *Chirodipterus* type

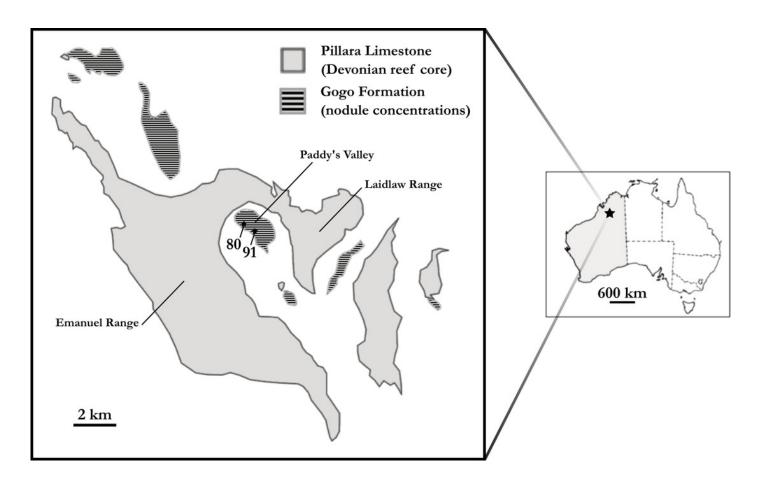
species are highlighted, further demonstrating that *C. australis* is unlikely a true a member of the genus *Chirodipterus*. A number of new phylogenetically informative characters are also defined, namely the configuration of canals surrounding the nasal capsule and bifurcation of the olfactory nerve canals, along with proposed revisions of existing character polarities (e.g. sessile and pedunculate olfactory bulbs). Rather than implementing these tentative new characters in a phylogenetic analysis, we have tested the efficacy of currently accepted cranial endocast characters. The consistency of the tree topologies resolved under different analytical conditions and with the removal of characters related to but not exclusively concerning the cranial endocast demonstrates its phylogenetic robustness. It is recommended that efforts focus on basal dipnoans and dipnomorphs (e.g. *Uranolophus* and *Youngolepis*) along with derived Upper Devonian taxa (e.g. *Holodipterus* and *Griphognathus*) in order to resolve the phylogeny of the Dipnoi.

- 834 REFERENCES
- Balanoff, A.M., Bever, G.S., Rowe, T.B. and Norell, M.A., 2013. Evolutionary origins of the
- 836 avian brain. *Nature*, 501(7465), p.93.
- 837 Campbell, K.S.W. and Barwick, R.E., 1982. The neurocranium of the primitive dipnoan
- 838 Dipnorhynchus sussmilchi (Etheridge). *Journal of Vertebrate Paleontology*, 2(3), pp.286-327.
- 839 Campbell, K.S.W. and Barwick, R.E., 2000. The braincase, mandible and dental structures of the
- 840 Early Devonian lungfish Dipnorhynchus kurikae from Wee Jasper, New South
- Wales. RECORDS-AUSTRALIAN MUSEUM, 52(1), pp.103-128.
- Challands, T.J., 2015. The cranial endocast of the Middle Devonian dipnoan Dipterus
- valenciennesi and a fossilized dipnoan otoconial mass. *Papers in Palaeontology*, 1(3), pp.289-
- 844 317.
- Chang, M.M., 1982. The braincase of Youngolepis, a Lower Devonian crossopterygian from
- 846 Yunnan. Southwestern China. Thesis, Stockholm University.
- Chang, M.M., 1984. Structure and phyogenetic significance of Diabolepis speratus gen. et sp.
- Nov., a new dipnoan-like form from the Lower Devonian of eastern Yunnan, China. In *Proc.*
- 849 *Linn. Soc. NSW.* Vol. 107, pp. 171-184.
- 850 Clement, A.M., 2012. A new species of long snouted lungfish from the Late Devonian of
- Australia, and its functional and biogeographical implications. *Palaeontology*, 55(1), pp.51-71.
- 852 Clement, A.M. and Ahlberg, P.E., 2014. The first virtual cranial endocast of a lungfish
- 853 (Sarcopterygii: Dipnoi). *PloS one*, 9(11), p.e113898.
- 854 Clement, A.M., Nysjö, J., Strand, R. and Ahlberg, P.E., 2015. Brain–Endocast Relationship in the
- Australian Lungfish, Neoceratodus forsteri, Elucidated from Tomographic Data (Sarcopterygii:

