

Effects of environmental hypoxia and hypercarbia on ventilation and gas exchange in Testudines

Pedro HT Baú $^{1,\,2}$, Augusto S Abe 3 , Wilfried Klein $^{\text{Corresp. 1}}$

Corresponding Author: Wilfried Klein Email address: wklein@usp.br

Ventilatory parameters have been investigated in several species of Testudines, but few species have its ventilatory pattern fully characterized by presenting all variables necessary to understand changes in breathing pattern seen under varying environmental conditions. Since only the totality of ventilatory variables allows understanding a species ventilatory behavior, we measured ventilation and gas exchange in *Chelonoidis* carbonarius and Trachemys scripta under normoxia, hypoxia, and hypercarbia. During normoxia both species showed an episodic breathing pattern with 2-3 breaths per episode but the non-ventilatory periods (T_{NVP}) being 3-4 times longer in T. scripta than in C. carbonarius. Hypoxia and hypercarbia significantly increased ventilation in both species, decreased significantly T_{NVP} and oxygen consumption in T. scripta but not in C. carbonarius. Contrary to expectations, breathing pattern in C. carbonarius did show considerable nonventilatory periods with more than one breath per episode and breathing pattern in T. scripta was found to diverge significantly from predictions based on mechanical analyses of the respiratory system. Analyzing the data available in the literature, the relative changes of ventilatory parameters in chelonians dealing with hypoxia or hypercarbia were similar, mainly showing variations in the magnitude of change.

Departmento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil

² Programa de Pós-graduação em Biologia Comparada, Universidade de São Paulo, Ribeirão Preto, SP, Brazil

³ Instituto de Biociências, Universidade Estadual Paulista, Rio Claro, SP, Brazil

Manuscript to be reviewed

- 1 Effects of environmental hypoxia and hypercarbia on ventilation and gas exchange
- 2 in Testudines

3

4 Pedro H. T. Baú^a, Augusto S. Abe^{b, c}, Wilfried Klein^{c, d,*}

5

- 6 ^aMaster Program in Comparative Biology, University of São Paulo, Brazil.
- ^bState University of São Paulo, Rio Claro, Brazil.
- 8 ^cNational Institute of Science and Technology in Comparative Physiology, Brazil.
- 9 ^dSchool of Philosophy, Sciences and Literature Ribeirão Preto, University of São
- 10 Paulo, Brazil.

11

*Corresponding author: wklein@usp.br

13

- 14 <u>Corresponding author address:</u> Wilfried Klein, Departamento de Biologia, Faculdade de
- 15 Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo. Av.
- Bandeirantes 3900, Bairro Monte Alegre, CEP: 14040-901 Ribeirão Preto, SP, Brazil.
- 17 Email: wklein@usp.br; Tel.: +551633150452; FAX: +551633154886

18

19

- 20 Keywords: Reptilia; breathing pattern; normoxia; breathing mechanics; oxygen
- 21 consumption;

22

23	Δ	hei	tra	cí

24	Ventilatory paremeters have been investigated in several species of Testudines, but few
25	species have its ventilatory pattern fully characterized by presenting all variables
26	necessary to understand changes in breathing pattern seen under varying environmental
27	conditions. Since only the totality of ventilatory variables allows understanding a
28	species ventilatory behavior, we measured ventilation and gas exchange in <i>Chelonoidis</i>
29	carbonarius and Trachemys scripta under normoxia, hypoxia, and hypercarbia. During
30	normoxia both species showed an episodic breathing pattern with 2-3 breaths per
31	episode but the non-ventilatory periods (T_{NVP}) being 3-4 times longer in T . scripta than
32	in C. connarius. Hyporia and hypercarbia significantly increased ventilation in both
33	species, decreased significantly T_{NVP} and oxyge pnsumption in T . $scripta$ but not in
34	C. carbonarius. Contrary to expectations, breathing pattern in C. carbonarius did show
35	considerable non-ventilatory periods with more than one breath per episode and
36	breathing pattern in T. scripta was found to diverge significantly from predictions based
3 <mark>7</mark>)	on mechanical analyses of the respiratory system. Analyzing the data available in the
38	literature, the relative changes of ventilatory parameters in chelonians dealing with
39)	hypoxia or hypercarbia were similar, mainly showing variations in the magnitude of
10	change.
11	

Introduction

43	Gas exchange and chilation have been studied in several species of turties, tortoises
44	and terrapins. Especially the semi-aquatic Trachemys scripta and Claremys picta have
45	been used multiple times for respiratory studies (see Table S1). Whereas oxygen
46	consumption has been determined in many chelonian species (see Ultsch, 2013, for
47	review), data on ventilatory parameters such as overall breathing frequency (f _R), tidal
48	volume (V_T) , and minute ventilation $(\dot{V_E})$ are available only for a small number of
49	species when compared to the taxons diversity, even more so when the ventilatory
50	responses during hypoxic or hypercarbic exposures are taken into account (Table S1).
51	While the number of studies listed seems extensive, only few studies have actually
52	characterized the ventilatory pattern by giving data such as inspiratory time (T _{INSP}),
53	expiratory time (T_{EXP}), total duration of a ventilatory cycle ($T_{TOT} = T_{EXP} + T_{INSP}$), time
54	of the non-ventilatory period (T_{NVP}) , number of ventilations per episode (f_{Repi}) , number
55	of breathing episodes (f_E), as \bigcap as f_R , V_T , and \dot{V}_E (Benchetrit & Dejours, 1980;
56	Cordeiro, Abe & Klein, 2016), but most of these data have been obtained for <i>Chrysemys</i>
57	picta (e.g. Milsom & Jones, 1986; Milsom & Chan, 1986; Funk Milsom, 1987;
58	Wasser & Jackson, 1988). Only the totality of these variables may fully characterize the
59	ventilatory behavior of a species under varying environmental conditions, especially in
60	ectothermic vertebrates where ventilation can show highly episodic burst breathing or
61	regular singlet breathing (for review see Shelton, Jones & Milsom, 1986).
62	The terrestrial species among the Testudines belonging to the family Testudinidae are
63	also very poorly characterized regarding their ventilatory response to hypoxia or
64	hypercarbia and only data on f_R , V_T , \dot{V}_E and oxygen consumption $(\dot{V}O_2)$ are available
65	(Altland & Parker, 1955; Benchetrit, Armand & Dejours, 1977; Benchetrit & Dejours,
66	1980; Burggren, Glass & Johansen, 1977; Glass, Burggren & Johansen, 1978; Ultsch &

0/	Anderson, 1988). Burggren, Glass & Johansen (1977) and Glass, Burggren & Johansen
68	(1978) showed that under normoxic conditions the semi-aquatic <i>Pelomedusa subrufa</i>
69	ventilates in episodes of continuous breathing interspaced with longer breath-holds,
70	whereas the terrestrial Testudo pardalis employs single breaths separated by short
71	breath-holds. These different patterns have been interpreted as adaptations to the aquatic
72	life-style observed in P. subrufa, where the episodic breathing reduces the amount of
73	time spent at the water surface, reducing the risk of predation, as well as reducing the
74	cost of ascending to the surface (Randall et al. 1981). A regular singlet breathing
75	behavior has also been shown by Burggren (1975) for the tortoise <i>Testudo graeca</i> and
76	Benchetrit, Armand & Dejours (1977) for Testudo horsfieldi, whereas Altland & Parker
77	(1955) found a more episodic breathing pattern in Terrapene carolina carolina under
78	normoxia that changes to a more regular singlet breathing pattern under hypoxic
79	conditions.
80	Depending on the gas concentration, hypoxia as well as hypercarbia stimulate breathing
81	in turtles, with moderate concentrations of hypercarbia generally increasing ventilation
82	more than very low oxygen concentrations (Shelton, Jones & Milsom, 1986). It has
83	been shown, that the normal response to either of the changes in external gas
84	concentrations reduces T_{NVP} , but may or may not increase f_R or V_T chelton, Jones &
85	Milsom, 1986). In a recent study, Cordeiro, Abe & Klein (2016) have demonstrated that
86	two closely related pleurodirans exhibit different responses to hypoxia and hypercarbia.
87	While both species reduce significantly T_{NVP} and increase f_{R} during hypoxic and
88	hypercarbic exposures, $Podocnemis\ unifilis\ significantly\ increases\ f_{Repi}\ during$
89	hypercarbia but significantly decreases f_{Repi} during hypoxia, whereas $Phrynops$
90	$geoffroanus$ significantly decreases f_{Repi} during hypoxia but does not change this
91	variable during hypercarbia.