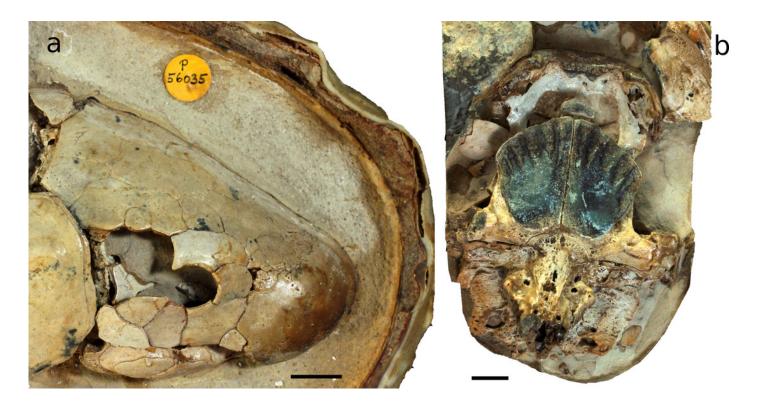
- 856 Dipnoi). *PloS one, 10(10)*, p.e0141277.
- 857 Clement, A.M., Challands, T.J., Long, J.A. and Ahlberg, P.E., 2016. The cranial endocast of
- 858 Dipnorhynchus sussmilchi (Sarcopterygii: Dipnoi) and the interrelationships of stem-group
- 859 lungfishes. *PeerJ*, *4*, p.e2539.
- 860 Cloutier, R. and Ahlberg, P.E., 1996. Morphology, characters, and the interrelationships of basal
- sarcopterygians. *Interrelationships of fishes*, pp.445-479.
- Denison, R.H., 1968. The evolutionary significance of the earliest known lungfish, Uranolophus.
- In Current problems of lower vertebrate phylogeny. Nobel Symposium. Vol. 4, pp. 247-257.
- Friedman, M., 2007. The interrelationships of Devonian lungfishes (Sarcopterygii: Dipnoi) as
- inferred from neurocranial evidence and new data from the genus Soederberghia Lehman,
- 866 1959. Zoological Journal of the Linnean Society, 151(1), pp.115-171.
- 867 Giles, S. and Friedman, M., 2014. Virtual reconstruction of endocast anatomy in early ray-finned
- fishes (Osteichthyes, Actinopterygii). *Journal of Paleontology*, 88(4), pp.636-651.
- 869 Giles, S., Darras, L., Clément, G., Blieck, A. and Friedman, M., 2015. An exceptionally preserved
- 870 Late Devonian actinopterygian provides a new model for primitive cranial anatomy in ray-finned
- 871 fishes. In *Proc. R. Soc. B.* Vol. 282, No. 1816, p. 20151485. The Royal Society.
- 872 Giles, S., Rogers, M. and Friedman, M., 2016. Bony labyrinth morphology in early neopterygian
- 873 fishes (Actinopterygii: neopterygii). *Journal of morphology*.
- 874 Jarvik, E., 1972. Middle and upper devonian porolepiformes from East Greenland with special
- 875 reference to Glyptolepis groenlandica N. Sp.: and a discussion on the structure of the head in the
- 876 porolepiformes. Reitzel.
- Jorgensen, J.M. and Joss, J. eds., 2010. The biology of lungfishes. CRC Press.

- Kemp, A., 2001. Chirodipterus potteri, a new Devonian lungfish from New South Wales,
- 879 Australia: and the ontogeny of chirodipterid tooth plates. *Journal of Vertebrate*
- 880 *Paleontology, 20(4),* pp.665-674.
- Limaye, A., 2012, October. Drishti: a volume exploration and presentation tool. In SPIE Optical
- 882 Engineering+ Applications. pp. 85060X-85060X. International Society for Optics and Photonics.
- Long, J.A. and Trinaistic, K., 2010. The Late Devonian Gogo Formation lägerstatte of Western
- 884 Australia: exceptional early vertebrate preservation and diversity. *Annual Review of Earth and*
- 885 *Planetary Sciences*, *38*, pp.255-279.
- 886 Lu, J., Zhu, M., Long, J.A., Zhao, W., Senden, T.J., Jia, L. and Qiao, T., 2012. The earliest known
- stem-tetrapod from the Lower Devonian of China. *Nature communications*, 3, p.1160.
- 888 Lu, J., Zhu, M., Ahlberg, P.E., Qiao, T., Zhu, Y.A., Zhao, W. and Jia, L., 2016. A Devonian
- predatory fish provides insights into the early evolution of modern sarcopterygians. Science
- 890 *advances*, 2(6), p.e1600154.
- Miles, R.S., 1971. The Holonematidae (placoderm fishes), a review based on new specimens of
- 892 Holonema from the Upper Devonian of Western Australia. *Philosophical Transactions of the*
- 893 Royal Society of London. Series B, Biological Sciences, pp.101-234.
- Miles, R.S., 1977. Dipnoan (lungfish) skulls and the relationships of the group: a study based on
- 895 new species from the Devonian of Australia. Zoological Journal of the Linnean Society, $61(1 \square 3)$,
- 896 pp.1-328.
- Nieuwenhuys, R., Hans, J. and Nicholson, C., 2014. *The central nervous system of vertebrates*.
- 898 Springer.
- 899 Northcutt, R.G., 1986. Lungfish neural characters and their bearing on sarcopterygian
- 900 phylogeny. Journal of Morphology, 190(S1), pp.277-297.

- 901 Parsons, P.A., 1992. Fluctuating asymmetry: a biological monitor of environmental and genomic
- 902 stress. *Heredity*, 68(4), pp.361-364.
- 903 Popper, A.N., Fay, R.R., Platt, C. and Sand, O., 2003. Sound detection mechanisms and
- 904 capabilities of teleost fishes. In Sensory processing in aquatic environments. pp. 3-38. Springer
- 905 New York.
- 906 Qiao, T. and Zhu, M., 2010. Cranial morphology of the Silurian sarcopterygian Guiyu oneiros
- 907 (Gnathostomata: Osteichthyes). Science China Earth Sciences, 53(12), pp.1836-1848.
- 908 Qiao, T. and Zhu, M., 2015. A new Early Devonian lungfish from Guangxi, China, and its
- 909 palaeogeographic significance. Alcheringa: An Australasian Journal of Palaeontology, 39(3),
- 910 pp.428-437.
- 911 Säve-Söderbergh, G., 1952. On the skull of Chirodipterus wildungensis Gross, an Upper
- 912 Devonian dipnoan from Wildungen. Almquist & Wiksell.
- 913 Schneider, C.A., Rasband, W.S. and Eliceiri, K.W., 2012. NIH Image to ImageJ: 25 years of
- 914 image analysis. *Nat methods*, *9*(7), pp.671-675.
- 915 Schultze, H.P., 2001. Melanognathus, a primitive dipnoan from the Lower Devonian of the
- 916 Canadian Arctic and the interrelationships of Devonian dipnoans. *Journal of Vertebrate*
- 917 *Paleontology*, 21(4), pp.781-794.
- 918 Smith, M.M. and Chang, M.M., 1990. The dentition of Diabolepis speratus Chang and Yu, with
- 919 further consideration of its relationships and the primitive dipnoan dentition. *Journal of*
- 920 *Vertebrate Paleontology, 10(4),* pp.420-433.
- 921 Stensiö, E.A., 1927. The Downtonian and Devonian vertebrates of Spitsbergen. I, Family
- 922 Cephalaspidae.