Given these variations in the breathing pattern during normoxia, hypoxia and 93 hypercarbia among testudines and considering the very few ventilatory data available for terrestrial species, it was aim of this study to analyze the ventilatory response to 94 different gas mixtures in two cryptodirans, the South American red-footed tortoise 95 Chelonoidis carbonarius (Testudinidae) and the red-eared slider Teschemys scripta 96 (Emvdidae). C. carbonarius was chosen because it is a wide-spread South American 97 tortoise that not had its respiratory physiology investigated previously, whereas T. 98 scripta, the model species for cardiorespiratory studies, was investigated since no 99 previous study reported all ventilatory variables obtained from the same animals and 100 experimental protocols, both under hypoxic and hypercarbic conditions. Furthermore, 101 the present data were compiled together with available data from the literature to 102 103 characterize the general response of testudines to hypoxia and hypercarbia. 104 105 Materials and methods 106 Animals Adults of both sexes of T. scripta $(M_B = 1.077 \pm 0.10 \text{ kg}; N = 8)$ and C. carbonarius 107

108

109

110

111

112

113

114

115

116

 $(M_B = 3.773 \pm 0.61 \text{ kg}; N = 6)$ living under natural conditions were obtained from the Jacarezário, Univeridade Estadual Paulista "Júlio de Mesquita Filho", Rio Claro, SP, Brazil, transported to the laboratory at the University of São Paulo in Ribeirão Preto, SP, and maintained for at least 3 months before experimentation to acclimate to laboratory conditions. Experiments were performed between November 2014 and February 2015 following approval by the Instituto Chico Mendes de Conservação da Biodiversidade (SISBIO; license number 35221-1) and Comissão de Ética no Uso de

Animals were maintained under a 12h light/dark photoperiod cycle, in a temperatur

Animais (CEUA USP/Campus de Ribeirão Preto; protocol number 12.1.1541.53.0).

Manuscript to be regiewed controlled room at 25 ± 2 °C and received a mixed diet supplemented with amino acid,

11/	controlled room at 25 ± 2 °C and received a mixed diet supplemented with anniho acid,
118	vitarim and minerals (Aminomix Pet, Vetnil [®] , Louveira, Brazil) three times a week. T.
119	scripta were housed in a box with a water reservoir for diving whereas C. carbonarius
120	were housed in boxes whose bottom was covered with wooden chips.
121	
122	Setup
123	Animals were submitted to open respirometry following Glass et al. (1978b), Wang and
124	Warburton (1995) and Silva et al. (2011) to measure ventilation and gas exchange.
125	Individuals of <i>T. scripta</i> were placed in an aquarium with a single access to an inverted
126	funnel and each individual only needed to extend its neck and protrude its nostrils into
127	the chamber for air breathing. C. carbonarius were placed in a plastic box and a mask
128	was fitted to the head of each animal for respirometry and a collar was fixed to the neck
129	to prevent head retraction. The exit of the funnel and the frontal tip of the mask were
130	equipped with a pneumotach (Fleisch tube) which was connected to a spirometer
131	(FE141 ADInstrumens). The gas inside the funnel or mask were sampled, dried and
132	pulled to a gas analyzer (ML206ADInstruments). Data were recorded and analyzed
133	using PowerLab 8/35 and LabChart 7.0 (ADInstruments).
134	Both the funnel and the mask were calibrated by injections of known volumes and
135	concentrations of gas. Air was used for the spirometer calibration and different volumes
136	of O ₂ and CO ₂ were used to calibrate the gas exchange measurements.
137	
138	Experimental protocols
139	Experimental temperature and photoperiod were the same as during maintenance and all
140	animals were fasted for three to seven days before experimentation to avoit the
141	confounding effects of digestion on metabolism. The animals were weighted one day

Manuscript to be reviewed before the beginning of each experimental treatment. Before any measurements, animals

142	before the beginning of each experimental treatment. Before any measurements, animals
143	were placed into the experimental setup or equipped with a man at least 12 h before
144	initiation of experiments. Experimentation started around 8:00 am and ventilation and
145	gas exchange were measured under normoxic conditions, followed by progressively
146	decreasing hypoxic (9, 7, 5, 3% O ₂) or progressively increasing hypercarbic (1.5, 3.0,
147	4.5, 6.0% CO ₂) exposures. The exposure times of each gas mixture as well as normoxic
148	condition were 2 h.
149	
150	Data analysis
151	The last hour of each exposure was used to extract the following data: both hing
152	frequency (f_R), breathing frequency during breathing episodes (f_{Repi}), number of
153	breathing episodes (f _E), tidal volume (V _T), duration of expiration (T _{EXP}), duration of
154	inspiration (T_{INSP}), total duration of one ventilatory cycle ($T_{TOT} = T_{EXP} + T_{INSP}$),
155	duration of non-ventilatory period (T_{NVP} ; defined as the time between the end of an
156	inspiration and the beginning of the following expiration) and oxygen consumption
157	VO_2). From these data the relative duration of expiration (T_{EXP}/T_{TOT}), the relation
158	between inspiration and expiration (T_{INSP}/T_{EXP}), the expiratory flow rate (V_T/T_{EXP}),
159	instantaneous breathing frequency (f'), minute ventilation (\dot{V}_E), oxygen consumption (
160	$(\dot{V}O_2)$ and air convection requirement $(\dot{V}_E/\dot{V}O_2)$ were calculated.
161	Data were analyzed using GraphPad Prism 6.0 applying Repeated Measures ANOVA
162	followed by a Tukey's multiple comparison test. A t-test was used to compare both
163	species normoxic values. Values of P<0.05 were considered significant.
164	To compare the results of the present study with previously published data, we extracted
165	values of respiratory variables from the literature measured at temperatures between 20
166	and 30°C of testudines exposed either to environmental hypoxia or hypercarbia (Altland

Manuscript to be reviewed

167	& Parker, 1955; Boyer, 1963; Boyer, 1966; Jackson & Schmidt-Nielsen, 1966; Frankel
168	et al., 1969; Jackson, Palmer & Meadow, 1974; Benchetrit, Armand & Dejours, 1977;
169	Burggren, Glass & Johansen, 1977; Glass, Burggren & Johansen, 1978; Jackson, Kraus
170	& Prange, 1979; Benchetrit & Dejours, 1980; Milsom & Jones, 1980; Hitzig & Nattie,
171	1982; Glass, Boutilier & Heisler, 1983; Silver & Jackson, 1985; Milsom & Chan, 1986;
172	Vitalis & Milsom, 1986b; Funk & Milsom, 1987; Ultsch & Anderson, 1988; West,
173	Smits & Burggren, 1989; Herman & Smatresk, 1999; Hicks & Wang, 1999; Frische,
174	Fago & Altimiras, 2000; Johnson & Craighton, 2005; Cordeiro, Abe & Klein, 2016; Lee
175	& Milsom, 2016), but not to anoxia or hypoxic-hypercarbia. Values were directly
176	obtained from the text or tables given, or by extracting values from published figures
177	using the free software PlotDigitizer (ver in 2.6.2). To better compare the data among
178	species, data have been expressed as relative changes to normoxic values. Due to the
179	very low number of chelonian species with a complete set of respiratory variables
180	available and the varying experimental protocols applying different temperatures, levels
181	of hypoxia or hypercarbia, no phylogenetically informed multivariate analysis has been
182	carried out.
183	
184	Results and Discussion
185	Ventilation and oxygen consumption in C. carbonarius and T. scripta
186	During normoxia T. scripta and C. carbonarius both showed an episodic breathing
187	pattern with 2-3 ventilatory cycles during a breathing episode and interspersed by non-
188	ventilatory periods (Fig. 1, 2). The T_{NVP} was, on average, 3-4 times larger in T . scripta
189	than in C. carbonarius. A significant difference between both species' normoxic values
190	was found for T_{INSP} , T_{NVP} , f_R . f_E , V_T , \dot{V}_E and \dot{VO}_2 . Hypoxia significantly increased
191	T_{INSP} , V_T , f_R , f_E , \dot{V}_E , and $\dot{V}_E/\dot{V}O_2$ in C . carbonarius and f_E , V_T and \dot{V}_E and $\dot{V}_E/\dot{V}O_2$ in T .

192	<i>scripta</i> , whereas f_{Repi} , T_{NVP} and \dot{VO}_2 were significantly reduced in <i>T. scripta</i> (Figs. 2-4).
193	While f' did show a reduction in C carbonarius at 3% O_2 compared to normoxia, only
194	the f' values at 9 and 7% O ₂ , respectively, where significantly different from the value
195	found at 3% O ₂ (Fig. 3). Once the hypoxic exposure ended, all variables returned to pre-
196	hypoxic values within one hour, with the exception of f_R in C . carbonarius, which was
197	significantly greater when compared to the pre-hypoxic value. Exposure to CO ₂ resulted
198	in significant increases of T_{INSP} , T_{TOT} , V_T , f_R , \dot{V}_E , and $\dot{V}_E/\dot{V}O_2$ and significant decreases
199	of f' and T_{NVP} in C. carbonarius, whereas in T. scripta \dot{V}_E and $\dot{V}_E/\dot{V}O_2$ increased
200	significantly and \dot{VO}_2 decreased significantly (Fig. 2-4). One hour after the withdrawal
201	of CO ₂ , all variables had returned to pre-hypercarbic values. The relationships between
202	T_{EXP} T_{INSP} and T_{TOT} were negligible in ignificantly affected by either hypoxia nor hypercarbia,
203	just as V_T/T_{EXP} , but the expiratory flow rate did show a tendency to increase in both
204	species with increasing levels of hypoxia and hypercarbia (Fig. 5).
205	Breathing pattern of both species followed the general reptilian behavior of intermittent
206	lung ventilation. Burggren (1975) and Glass, Burggren & Johansen (1978) observed
207	intermittent ventilation in Testudo graeca and T. pardalis, respectively, but in both
208	species breathing pattern consisted of just one ventilatory cycle interspersed by short
209	and regular non-ventilatory periods. In the present study, both, <i>T. scripta</i> and,
210	unexpectedly, C. carbonarius, showed more than one ventilatory cycle per breathing
211	episode, but the mean duration of the non-ventilatory periods was lower in C .
212	carbonarius when compared to T. scripta. Vitalis & Milsom (1986a) consider episodic
213	breathing an adaptive mechanism that decreases the energetic cost of ventilation in
214	ectotherms, and Randall et al. (1981) consider such a breathing behavior advantageous
215	for aquatic species, since it reduces the energetic cost to surface and also reduces the
216	exposure time at the surface, possibly lessening risks of predation. Since episodic