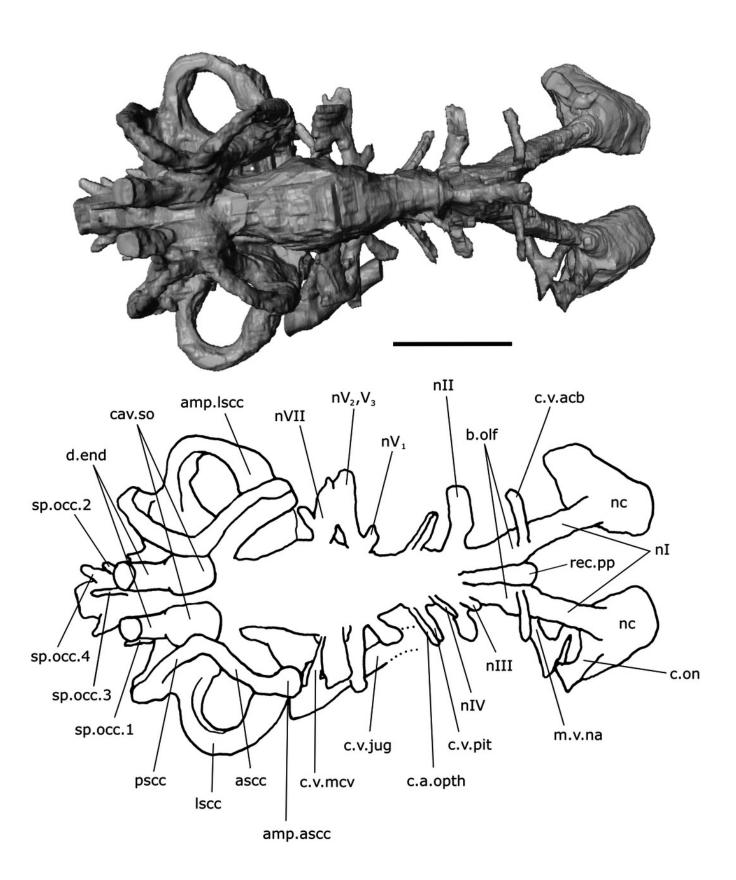


- 923 Stensiö, E., 1963. The Brain and the Cranial Nerves in Fossil, Lower Craniate Vertebrates: The
- 924 Nansen Memorial Lecture, Oct., 1992. Oslo University Press.
- 925 Thomson, K.S. and Campbell, K.S.W., 1971. The structure and relationships of the primitive
- 926 Devonian lungfish--Dipnorhynchus sussmilchi (Etheridge). Vol. 38. Peabody Museum of Natural
- 927 History, Yale University.
- 928 Walsh, S.A., Luo, Z.X. and Barrett, P.M., 2013. Modern imaging techniques as a window to
- 929 prehistoric auditory worlds. In *Insights from Comparative Hearing Research*. pp. 227-261.
- 930 Springer New York.
- 231 Zhu, M. and Yu, X., 2002. A primitive fish close to the common ancestor of tetrapods and
- 932 lungfish. *Nature*, 418(6899), pp.767-770.

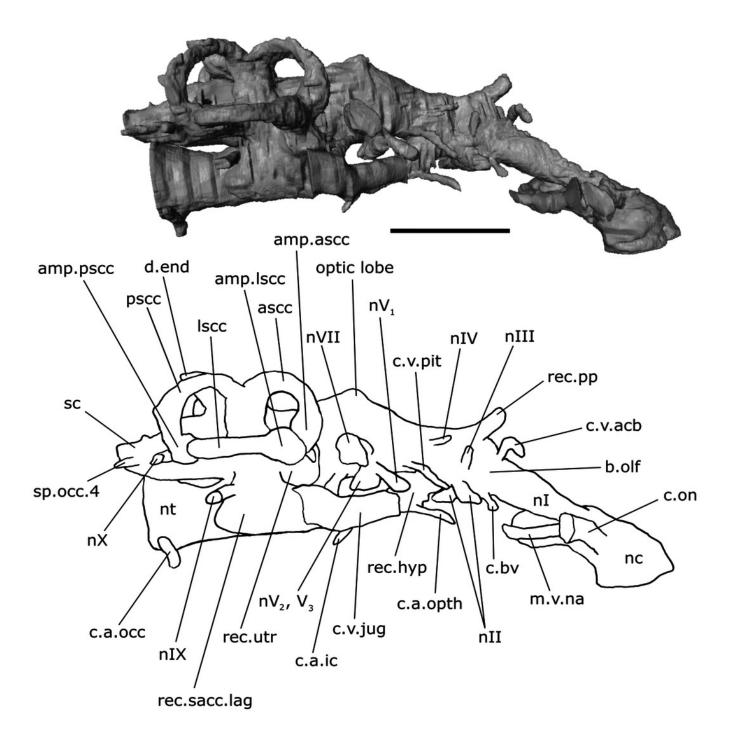

Map of the Gogo Formation in the Kimberley region of Western Australia.

Map of the Gogo Formation in the Kimberley region of Western Australia, modified from Clement (2012). Numbers are locality numbers taken from Miles (1971) and represent the sites that the *Chirodipterus australis* specimens were collected from (80 – NHM PV P56035; 91 – NHM PV P56038).

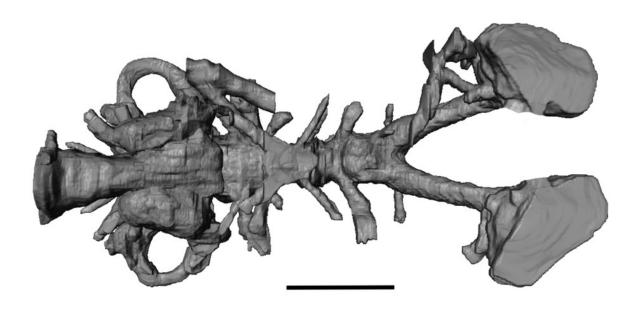
Photographs of specimens.

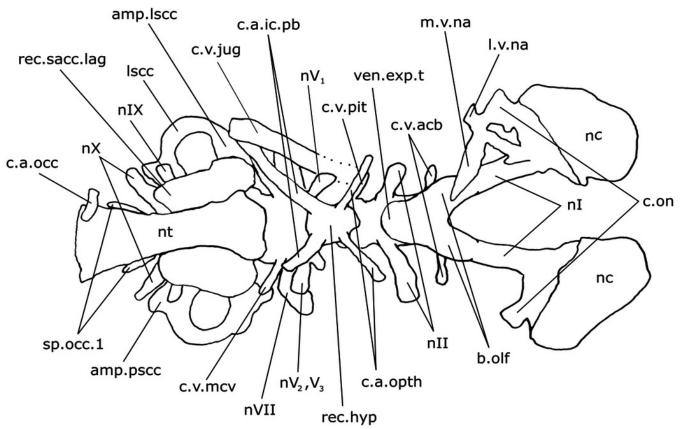

Photographs of specimens: A) NHM PV P56035; B) NHM PV P56038

Dorsal aspect of the endocast of Chirodipterus australis specimen NHM PV P56035.


Digital 3D endocast of *Chirodipterus australis* specimen NHMUK PV P56035. Scale bar = 10 mm. Top: Dorsal aspect of the digital endocast. Bottom: Interpretive drawing with characters discussed in the text labelled. *Abbreviations*: amp.ascc, ampulla of the anterior semicircular canal; amp.lscc, ampulla of the lateral semicircular canal; ascc, anterior semicircular canal; b.olf, olfactory bulb; c.a.opth, canal for the opthalmic artery; c.on, orbitonasal canal; c.v.acb, canal for the anterior cerebral vein; c.v.jug, canal for the jugular vein; c.v.mcv, canal for the middle cerebral vein; c.v.pit, canal for the pituitary vein; cav.so, supraotic cavity; d.end, endolymphatic duct; lscc, lateral semicircular canal; m.v.na, canal for the median branch of the nasal vein; nl, canal for the olfactory nerve; nll, canal for the optric nerve II; nlll, canal for the occulomotor nerve III; nlV, canal for the trochlear nerve IV; nV₁, canal for the opthalmicus profundus nerve V₁; nV₂,V₃, canal for the maxillaris nerve V₂ and the mandibularis nerve V₃; nVII, canal for the facial nerve VII; nc, nasal capsule; pscc, posterior semicircular canal; rec.pp, recess for the pineal-parapineal recess; sp.occ.1-4, canals for spino-occipital nerves 1-4.

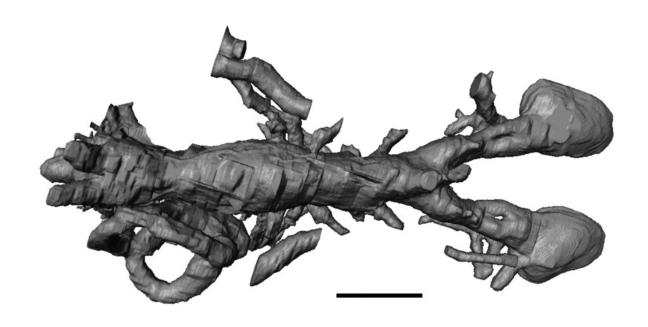
Right lateral aspect of the endocast specimen of *Chirodipterus australis* specimen NHM PV P56035.

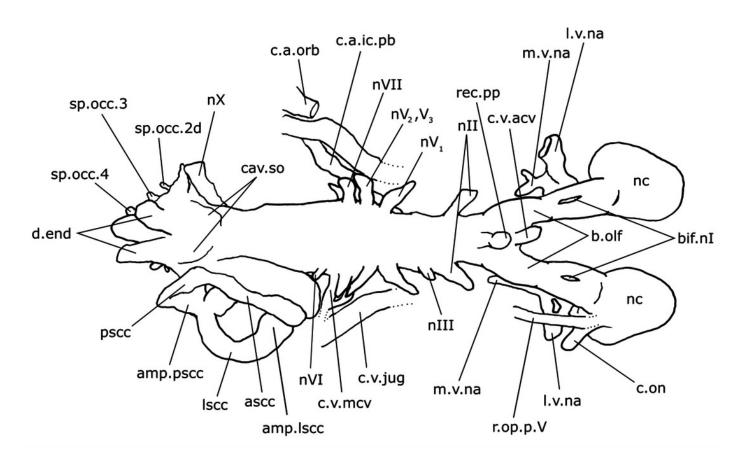

Digital 3D endocast of *Chirodipterus australis* specimen NHMUK PV P56035. Scale bar = 10 mm. Top: Right lateral aspect of the digital endocast. Bottom: Interpretive drawing with characters discussed in the text labelled. Abbreviations: amp.ascc, ampulla of the anterior semicircular canal; amp.lscc, ampulla of the lateral semicircular canal; amp.pscc, ampulla of the posterior semicircular canal; ascc, anterior semicircular canal; b.olf, olfactory bulb; c.a.opth, canal for the opthalmic artery; c.a.ic, canal for the internal carotid artery; c.bv, canal for a small blood vessel; c.on, orbitonasal canal; c.v.acb, canal for the anterior cerebral vein; c.v.jug, canal for the jugular vein; c.a.occ, canal for the occipital artery; c.v.pit, canal for the pituitary vein; d.end, endolymphatic duct; lscc, lateral semicircular canal; m.v.na, canal for the median branch of the nasal vein; nl, canal for the olfactory nerve; nll, canal for the optric nerve II; nIII, canal for the occulomotor nerve III; nIV, canal for the trochlear nerve IV; nV_1 , canal for the opthalmicus profundus nerve V_1 ; nV_2 , V_3 , canal for the maxillaris nerve V_2 and the mandibularis nerve V₃; nVII, canal for the facial nerve VII; nIX, canal for the glossopharyngeal nerve IX; nX, canal for the vagus nerve X; nc, nasal capsule; nt, notochord; pscc, posterior semicircular canal; rec. hyp, recess for the hypophyseal recess; rec.pp, recess for the pineal-parapineal recess; rec.sacc.lag, recess for the sacculolagenar pouch; rec.utr, utricular recess; sc, spinal cord; sp.occ.4, canal for spino-occipital nerve 4.