217	breathing with long non-ventilatory periods leads to a significant change in arterial
218	blood gases, decreasing PaO2 and pH and increasing PaCO2 (Glass, Burggren &
219	Johansen, 1978), as well as decreasing the efficiency of pulmonary CO ₂ excretion
220	(Malte, Malte & Wang, 2013), it should be more advantageous for a terrestrial species
221	to ventilate regularly and thereby maintain homeostasis of arterial blood gases. It is
222	therefore interesting to ask why the terrestrial C. carbonarius employs episodic
223	breathing under normoxic conditions, thereby possibly increasing variation in arterial
224	blood gases instead of maintaining a regular breathing pattern, such as seen in this
225	species only under severe levels of hypoxia or hypercarbia (Fig. 1). C. carbonarius does
226	frequently seek shelter in shallow burrows or other small spaces and remains non-
227	ventilatory for long periods (A. S. Abe, personal observation), possibly explaining the
228	episcip breathing seen in this terrestrial species, but currently a physiological
229	explication for this behavior is lacking. Interestingly, other ectothermic terrestrial
230	species such as varanid (Thompson & With rs, 1997) and agamid lizards (Frappel &
231	Daniels, 1991) also breathe intermittently, however, concomitant blood gas analyses
232	have not been performed in these species to verify accompanying variations in blood
233	gases or pH.
234	comparing our data with previous studies on the effect of hypoxia or hypercarbia on
235	ventilation and gas exchange in <i>Trachemys scripta</i> , Frankel et al. (1969) found values
236	for T _{TOT} about three times the during normoxia, hypoxia and hypercarbia when
237	compared to our study, however, animals in their study had their tracheas cannulated
238	which may have influenced the length of the ventilatory cycle, since T_{TOT} values
239	reported by Vitalis & Milsom (1986b) (calculated from their f': 1.7 s during normoxia
240	and $4\%~O_2$ and $1.8~s$ during $3\text{-}5\%~CO_2$) are similar to ours. Reyes & Milsom (2009)
241	report similar values for f_E as in the present study (from 8.4 ± 1.6 in normoxia during

242	winter up to 37.1 ± 2.3 episodes.ii iii summer, out round considerable variation iii i _{Rep}
243	through different seasons, ranging from 3.6 ± 0.4 breaths.episode ⁻¹ in normoxia during
244	winter up to 26.1 ± 5.4 breaths.episode ⁻¹ in hypoxic-hypercarbia during autumn, thereby
245	demonstrating considerable seasonal variation in breathing pattern in <i>T. scripta</i> . Lee &
246	Milsom (2016) report nearly identical values as in the present study for f_{Repi} and f_{E}
247	during normoxia and hypoxia, and Frankel et al. (1969) report a comparable f_{Repi} during
248	normoxia. Johnson & Creighton (2005), on the other hand, report greater values of f_{Repi}
249	during both normoxia and hypercarbia, and Frankel et al. (1969) found f _{Repi} at 10-12%
250	CO_2 to be 5.6 ± 1.0 at 28°C.
251	More data are available regarding V_T , f_R , \dot{V}_E , $\dot{V}O_2$, and $\dot{V}_E/\dot{V}O_2$ during both, hypoxic
252	and hypercarbic exposures. In general, data obtained in the present study for normoxia
253	are similar to the ones obtained by other authors, such as \dot{VO}_2 , which at 25°C varies
254	from 0.82 (Hicks & Wang, 1999; this study) to 1.1 mlO ₂ .kg ⁻¹ .min ⁻¹ (24°C; Jackson &
255	Schmidt-Nielsen, 1966), whereas the values given by Vitalis & Milsom (1986b) for $V_{\rm T}$
256	and \dot{V}_E are the lowest ones reported for <i>T. scripta</i> exposed to hypoxia or hypercarbia.
257	The overall changes observed in the ventilatory responses of <i>T. scripta</i> to hypoxia and
258	hypercarbia are also comparable between the present study and data from the literature.
259	Only $\dot{V}_E/\dot{V}O_2$ in the present study, both during hypoxia and hypercarbia, was greater
260	when compared to data from the literature. This difference was caused by a much lower
261	\dot{VO}_2 during hypoxic and hypercarbic exposures when compared to data from other
262	authors, since \dot{V}_E was very similar to data obtained by others at similar temperatures
263	(Jackson, Palmer & Meadow, 1974; Lee & Milsom, 2016). The oxygen consumption
264	measured by us during hypercarbia was similar to the one obtained by Jackson, Palmer
265	& Meadow (1974) at 10°C, a 15°C difference, that may represent a variation in

266	chemosensivity seen in this species during different seasons (Reyes & Milsom, 2009),
267	as we found similarly low \dot{VO}_2 values during hypoxic exposures. Interestingly, our
268	normoxic \dot{VO}_2 values were well within the range for <i>T. scripta</i> at 25°C reported in the
269	literature (Hicks & Wang, 1999; Jackson & Schmidt-Nielsen, 1966), a significant drop
270	in oxygen consumption during hypoxia has also been described before (Jackson &
271	Schmidt-Nielsen, 1966; Jackson, 1973; Lee & Milsom, 2016), whereas other studies did
272	not find a pronounced fall in metabolism ing hypercarbia (Hicks & Ing., 1999;
273	Jackson, Palmer & Meadow, 1974 One motive for the observed variations could lie in
274	the significant seasonal variations in metabolism, gas exchange, and, consequently,
275	ventilation found in <i>T. scripta</i> (Reyes & Milsom, 2009), variations that possibly were
276	not eliminated by maintaining the animals at a constant temperature of 25°C. Another
277	reason for this discrepancy could be the species physiological phenotypic plasticity,
278	since animals used in the previous studies were native to the North American continent
279	and thereby subject to a more temperate climate than the animals used in the present
280	study that have been bred under the subtropical climate of southeastern Brazil.
281	The values for minute ventilation in <i>T. scripta</i> at 8% CO ₂ found by Hitzig & Nattie
282	(1982) seem somewhat low, when compared to the values found by Johnson &
283	Creighton (2005) at the same CO ₂ concentration at a different temperature (20 versus
284	27-28°C, respectively) but are somewhat similar to the values found by Jackson, Palmer
285	& Meadow (1974) at 20°C and 6% CO ₂ (135.0 versus 215 ml.kg ⁻¹ .mis ⁻¹ , respectively).
286	The general response of T. scripta to reducing oxygen concentrations can be described
287	by a moderate, when compared to the response during hypercarbia, increase in minute
288	ventilation, mainly caused by increasing V_{T} , and a reduction in oxygen consumption,
289	thereby increasing the air convection requirement. These changes are generally more
290	pronounced below 5% O ₂ . The response to hypercarbia also includes an increase in

291	ventilation due to an increase in V _T and f _R , In T. scripta neither hypoxia nor hypercarbia
292	caused significant changes in T_{INSP} , T_{EXP} , T_{TOT} , f', and f_{Repi} , whereas f_E and T_{NVP} ,
293	increased and decreased, respectively.
294	In respect to C . carbonarius during hypoxic or hypercarbic exposures, only data on V_T ,
295	f_R , \dot{V}_E , and $\dot{V}O_2$ are available for other terrestrial Testudines belonging to the Emydidae
296	and Testudinidae. Despite comparing different species, the ventilatory variables are
297	similar among the terrestrial species studied, with the exception of the normoxic \dot{VO}_2
298	value given by Altland & Parker (1955) for Terrapene carolina carolina, possibly
299	indicating that animals in their study may not have been resting quietly during
300	normoxia. However, their \dot{VO}_2 value reported for 3-5% O_2 is identical to the values
301	from other studies at similar oxygen concentrations. V_T in C . carbonarius is on the
302	lower end of data available for terrestrial Testudines, which may have been influenced
303	by the relative large amount of bone tissue present in adult individuals of this species
304	(A. S. Abe, personal observation). Breathing frequency and \dot{V}_E , on the other hand, were
305	very similar to the data obtained on other terrestrial Emydidae and Testudinidae
306	(Altland & Parker, 1955; Benchetrit, Armand & Dejours, 1977; Burggren, Glass &
307	Johansen, 1977; Glass, Burggren & Johansen, 1978; Benchetrit & Dejours, 1980).
308	Ultsch & Anderson (1988), studying Gopherus polyphemus Terrapene carolina,
309	found values of oxygen consumption very similar to the ones observed in C .
310	carbonarius during both normoxia and hypoxia. Interestingly, G. polyphemus spends a
311	significant amount of time in burrows that may show hypoxia as well as hypercarbia,
312	and whose critical oxygen level (percentage of O_2 where $\dot{V}O_2$ starts decreasing) can be
313	found at approximately 1.5% O_2 , whereas the exclusively terrestrial T . carolina shows a
314	somewhat larger critical oxygen tension of 3.5% O ₂ (Ultsch and Anderson, 1988). Since

C. carbonarius did not show any significant changes in VO_2 during hypoxia down to 3% 315 O₂, the critical oxygen level of this species seems to be similar to the one seen in the 316 former two species, but \dot{VO}_2 was consistently lower at any oxygen concentration when 317 compared to G. polyphemus and T. carolina and e.g. at 3% O₂ (0.08 mlO₂.kg⁻¹.min⁻¹) 318 was similar to the lowest $\dot{V}O_2$ given for G. polyphemus (0.05 mlO₂.kg⁻¹.min⁻¹) and T. 319 carolina (0.08 mlO₂.kg⁻¹.min⁻¹) at less than 1% O₂ (Ultsch & Anderson, 1988). C. 320 321 carbonarius is not known to use burrows and therefore may not show a critical oxygen level as low as G. polyphemus, but Chelonoidis chilensis has be perfected to use 322 shallow burrows for retreat during cold days (Pritchard, 1979) and therefore other 323 species of the Testudinidae may possess a similarly low oxygen level as the testudinidid 324 G. polyphemus. 325 326 Relative changes in respiratory variables 327 Analyzing the respiratory variables available in the literature for chelonians exposed to 328 hypoxia and hypercarbia (Figs. 6-10), one notices the discrepancy in data availability 329 between commonly studied parameters such as V_T , f_R , \dot{V}_E , and $\dot{V}O_2$, and less frequently 330 reported ones such as T_{EXP}, T_{TOT}, or f_E, for example. Furthermore, only very few 331 332 terrestrial species have been studied, when compared to the wealth of data available for 333 T. scripta and C. picta. However, based on the data analyzed, it seems clear that the breathing pattern of terrestrial chelonians does not significantly differ from aquatic or 334 335 semi-aquatic species when considering the responses to hypoxia and hypercarbia. With few exceptions, both hypoxia and hypercarbia elicit similar respiratory responses, 336 showing variation mainly in the magnitude of the species' responses. 337 Both hypoxia and hypercarbia increase ventilation. This increase is achieved by 338 increasing the number of breathing episodes, caused by decreasing the non-ventilatory 339

340	period (Fig. 6). T _{NVP} at 3% O ₂ , for example, consistently represents about 20% of the
341	T_{NVP} seen during normoxia in all species investigated, whereas $6\%~CO_2$ roughly reduces
342	T_{NVP} by 50%. Interestingly, hypercarbia about doubles f_{E} , with the exception of P .
343	$geoffroanus$, and slightly increases f_{Repi} (exceptions P . $geoffroanus$ and C . $carbonarius$),
344	whereas hypoxia causes a greater increase in f_{E} , but slightly decreases f_{Repi} (exception
345	C. carbonarius). These different patterns may suggest varying regulatory mechanisms
346	of breathing pattern during hypoxia and hypercarbia and between species. Previous
347	experimental manipulations transforming episodic breathing into continuous single
348	ventilations in <i>T. scripta</i> were vagotomy (Vitalis & Milsom, 1986b) and dissection of
349	the spinal cord (Johnson & Creighton, 2005). Recently, Johnson, Krisp & Bartman
350	(2015) changed odic breathing in <i>T. scripta</i> from episodic to singlet breathing
351	through drug administration that manipulated serotonin 5-HT ₃ receptors. Studying the
352	participation of serotonin in central chemoreception under hypoxia and hypercarbia in
353	different species might elucidate the different responses seen in chelonian breathing
354	pattern to hypoxia and hypercarbia, contributing to the understanding of varying
355	chemosensivity in the taxon.
356	Neither hypoxia nor hypercarbia drastically altered T _{INSP} , T _{EXP} , T _{TOT} , and f' (Fig. 7), as
357	well as T_{EXT}/T_{TOT} and T_{INSP}/T_{EXP} (Fig. 8). P. geoffroanus and C. carbonarius seem,
358	however, be more sensitive regarding these variables, the former species mainly during
359	hypercarbia, but the latter one increasing all variables with increasing levels of hypoxia
360	and hypercarbia. The absolute and relative decrease in instantaneous breathing
361	frequency seen in C. carbonarius implies that breathing mechanics may be more
362	variable than previously anticipated for Testudines, since Vitalis & Milsom (1986b)
363	found f' to be unaffected by either hypoxia or hypercarbia in T. scripta and suggested
364	(Vitalis & Milsom, 1986a, b) that <i>T. scripta</i> breathes at combinations of volume and

365	frequency to keep the mechanical work of breathing at a minimum. In the present study,
366	f' in C. carbonarius as well as in T. scripta did show larger variations than reported for
367	T. scripta in earlier studies (Frankel et al. 1969; Vitalis & Milsom, 1986b). Vitalis &
368	Milsom (1986a) found, based on mechanical analyses of the respiratory system of T.
369	scripta, that the mechanical work of breathing is minimal between ventilation
370	frequencies of 35 to 45 cycles, min ⁻¹ for different levels of minute pump ventilation
371	(100, 200, 300 ml,min ⁻¹), meaning that for a minute pump ventilation of 200 ml,min ⁻¹ ,
372	animals would ventilate at a frequency of 40 breaths. min ⁻¹ and a tidal volume of 5 ml to
373	ventilate the respiratory system with the lowest mechanical work. In the present study,
374	however, <i>T. scripta</i> reached the greatest level of minute ventilation (215.9 ml.min ⁻¹ .kg ⁻¹
375	at 6% CO ₂ , using a tidal volume of 57.2 ml.kg ⁻¹ and an instantaneous breathing
376	frequency of 18.3 breaths.min ⁻¹ ($f_R = 3.0 \text{ breaths.min}^{-1}$), values much different from
377	mechanical predictions. The significance of this variation in breathing pattern versus the
378	mechanical predictions of work of breathing needs to be investigated to better
379	understand the mechanical work of breathing of the Testudines respiratory system, since
380	mechanical work for a single breath increases markedly with increasing tidal volume
381	(Vitalis & Milsom, 1986b).
382	As a testudinid, C. carbonarius possesses a complete post-pulmonary septum (PPS; W.
383	Klein, personal observation), when compared to the smaller PPS of the emydid <i>T</i> .
384	scripta (Lambertz, Böhme & Perry, 2010). The presence or absence of a PPS may
385	significantly influence the mechanics of the respiratory system, as has been shown for
386	the post-hepatic septum of the lizard Salvator merianae, whose static breathing
387	mechanics is being significantly affected by the removal of their post-hepatic septum
388	(Klein, Abe & Perry, 2003).

303	Tear increases 2 to 3-rold under hypoxic and hypox
390	species studied, which was mainly caused by an about 2 to 3-fold increase in V_T at
391	severe levels of hypoxia and hypercarbia (Fig. 9). C. carbonarius, showing a 12-fold,
392	and P . geoffroanus, showing a 6-fold increase in V_T , are the only species showing much
393	larger increases in V_{T} . These relatively large increases can be explained by very low
394	values of V _T under normoxic conditions. <i>P. geoffroanus</i> (3.1ml.kg ⁻¹ ; Cordeiro, Abe &
395	Klein, 2016) and <i>C. carbonarius</i> (3.98 ml.kg ⁻¹ ; this study) show much smaller tidal
396	volumes during normoxia than other chelonians (mostly between 10 and 20ml.kg ⁻¹),
397	resulting in relatively larger increases in V_{T} during hypoxia and hypercarbia than the
398	other species.
399	Several species, on the other hand, increase f_R during hypercarbia about 6 to 7-fold, but
400	many species only double or triple f_R (Fig. 9). The only species that increase f_R more
401	than 3-fold during hypoxia where <i>C. picta</i> at 30°C (Glass, Boutilier & Heisler, 1983)
402	and P. geoffroanus at 25°C (Cordeiro, Abe & Klein, 2016). The product of V_T and f_R ,
403	minute ventilation, did show the greatest relative increases, with P. geoffroanus
404	increasing \dot{V}_E 42 times and <i>C. carbonarius</i> about 30 times, both at 6% CO ₂ . The
405	relative increase at 6% CO ₂ ranged from 4 to 12 times, whereas at 3% O ₂ the increase in
406	\dot{V}_E ranged between 3 and 6 or between 12 and 17 for <i>C. picta</i> , <i>C. carbonarius</i> and <i>P</i> .
407	geoffroanus. The relatively larger increases seen in P. geoffroanus and C. carbonarius
408	are again attributable to the low values seen in these variables under normoxic
409	conditions in both species.
410	With the exception of <i>P. geoffroanus</i> , both under hypoxia and hypercarbia, and of <i>P</i> .
411	unifilis under hypercarbia, \dot{VO}_2 decreased or remained unaltered during both exposures
412	(Fig. 10). The resulting air convection requirement, however, increased about 10 to 30-
413	fold in <i>T. scripta</i> (Jackson (1974) and Lee & Milsom (2016) versus this study,