Ventral aspect of the endocast of Chirodipterus australis specimen NHM PV P56035.

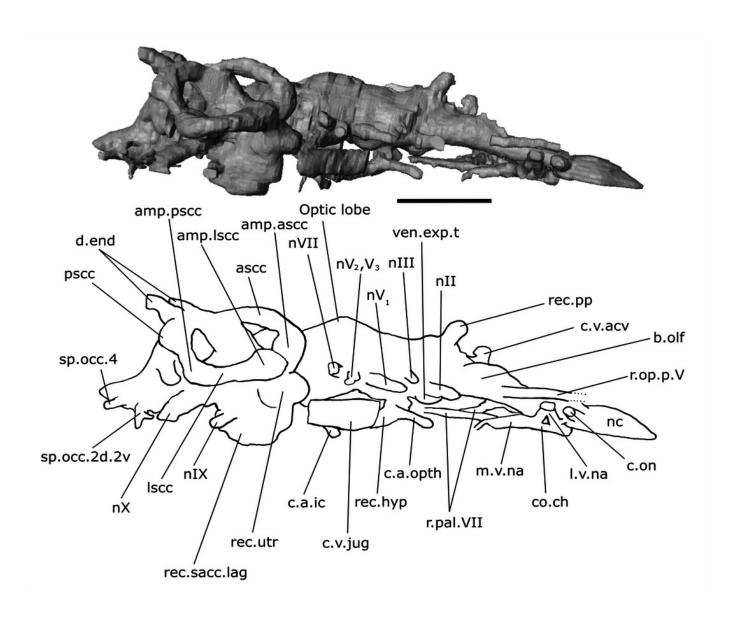
Digital 3D endocast of *Chirodipterus australis* specimen NHMUK PV P56035. Scale bar = 10 mm. Top: Ventral aspect of the digital endocast. Bottom: Interpretive drawing with characters discussed in the text labelled. Abbreviations: amp.lscc, ampulla of the lateral semicircular canal; amp.pscc, ampulla of the posterior semicircular canal; b.olf, olfactory bulb; c.a.opth, canal for the opthalmic artery; c.a.ic.pb, canal for blood vessel which branches into the internal carotid artery and the pseudobranchial artery; c.on, orbitonasal canal; c.v.acb, canal for the anterior cerebral vein; c.v.mcv, canal for the middle cerebral vein; c.v.jug, canal for the jugular vein; c.a.occ, canal for the occipital artery; c.v.pit, canal for the pituitary vein; I.v.na, canal for the lateral branch of the nasal vein; Iscc, lateral semicircular canal; m.v.na, canal for the median branch of the nasal vein; nl, canal for the olfactory nerve; nll, canal for the optric nerve II; nV_1 , canal for the opthalmicus profundus nerve V_1 ; nV_2 , V_3 , canal for the maxillaris nerve V₂ and the mandibularis nerve V₃; nVII, canal for the facial nerve VII; nIX, canal for the glossopharyngeal nerve IX; nX, canal for the vagus nerve X; nc, nasal capsule; nt, notochord; rec. hyp, recess for the hypophyseal recess; rec.sacc.lag, recess for the sacculolagenar pouch; sp.occ.1, canal for spino-occipital nerve 1; ven.exp.t, ventral expansion of the telencephalon.



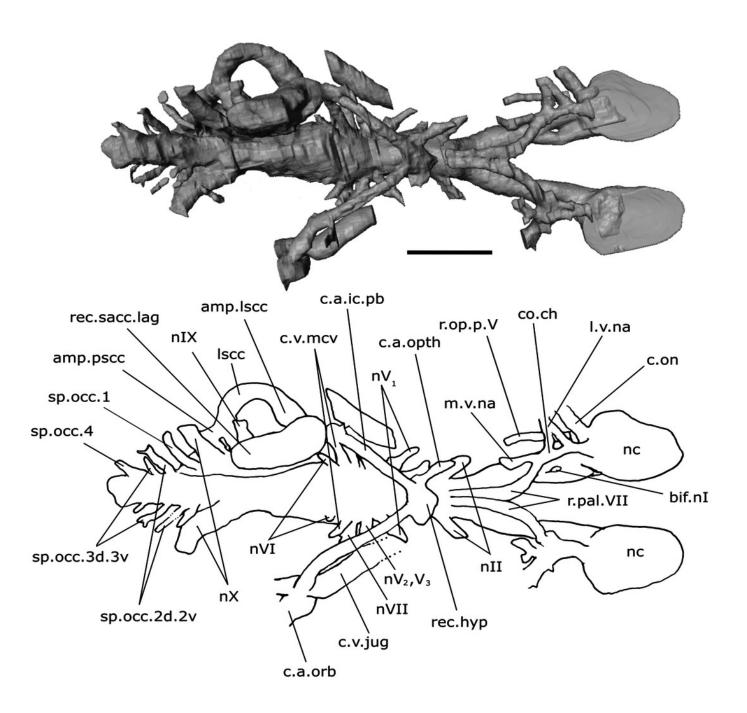


Dorsal aspect of the endocast of Chirodipterus australis specimen NHM PV P56038.