Manuscript to be reviewed

414	respectively), in C. picta (3% O_2 ; Glass, Boutilier & Heisler, 1983), and in C.
415	carbonarius (4.5 and 6% CO ₂ ; this study) (Fig. 10). In the remaining species $\dot{V}_E/\dot{V}O_2$
416	increased about 3 to 12 times under both hypoxic and hypercarbic conditions. Such
417	increases in $\dot{V}_E/\dot{V}O_2$ have been linked both under hypoxia (e.g. Glass, Boutilier &
418	Heisler, 1983) and hypercarbia (e.g. Funk & Milsom, 1987) to regulation of arterial
419	PO ₂ , PCO ₂ , and pH, as all turtles investigated maintain control of these variables under
420	varying environmental conditions.
421	
422	Conclusion
423	This is the first study to present all the different variables necessary to fully characterize
424	the breathing pattern in the terrestrial C. carbonarius and the semi-aquatic T. scripta
425	during hypoxic and hypercarbic conditions. Contrary to most previous reports on
426	breathing pattern in terrestrial Testudines, C. carbonarius did show considerable non-
427	ventilatory periods with more than one breath per episode. While our data confirm
428	previous data on the general response of <i>T. scripta</i> to hypoxia and hypoxia,
429	breathing pattern has been found to diverge significantly from predictions based on
430	mechanical analyses of the respiratory system.
431	At the current point, some general trends regard ventilatory parameters of testudines
432	when exposed to hypoxia or hypercarbia can be recognized, but a multivariate analysis
433	of the taxons respiratory physiology will need a complete set of ventilatory parameters
434	from a much larger number of species. To date it is not possible to associate the
435	variations seen in the magnitude of different respiratory variables to phylogeny, habitat,
436	behavior, and/or lung structure, for example.
437	

References

438

- Altland PD, Parker M. 1955. Effects of hypoxia upon the Box Turtle. Am. J. Physiol.
- 440 180, 421-427.
- Benchetrit G, Armand J, Dejours P. 1977. Ventilatory chemoreflex drive in the tortoise,
- 442 *Testudo horsfieldi*. Resp. Physiol. 31, 183-191.
- Benchetrit G, Dejours P. 1980. Ventilatory CO₂ drive in the tortoise *Testudo horsfieldi*.
- 444 J. Exp. Biol. 87, 229-236.
- Boyer DR 1963. Hypoxia: Effects on heart rate and respiration in the snapping turtle.
- 446 Science 140, 813-814.
- Boyer DR. 1966. Comparative effects of hypoxia on respiratory and cardiac function in
- 448 reptiles. Physiol. Zool. 39, 307-316.
- Burggren WW. 1975. A quantitative analysis of ventilation tachycardia and its control
- in two chelonians, *Pseudemys scripta* and *Testudo graeca*. J. Exp. Biol. 63, 367-380.
- Burggren WW, Glass ML, Johansen K. 1977. Pulmonary ventilation: perfusion
- relationships in terrestrial and aquatic chelonian reptiles. Can. J. Zool. 55, 2024-2034.
- 453 Cordeiro TEF, Abe AS, Klein W. 2016. Ventilation and gas exchange in two turtles:
- 454 Podocnemis unifilis and Phrynops geoffroanus (Testudines: Pleurodira). Respir.
- 455 Physiol. Neurobiol. 224, 125-131.
- 456 Frankel HM, Spitzer A, Blaine J, Schoener EP. 1969. Respiratory response of turtles
- 457 (*Pseudemys scripta*) to changes in arterial blood gas composition. Comp. Biochem.
- 458 Physiol. 31, 535-546.
- 459 Frappell PB, Daniels CB. 1991. Ventilation and oxygen consumption in agamid lizards.
- 460 Physiol. Zool. 64, 985-1001.
- 461 Frische S, Fago A, Altimiras J. 2000. Respiratory responses to short term hypoxia in the
- snapping turtle, *Chelydra serpentina*. Comp. Biochem. Physiol. Part A. 126, 223-231.

- Funk GD, Milsom WK. 1987. Changes in ventilation and breathing pattern produced by
- changing body temperature and inspired CO₂ concentration in turtles. Respir. Physiol.
- 465 67, 37-51.
- 466 Glass ML, Burggren WW, Johansen K. 1978. Ventilation in an aquatic and a terrestrial
- 467 chelonian reptile. J. Exp. Biol. 72, 165-179.
- 468 Glass ML, Wood SC, Johansen K. 1978. The application of pneumotachography on
- small unrestrained animals. Comp. Biochem. Physiol. Part A. 59, 425-427.
- Glass ML, Boutilier RG, Heisler N. 1983. Ventilatory control of arterial PO₂ in the
- turtle *Chrysemys picta belli*: Effects of temperature and hypoxia. J. Comp. Physiol. 151,
- 472 145-153.
- Herman JK, Smatresk NJ. 1999. Cardiorespiratory response to progressive hypoxia and
- hypercapnia in the turtle *Trachemys scripta*. J. Exp. Biol. 202, 3205–3213.
- Hicks JW, Wang T. 1999. Hypoxic hypometabolism in the anesthetizes turtle,
- 476 Trachemys scripta. American Physiological Society. 277, R18-R23.
- 477 Hitzig BM, Nattie EE. 1982. Acid-base stress and central chemical control of
- ventilation in turtles. J. Appl. Physiol. 53, 1365-1370.
- Jackson DC. 1973. Ventilatory response to hypoxia in turtles at various temperatures.
- 480 Respir. Physiol. 18, 178-187.
- Jackson DC. 1985. Respiration and respiratory control in the green turtle, *Chelonia*
- 482 *mydas*. Copeia, 1985, 664-671.
- Jackson DC, Schmidt-Nielsen K. 1966. Heat production during diving in the fresh water
- 484 turtle, *Pseudemys scripta*. J. Cellular Physiol. 67, 225-231.
- Jackson DC, Palmer SE, Meadow WL. 1974. The effects of temperature and carbon
- dioxide breathing on ventilation and acid-base status of turtles. Respir. Physiol. 20, 131-
- 487 146.

Manuscript to be reviewed

- Jackson DC, Kraus DR, Prange HD. 1979. Ventilatory response to inspired CO₂ in the
- sea turtle: effects of body size and temperature. Resp. Physiol. 38, 71-81.
- Johnson SM, Creighton RJ, 2005. Spinal cord injury-induced changes in breathing are
- not due to supraspinal plasticity in turtles (*Pseudemys scripta*). Am. J. Physiol. Regul.
- 492 Integr. Comp. Physiol. 289, R1550–R1561.
- Johnson SM, Krisp AR, Bartman ME. 2015. Hypoxia switches episodic breathing to
- singlet breathing in red-eared slider turtles (*Trachemys scripta*) via a tropisetron-
- sensitive mechanism. Resp. Physiol. Neurobiol. 207, 48–57.
- Klein W, Abe AS, Perry SF. 2003. Static lung compliance and body pressures in
- 497 Tupinambis merianae with and without post-hepatic septum. Respir. Physiol.
- 498 Neurobiol. 135, 73-86.
- Lambertz M, Böhme W, Perry SF. 2010. The anatomy of the respiratory system in
- 500 Platysternon megacephalum Gray, 1831 (Testudines: Cryptodira) and related species,
- and its phylogenetic implications. Comp. Biochem. Physiol. A. 156, 330-336.
- Lee SY, Milsom WK. 2016. The metabolic cost of breathing in red-eared sliders: An
- attempt to resolve an old controversy. Respir. Physiol. Neurobiol. 224, 114–124.
- Malte CL, Malte H, Wang T. 2013. Episodic ventilation lowers the efficiency of
- pulmonary CO₂ excretion. J. Appl. Physiol. 115, 1506–1518.
- Milsom WK, Jones DR. 1979. Pulmonary receptor chemosensivity and the ventilatory
- response to inhaled CO_2 in the turtle. Respir. Physiol. 37, 101-107.
- Milsom WK, Jones DR. 1980. The role of vagal afferent information and hypercapnia
- in control of the breathing pattern in Chelonia. J. Exp. Biol. 87, 53-63.
- 510 Milsom WK, Chan P. 1986. The relantioship between lung volume, respiratory drive
- and breathing pattern in the turtle, *Chrysemys picta*. J. Exp. Biol. 120, 233-247.

- Price ER, Paladino FV, Strohl KP, Pilar Santidrián T, Klann K, Spotila JR. 2007.
- Respiration in neonate sea turtles. Comp. Biochem. Physiol. A 146, 422–428.
- Pritchard PCH. 1979. Encyclopedia of turtles. T.F.H. Publications, 895p.
- Randall D, Burggren WW, Farrell A,. Haswell MS. 1981. The evolution of air breathing
- in vertebrates. Cambridge University Press, 133p.
- Reves C, Milsom WK. 2009. Daily and seasonal rhythms in the respiratory sensitivity
- of red-eared sliders (*Trachemys scripta elegans*). J. Exp. Bio. 212, 3339-3348.
- 519 Shelton G, Jones DR, Milsom WK. 1986. Control of breathing in ectothermic
- vertebrates, in: Fishman, A.P., Chermiak, N.S., Widdicombe, J.G., Geiger, S.R. (Eds.)
- Handbook of Physiology, section 3, The respiratory system, volume II. Control of
- Breathing, Part 2. Am. Physiol. Soc. Bethesda, pp 857-909.
- 523 Silva GSF, Giusti H, Branco LGS, Glass ML. 2011. Combined ventilatory responses to
- aerial hypoxic and temperature in the South American lungfish *Lepidosiren paradoxa*.
- 525 J. Thermal Biol. 36, 521-526.
- 526 Silver RB, Jackson DC. 1985. Ventilatory and acid-base response to long-term
- 527 hypercapnia in the freshwater turtle, *Chrysemys picta bellii*. J. Exp. Biol. 144, 661-672.
- Thompson GG, Withers PC, 1997. Patterns of gas exchange and extended non-
- ventilatory periods in small goannas (Squamata: Varanidae). Comp. Biochem. Physiol.
- 530 118A, 1411-1417.
- 531 Ultsch GR, 2013. Metabolic scaling in turtles. Comp. Biochem. Physiol A. 164, 590–
- 532 597.
- 533 Ultsch GR, Anderson JF. 1988. Gas exchange during hypoxia and hypercarbia of
- terrestrial turtles: A comparison of a fossorial species (Gopherus polyphemus) with a
- sympatric nonfossorial species (*Terrapene carolina*). Physiol. Zool. 61, 142-152.

Manuscript to be reviewed

- Vitalis TZ, Milsom WK. 1986a. Pulmonary mechanics and the work of breathing in the
- semi aquatic turtle, *Pseudemys scripta*. J. Exp. Biol. 125, 137-155.
- Vitalis TZ, Milsom WK. 1986b. Mechanical analysis of spontaneous breathing in the
- semi-aquatic turtle, *Pseudemys scripta*. J. Exp. Biol. 125, 157-171.
- Wang T, Warburton SJ. 1995. Breathing pattern and cost of ventilation in the American
- alligator. Respir. Physiol. 102, 29-37.
- Wasser JS, Jackson DC. 1988. Acid-base balance and the control of respiration during
- anoxic-hypercapnic gas breathing in turtles. Respir. Physiol. 71, 213-226.
- West NH, Smits AW, Burggren WW. 1989. Factors terminating nonventilatory periods
- in the turtle, *Chelydra serpentina*. Respir. Physiol. 77, 337-350.

546	Figure captions
547	Fig 1. Example traces of ventilation in <i>Trachemys scripta</i> (a-e) and <i>Chelonoidis</i>
548	carbonarius (f-j) during normoxia (a, f), 9% O ₂ (b, g), 7% O ₂ (c, h), 5% O ₂ (d, i), and
549	$3\% O_2$ (e, j). Units are mV sitive values = Expiration and negative values =
550	inspiration) and scale bare represents 5 min.
551	
552	Fig 2. Breathing frequency during breathing episodes (f _{Repi}), number of breathing
553	episodes (f_E) , and duration of the non-ventilatory period (T_{NVP}) in <i>Trachemys scripta</i>
554	(triangle) and Chelonoidis carbonarius (circle) during primoxia, hypoxia and
555	hypercarbia (open symbols) and one hour after exposure to the different gas mixtures
556	(closed symbols). * (<i>T. scripta</i>) and + (<i>C. carbonarius</i>) indicate values significantly
557	different from normoxic values before exposure to the different gas mixtures.
558	
559	Fig. 3. Duration of inspiration (T_{INSP}), duration of expiration (T_{EXP}), total duration of
560	one ventilatory cycle (T_{TOT}) , and instantaneous breathing frequency (f') in $Trachemy$.
561	scripta (triangle) and Chelonoidis carbonarius (circle) during normoxia, hypoxia and
562	hypercarbia (open symbols) and one hour after exposure to the different gas mixtures
563	(closed symbols). * (T. scripta) and + (C. carbonarius) indicate values significantly
564	different from normoxic values before exposure to the different gas mixtures.
565	
566	Fig. 4. Tidal volume (V_T), breathing frequency (f_R), minute ventilation (\dot{V}_E), oxygen
567	consumption $(\dot{V}O_2)$, and air convection requirement $(\dot{V}_E/\dot{V}O_2)$ in Trachemys scripta
568	(triangle) and Chelonoidis carbonarius (circle) during normoxia, hypoxia and
569	hypercarbia (open symbols) and one hour after exposure to the different gas mixtures
570	(closed symbols). * (T. scripta) and + (C. carbonarius) indicate values significantly

588

593

- different from normoxic values before exposure to the different gas mixtures. # denotes
 a post-hypoxia normoxic value significantly different from the initial normoxia.
- Fig. 5. The relation between expiration and total duration of one ventilatory cycle

 (Texp/Ttot), the relation between inspiration and expiration (Tinsp/Texp), and the

 expiratory flow rate (Vt/Texp) in *Trachemys scripta* (triangle) and *Chelonoidis*carbonarius (circle) during normoxia, hypoxia and hypercarbia (open symbols) and one

 hour after exposure to the different gas mixtures (closed symbols).
- Fig. 6. Relative changes in breathing frequency during breathing episodes (f_{Repi}),

 number of breathing episodes (f_E), and duration of the non-ventilatory period (T_{NVP}) in

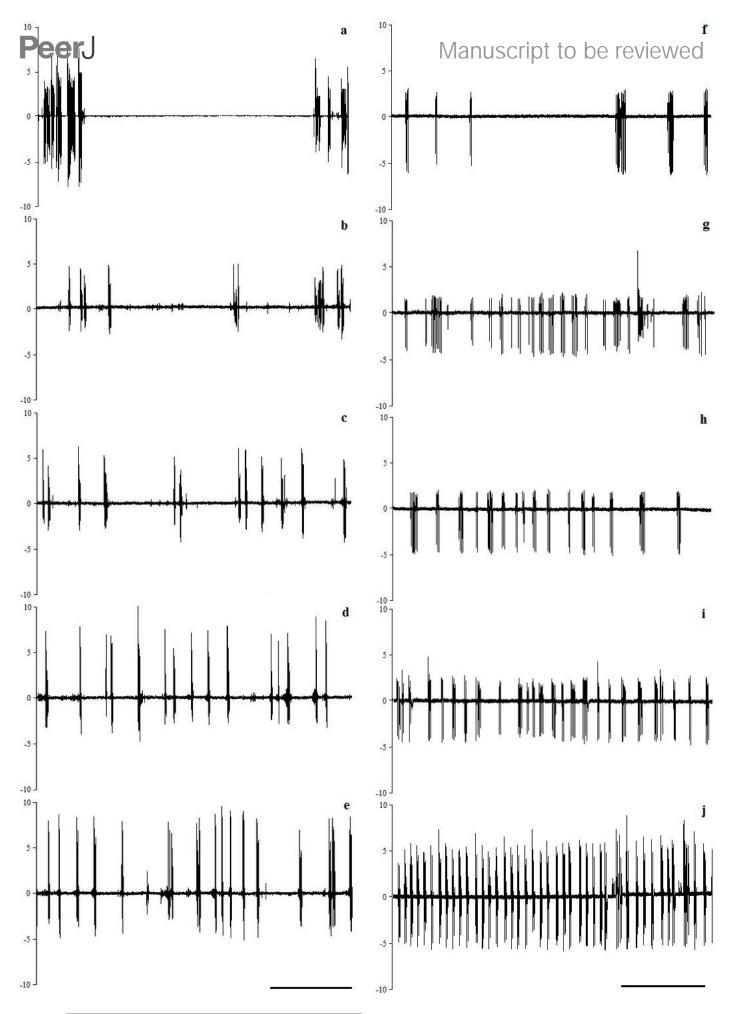
 Testudines under hypoxic and hypercarbic exposures.

 Chelonia mydas (\$\dagge\$ 25°C, Jackson, Kraus & Prange, 1979); Chelonoidis carbonarius
- (★ 25°C; this study); Chelydra serpentina (♦ 25°C, Boyer, 1966; ♦ 22-24°C, West,
 Smits & Burggren, 1989; ♣ 20°C, Frische, Fago & Altimiras, 2000); Chrysemys picta
 (♠ 20-23°C Milsom & Jones, 1980; ♠ 20°C, Glass, Boutilier & Heisler, 1983; ♠
 (30°C, Glass, Boutilier & Heisler, 1983; ♠ 20°C, Silver & Jackson, 1985; ⊗ 22-23°C,
- 1987); Gopherus polyphemus (< 22°C; Ultsch and Anderson, 1988); Pelomedusa
 subrufa (♠ 25°C, Burggren, Glass & Johansen, 1977; ♥ 25°C, Glass, Burggren &
 Johansen, 1978); ◆ Phrynops geoffroanus (25°C, Cordeiro, Abe & Klein, 2016); □

Milsom & Chan, 1986; ⊙ 20°C, Funk & Milsom, 1987; O (30°C, Funk & Milsom,

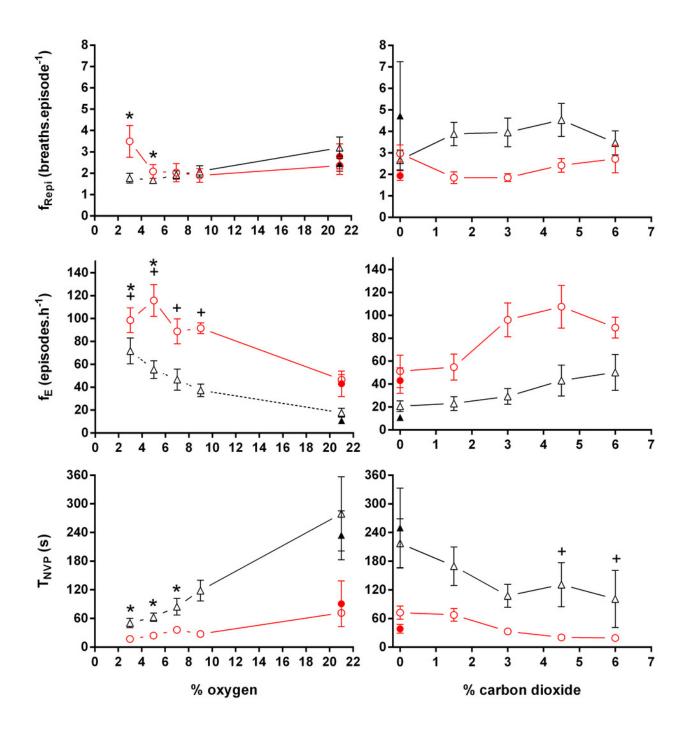
592 Podocnemis unifilis (25°C, Cordeiro, Abe & Klein, 2016); Terrapene carolina (* 20-