Digital 3D endocast of *Chirodipterus australis* specimen NHMUK PV P56038. Scale bar = 10 mm. Top: Dorsal aspect of the digital endocast. Bottom: Interpretive drawing with characters discussed in the text labelled. Abbreviations: amp.lscc, ampulla of the lateral semicircular canal; amp.pscc, ampulla of the posterior semicircular canal; ascc, anterior semicircular canal; b.olf, olfactory bulb; bif.nl, bifurcation in the canal for the olfactory nerve I; c.a.ic.pb, canal for blood vessel with branches into the internal carotid artery and the pseudobranchial artery; c.a.orb, canal for the orbital artery; c.on, orbitonasal canal; c.v.acb, canal for the anterior cerebral vein; c.v.jug, canal for the jugular vein; c.v.mcv, canal for the middle cerebral vein; cav.so, supraotic cavity; d.end, endolymphatic duct; l.v.na, canal for the lateral branch of the nasal vein; Iscc, lateral semicircular canal; m.v.na, canal for the median branch of the nasal vein; nII, canal for the optric nerve II; nIV, canal for the trochlear nerve IV; nV₁, canal for the opthalmicus profundus nerve V_1 ; nV_2 , V_3 , canal for the maxillaris nerve V_2 and the mandibularis nerve V₃; nVI, canal for the abducens nerve VI; nVII, canal for the facial nerve VII; nX, canal for the vagus nerve X; nc, nasal capsule; pscc, posterior semicircular canal; r.op.p.V, canal for ramus opthalmicus profundus nV; rec.pp, recess for the pinealparapineal recess; sp.occ.2d, canal for the dorsal division of spino-occipital nerve 2; sp.occ.3-4, canals for spino-occipital nerves 3-4.

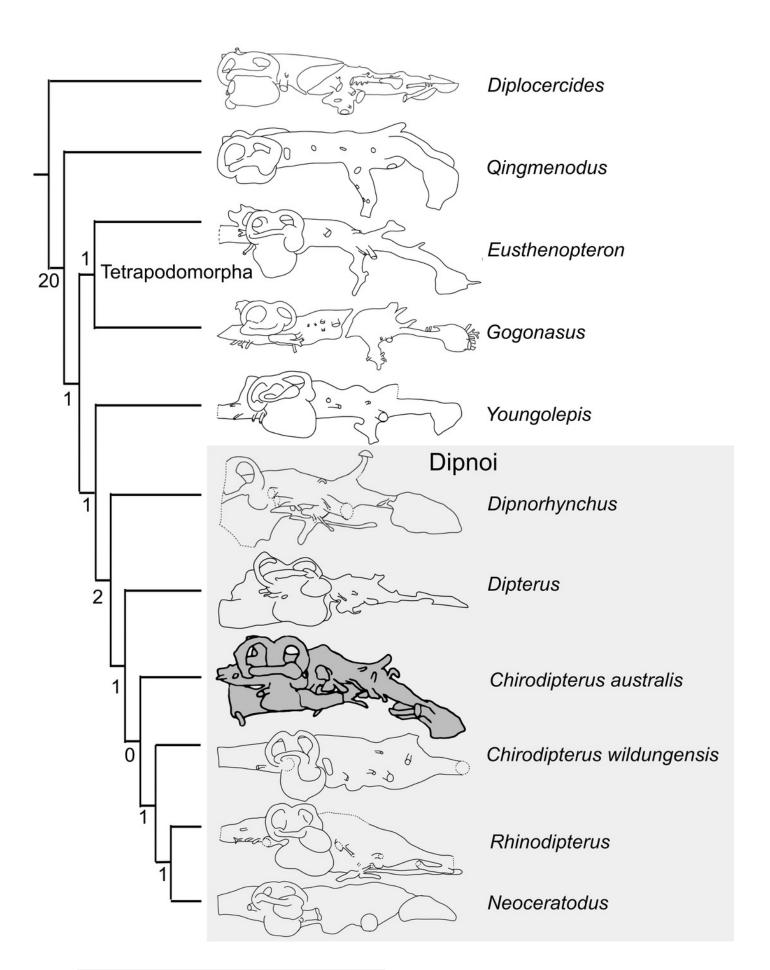


Right lateral aspect of the endocast of *Chirodipterus australis* specimen NHM PV P56038.


Digital 3D endocast of *Chirodipterus australis* specimen NHMUK PV P56038. Scale bar = 10 mm. Top: Right lateral aspect of the digital endocast. Bottom: Interpretive drawing with characters discussed in the text labelled. Abbreviations: amp.ascc, ampulla of the anterior semicircular canal; amp.lscc, ampulla of the lateral semicircular canal; amp.pscc, ampulla of the posterior semicircular canal; ascc, anterior semicircular canal; b.olf, olfactory bulb; c.a.opth, canal for the opthalmic artery; c.a.ic, canal for the internal carotid artery; c.on, orbitonasal canal; c.v.acb, canal for the anterior cerebral vein; c.v.jug, canal for the jugular vein; co.ch, common chamber to palatine artery, orbitonasal canal, canal for the ramus palatinus nVII and the canal for the medial nasal vein; d.end, endolymphatic duct; lscc, lateral semicircular canal; m.v.na, canal for the median branch of the nasal vein; nll, canal for the optric nerve II; nIV, canal for the trochlear nerve IV; nV₁, canal for the opthalmicus profundus nerve V_1 ; nV_2 , V_3 , canal for the maxillaris nerve V_2 and the mandibularis nerve V_3 ; nVII, canal for the facial nerve VII; nIX, canal for the glossopharyngeal nerve IX; nX, canal for the vagus nerve X; nc, nasal capsule; pscc, posterior semicircular canal; r.op.p.V, canal for ramus opthalmicus profundus nV; r.pal.VII, canal for the ramus palatinus nVII; rec. hyp, recess for the hypophyseal recess; rec.pp, recess for the pineal-parapineal recess; rec.sacc.lag, recess for the sacculolagenar pouch; rec.utr, utricular recess; sp.occ.2d.2v, canal for spino-occipital nerve 2, splitting into dorsal and ventral divisions; sp.occ.4, canal for spino-occipital nerve 4; ven.exp.t, ventral expansion of the telencephalon.

Ventral aspect of the endocast of Chirodipterus australis specimen NHM PV P56038.