23°C, Altland and Parker, 1955; > 22°C, Ultsch and Anderson, 1988); Testudo

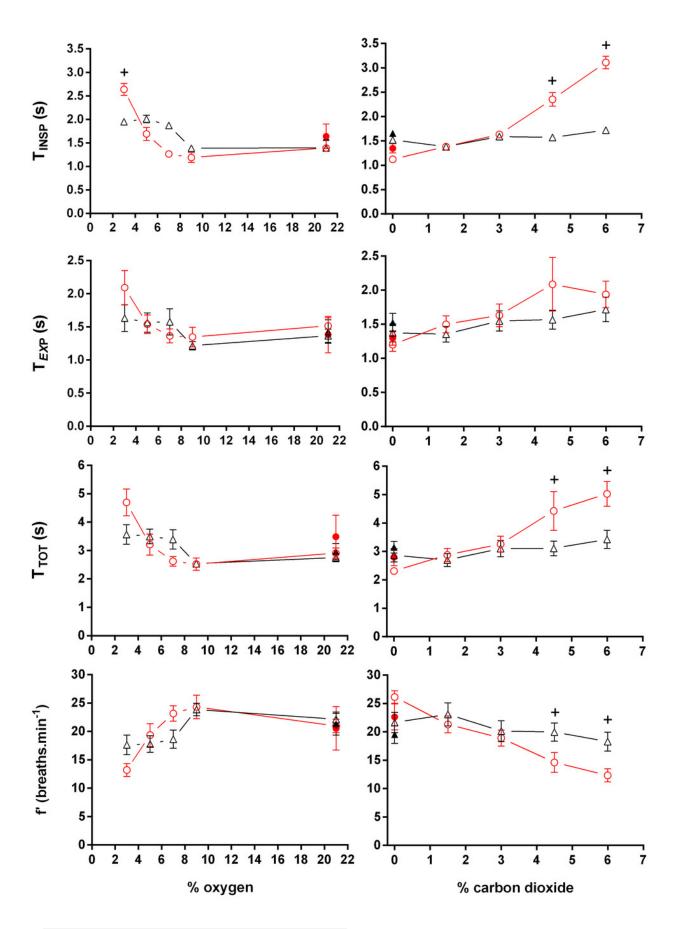

- *horsfieldi* († 25°C; Benchetrit, Armand & Dejours, 1977; ♀ 30°C; Benchetrit et al.,
- 595 1977; # 23-25°C; Benchetrit and Dejour, 1980); Testudo pardalis (× 25°C, Burggren,

Glass & Johansen, 1977; + 25°C, Glass, Burggren & Johansen, 1978); Trachemys scripta (▲ 24°C, Jackson & Schmidt-Nielsen, 1966; ∨ 28°C, Frankel et al., 1696; ∨ 597 20°C, Jackson, 1973; ✓ 30°C, Jackson, 1973; ✓ 20°C, Jackson, Palmer & Meadow, 598 1974; ▲ 30°C, Jackson, Palmer & Meadow, 1974; < 20°C, Hitzig & Nattie, 1982; ▼ 599 25°C, Hicks & Wang, 1999; < 27-28°C, Johnson & Creighton, 2005; ▲ 20-23.5°C, Lee 600 601 & Milsom, 2016; \triangle 25°C, this study). 602 603 Fig. 7. Relative changes in duration of inspiration (T_{INSP}), duration of expiration (T_{EXP}), 604 total duration of one ventilatory cycle (T_{TOT}), and instantaneous breathing frequency (f') in Testudines under hypoxic and hypercarbic exposures. For symbols see Figure 6. 605 606 Fig. 8. Relative changes in the relation between expiration and total duration of one 607 ventilatory cycle (T_{EXP}/T_{TOT}), the relation between inspiration and expiration 608 609 (T_{INSP}/T_{EXP}) , and the expiratory flow rate (V_T/T_{EXP}) in Testudines under hypoxic and 610 hypercarbic exposures. For symbols see Figure 6. 611 612 Fig. 9. Relative changes in tidal volume (V_T) , breathing frequency (f_R) , and minute ventilation (\dot{V}_F) in Testudines under hypoxic and hypercarbic exposures. For symbols 613 614 see Figure 6. 615 Fig. 10. Relative changes in oxygen consumption $(\dot{V}O_2)$, and air convection 616 requirement $(\dot{V}_{F}/\dot{V}O_{2})$ in Testudines under hypoxic and hypercarbic exposures. For 617 618 symbols see Figure 6.

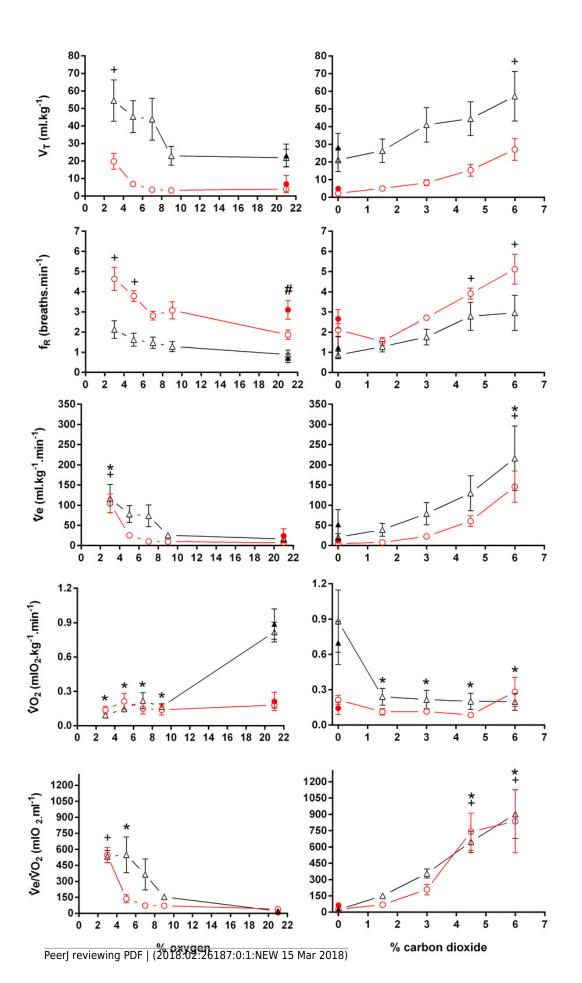
Figure 1(on next page)


Example traces of ventilation in *Trachemys scripta* and *Chelonoidis carbonarius*

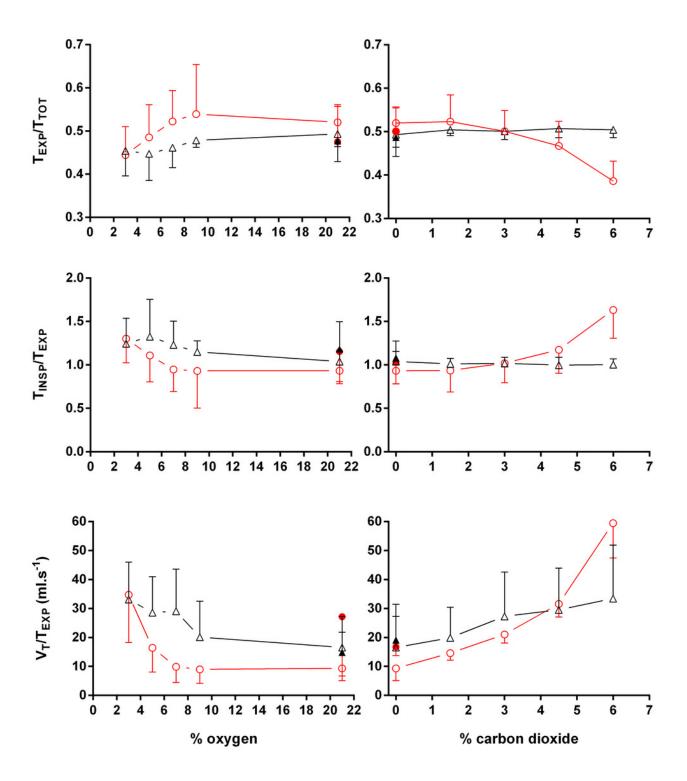
PeerJ reviewing PDF | (2018:02:26187:0:1:NEW 15 Mar 2018)

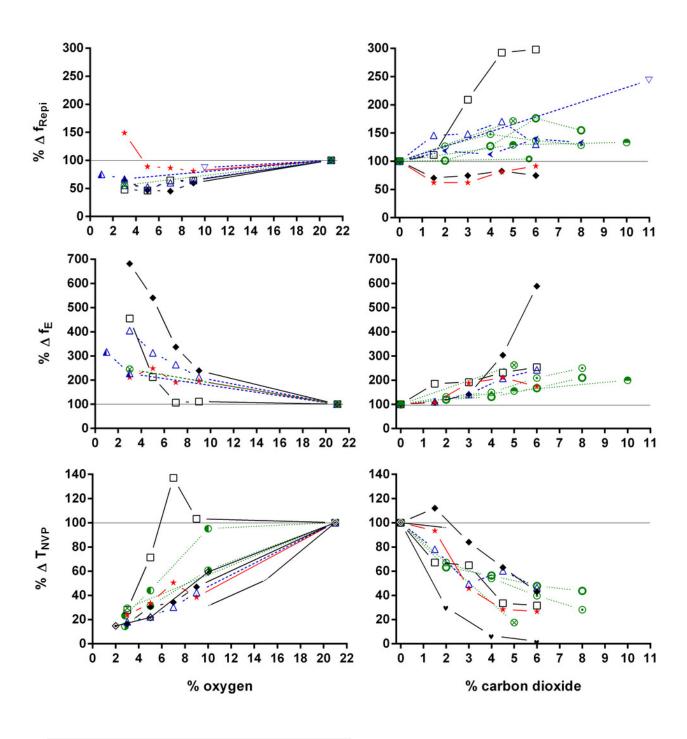

Breathing frequency during breathing episodes, number of breathing episodes, and duration of the non-ventilatory period in *Trachemys scripta* and *Chelonoidis carbonarius*

Duration of inspiration, duration of expiration, total duration of one ventilatory cycle, and instantaneous breathing frequency in *Trachemys scripta* and *Chelonoidis* carbonarius

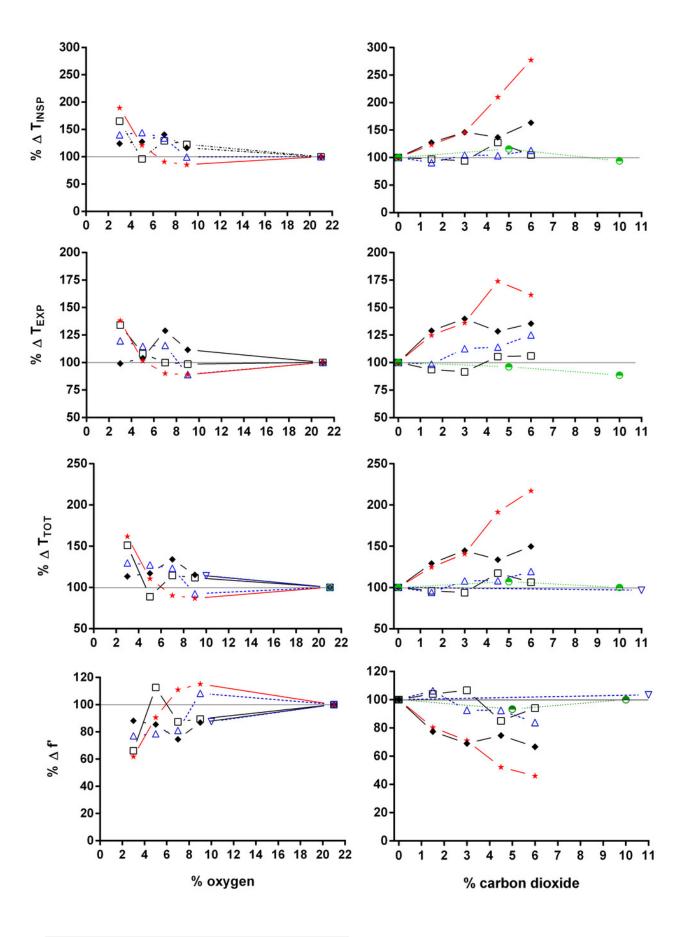


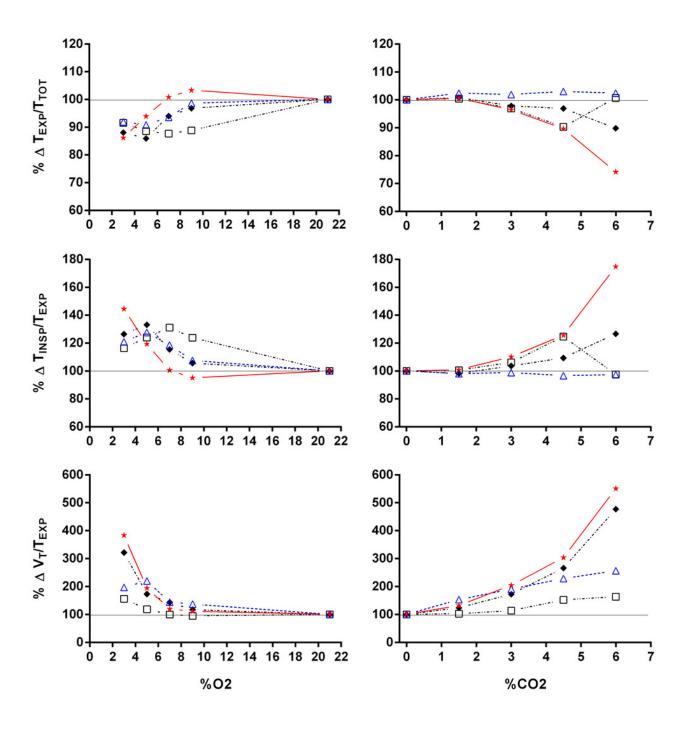
Tidal volume, breathing frequency, minute ventilation, oxygen consumption, and air convection requirement in *Trachemys scripta* and *Chelonoidis carbonarius*

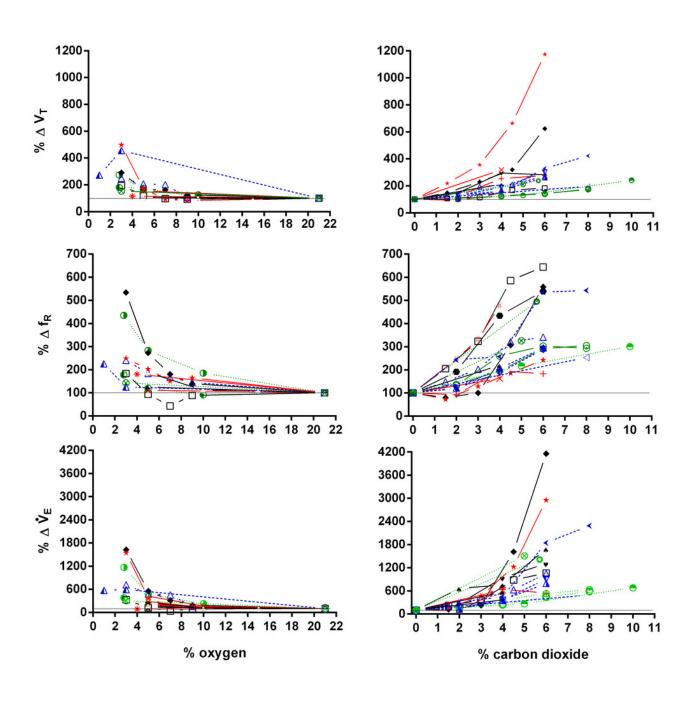




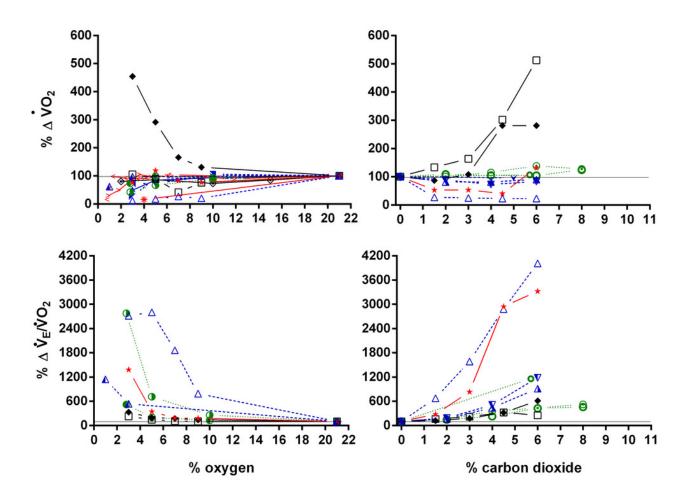
Relation between expiration and total duration of one ventilatory cycle, the relation between inspiration and expiration, and the expiratory flow rate in *Trachemys scripta* and *Chelonoidis carbonarius*


Relative changes in breathing frequency during breathing episodes, number of breathing episodes, and duration of the non-ventilatory period in Testudines under hypoxic and hypercarbic exposures


Relative changes in duration of inspiration and expiration, total duration of one ventilatory cycle, and instantaneous breathing frequency in Testudines under hypoxic and hypercarbic exposures



Relative changes in the relation between expiration and total duration of one ventilatory cycle, the relation between inspiration and expiration, and expiratory flow rate



Relative changes in tidal volume, breathing frequency, and minute ventilation in Testudines under hypoxic and hypercarbic exposures

Relative changes in oxygen consumption and air convection requirement in Testudines under hypoxic and hypercarbic exposures