Digital 3D endocast of *Chirodipterus australis* specimen NHMUK PV P56038. Scale bar = 10 mm. Top: Ventral aspect of the digital endocast. Bottom: Interpretive drawing with characters discussed in the text labelled. Abbreviations: amp.lscc, ampulla of the lateral semicircular canal; bif.nl, bifurcation in the canal for the olfactory nerve I; c.a.ic.pb, canal for blood vessel which branches into the internal carotid artery and the pseudobranchial artery; c.a.opth, canal for the opthalmic artery; c.a.orb, canal for the orbital artery; c.on, orbitonasal canal; c.v.mcv, canal for the middle cerebral vein; c.v.jug, canal for the jugular vein; co.ch, common chamber to palatine artery, orbitonasal canal, canal for the ramus palatinus nVII and the canal for the medial nasal vein; l.v.na, canal for the lateral branch of the nasal vein; lscc, lateral semicircular canal; m.v.na, canal for the median branch of the nasal vein; nll, canal for the optric nerve II; nV_1 , canal for the opthalmicus profundus nerve V_1 ; nV_2 , V_3 , canal for the maxillaris nerve V₂ and the mandibularis nerve V₃; nVI, canal for the abducens nerve VI; nVII, canal for the facial nerve VII; nIX, canal for the glossopharyngeal nerve IX; nX, canal for the vagus nerve X; nc, nasal capsule; r.op.p.V, canal for ramus opthalmicus profundus nV; r.pal.VII, canal for the ramus palatinus nVII; rec. hyp, recess for the hypophyseal recess; rec.sacc.lag, recess for the sacculolagenar pouch; sp.occ.1, canal for spino-occipital nerve 1; sp.occ.2d.2v, canal for spino-occipital nerve 2, splitting into dorsal and ventral divisions; sp.occ.3d.3v, canal for spino-occipital nerve 3, splitting into dorsal and ventral divisions; sp.occ.4, canal for spino-occipital nerve 4; ven.exp.t, ventral expansion of the telencephalon.



Cladogram of Devonian sarcopterygians.

Cladogram of Devonian sarcopterygians derived from cranial endocast chraracters of

Clement *et al.* (2016) using implicit enumeration.

Table 1(on next page)

Measurements of the brain volumes of *Chirodipterus australis*.

Table 1 Measurements of the brain of *Chirodipterus australis* specimens NHMUK PV P56035 and NHMUK PV P56038. V.Tel.Olf, volume of the telencephalon and olfactory nerve canals; V.Di, volume of the diencephalon; V.Mes, volume of the mesencephalon; V.Rho, volume of the rhombencephalon; V.Lab, volume of the endosseous labyrinth; V.ven.exp.t, volume of the ventral expansion of the telencephalon; V.b.olf, volume of the olfactory bulbs.

	Total length (mm)	Breadth (mm)	V.Tel.Olf (mm³)	V.Di (mm³)	V.Mes (mm³)	V.Rho (mm³)	V.Lab (mm³)	V.ven.exp.t (mm³)	V.b.olf (mm³)
NHMUK PV P56035	41.06	13.96	240	193	539	552	386	14.10	37.95
NHMUK PV P56038	55.22	15.12	406	263	883	780	578	19.13	64.07

Table 1 Measurements of the brain of Chirodipterus australis specimens NHMUK PV P56035

- 5 and NHMUK PV P56038. V.Tel.Olf, volume of the telencephalon and olfactory nerve canals;
- 6 V.Di, volume of the diencephalon; V.Mes, volume of the mesencephalon; V.Rho, volume of the
- 7 rhombencephalon; V.Lab, volume of the endosseous labyrinth; V.ven.exp.t, volume of the
- 8 ventral expansion of the telencephalon; V.b.olf, volume of the olfactory bulbs.

Table 2(on next page)

Measurements of the brain of Chirodipterus australis.

Table 2 Measurements of the brain of *Chirodipterus australis* specimens NHMUK PV P56035 and NHMUK PV P56038. "R" and "L" indicate right and left side of the endocast, respectively. ∠nl.nl, angle between the olfactory nerve canals; ∠nl.Tel, downward angle of olfactory nerve canals from telencephalon; na.Tel, distance from the nasal capsule to the telencephalon; na.b.olf, distance from the nasal capsule to the bottom of the olfactory bulbs; D.nl, diameter of the olfactory nerve canals; nll.wid, width of the optic nerve II; nll.dep, depth of the optic nerve II; d.end, width of the endolymphatic ducts.

	z nl.nl (°)	z nl.Tel (°)	na.Tel (mm)	na.b,olf (mm)	D.nl (mm)	nII.wid (mm)	nII.dep (mm)	d.end.wid (mm)	d.end.dep (mm)
NHMUK	73	R: 46,	R: 13.18,	R:	R: 2.51,	1.52	2.15	R: 1.70,	R: 2.27,
PV		L: 30	L: 12.50	7.30,	L: 2.44			L: 2.03	L: 2.42
P56035				L: 7.01					
NHMUK	51	R: 29,	R: 15.14,	R:	R:2.85,	1.87	1.99	R: 2.83,	R: 3.98,
PV		L: 16	L: 15.49	9.90,	L: 2.52			L: 2.72	L: 3.34
P56038				L: 9.55					

- 1 **Table 2** Measurements of the brain of *Chirodipterus australis* specimens NHMUK PV P56035
- 2 and NHMUK PV P56038. "R" and "L" indicate right and left side of the endocast, respectively.
- 3 ∠nI.nI, angle between the olfactory nerve canals; ∠nI.Tel, downward angle of olfactory nerve
- 4 canals from telencephalon; na.Tel, distance from the nasal capsule to the telencephalon; na.b.olf,
- 5 distance from the nasal capsule to the bottom of the olfactory bulbs; D.nI, diameter of the
- 6 olfactory nerve canals; nII.wid, width of the optic nerve II; nII.dep, depth of the optic nerve II;
- 7 d.end, width of the endolymphatic ducts; d.end, depth of the endolymphatic ducts.

Table 3(on next page)

Measurements of the semicircular canals of Chirodipterus australis.

Table 3 Measurements of the semicircular canals of *Chirodipterus australis* specimens NHMUK PV P56035 and NHMUK PV P56038. Larc.(Assc/Pscc/Lscc), length of arc of anterior/posterior/lateral semi-circular canal; Int.C.(Assc/Pscc/Lscc), internal circumference of anterior/posterior/lateral semi-circular canal; Mj.Ax.(Assc/Pscc/Lscc), major axis of anterior/posterior/lateral semi-circular canal fenestra; Mn.Ax.(Assc/Pscc/Lscc), minor axis of anterior/posterior/lateral semi-circular canal fenestra.

^{*}Measured structure was dorso-ventrally compressed.

^{**}Dorso-ventral compression may have altered the position of the anterior ampulla and posterior ampulla.

	Anterio	or semi-	circular	canal	Post	erior se	mi-circ	cular	Lateral semi-circular				
						car	nal		canal				
	Larc.Ascc (mm ²)	Int.C.Ascc (mm ²)	Mj.Ax.Ascc (mm²)	Mn.Ax.Ascc (mm²)	Larc.Pscc (mm²)	Int.C.Pscc (mm ²)	Mj.Ax.Pscc (mm ²)	Mn.Ax.Pscc (mm ²)	Larc.Lscc (mm ²)	Int.C.Lscc (mm ²)	Mj.Ax.Lscc (mm²)	Mn.Ax.Lscc (mm ²)	
NHMUK PV													
P56035 right	10.06	15.60	4.86	4.35	13.10	17.42	5.05	4.44	11.70	18.86	5.82	4.57	
NHMUK PV													
P56035 left	11.03	16.83	5.05	4.40	13.60	18.08	4.71	4.67	10.06	18.44	5.67	4.63	
NHMUK PV P56038 right	10.27*	15.86*	384*	4.29*	11.89	13.42*	4.30*	3.18*	14.85	21.15	6.01	4.25**	

- 1 Table 3 Measurements of the semicircular canals of *Chirodipterus australis* specimens NHMUK
- 2 PV P56035 and NHMUK PV P56038. Larc.(Assc/Pscc/Lscc), length of arc of
- 3 anterior/posterior/lateral semi-circular canal; Int.C.(Assc/Pscc/Lscc), internal circumference of
- 4 anterior/posterior/lateral semi-circular canal; Mj.Ax.(Assc/Pscc/Lscc), major axis of
- 5 anterior/posterior/lateral semi-circular canal fenestra; Mn.Ax.(Assc/Pscc/Lscc), minor axis of
- 6 anterior/posterior/lateral semi-circular canal fenestra.
- 7 * Measured structure was dorso-ventrally compressed.
- 8 ** Dorso-ventral compression may have altered the position of the anterior ampulla and

9 posterior ampulla.

Table 4(on next page)

Measurements of the inner ear of Chirodipterus australis.

Table 4 Measurements of the endosseous labyrinths of *Chirodipterus australis* specimens NHMUK PV P56035 and NHMUK PV P56038. The contrast in the left labyrinth was too low to confidently determine divisions between the ampullae, utriculus and sacculus. ∠AsccPscc/Ascc.Lscc/Pscc.Lscc, angle between anterior and posterior/anterior and lateral/posterior and lateral semi-circular canals; SA.(Ascc/Pscc/Lscc).Amp., surface area of anterior/ posterior/lateral semi-circular canal ampullae; SA.UR, surface area of utricular recess; SA.SL, surface area of sacculolagenar; SA.UR/SA.SL, ratio of surface of utricular recess to surface area of sacculolagenar; V.(Ascc/Pscc/Lscc).Amp, volume of anterior/posterior/lateral semi-circular canal ampullae; V.UR, volume of the utricular recess; V.SL, volume of the sacculolagenar; V.UR/V.SL, ratio of volume of utricular recess to volume of sacculolagenar.

*Measured structure was dorso-ventrally compressed.

	z Ascc.Pscc (°)	z Ascc.Lscc (°)	∠ Pscc.Lscc (°)	SA.Ascc.Amp. (mm ²)	SA.Pscc.Amp. (mm ²)	SA.Lscc.Amp. (mm ²)	SA.UR (mm²)	SA.SL (mm ²)	SA.UR/SA.SL	V.Ascc.Amp. (mm ³)	V.Pscc.Amp. (mm ³)	V.Lscc.Amp. (mm ³)	V.UR (mm³)	V.SL (mm ³)	V.UR/V.SL
NHMU K PV P56035 right	108	121	106	50.76	55.27	56.13	49.53	370.36	0.13	11.16	13.46	10.10	36.96	143.05	0.26
NHMU K PV P56035 left	101	118	99	47.83	59.62	63.05	66.45	338.12	0.20	-	-	-	-	-	-
NHMU K PV P56038 right	135	119	127	65.28	39.47*	84.21	130.23	-	-	18.04	14.12	13.10	88.84	-	-

- 2 **Table 4** Measurements of the endosseous labyrinths of *Chirodipterus australis* specimens
- 3 NHMUK PV P56035 and NHMUK PV P56038. The contrast in the left labyrinth was too low to
- 4 confidently determine divisions between the ampullae, utriculus and sacculus.
- 5 ∠AsccPscc/Ascc.Lscc/Pscc.Lscc, angle between anterior and posterior/anterior and
- 6 lateral/posterior and lateral semi-circular canals; SA.(Ascc/Pscc/Lscc).Amp., surface area of
- 7 anterior/ posterior/lateral semi-circular canal ampullae; SA.UR, surface area of utricular recess;
- 8 SA.SL, surface area of sacculolagenar; SA.UR/SA.SL, ratio of surface of utricular recess to
- 9 surface area of sacculolagenar; V.(Ascc/Pscc/Lscc).Amp, volume of anterior/posterior/lateral

PeerJ

- semi-circular canal ampullae; V.UR, volume of the utricular recess; V.SL, volume of the
- sacculolagenar; V.UR/V.SL, ratio of volume of utricular recess to volume of sacculolagenar.
- * Measured structure was dorso-ventrally compressed.