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ABSTRACT
Background: Influenza epidemics pose significant social and economic challenges in

China. Internet search query data have been identified as a valuable source for the

detection of emerging influenza epidemics. However, the selection of the search

queries and the adoption of prediction methods are crucial challenges when it comes

to improving predictions. The purpose of this study was to explore the application

of the Support Vector Machine (SVM) regression model in merging search engine

query data and traditional influenza data.

Methods: The official monthly reported number of influenza cases in Liaoning

province in China was acquired from the China National Scientific Data Center for

Public Health from January 2011 to December 2015. Based on Baidu Index, a

publicly available search engine database, search queries potentially related to

influenza over the corresponding period were identified. An SVM regression model

was built to be used for predictions, and the choice of three parameters (C, �, ε) in
the SVM regression model was determined by leave-one-out cross-validation

(LOOCV) during the model construction process. The model’s performance was

evaluated by the evaluation metrics including Root Mean Square Error, Root Mean

Square Percentage Error and Mean Absolute Percentage Error.

Results: In total, 17 search queries related to influenza were generated through the

initial query selection approach and were adopted to construct the SVM regression

model, including nine queries in the same month, three queries at a lag of one

month, one query at a lag of two months and four queries at a lag of three months.

The SVM model performed well when with the parameters (C = 2, � = 0.005,

ɛ = 0.0001), based on the ensemble data integrating the influenza surveillance data

and Baidu search query data.

Conclusions: The results demonstrated the feasibility of using internet search

engine query data as the complementary data source for influenza surveillance and

the efficiency of SVM regression model in tracking the influenza epidemics in

Liaoning.
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INTRODUCTION
Seasonal influenza is a serious public health problem and remains rampant across the world.

According to the latest estimates from the United States Centers for Disease Control and

Prevention (US-CDC), there are about three to five million cases of severe illnesses, and

about 2.9 to 6.5 million deaths each year caused by influenza epidemics (World Health

Organization, 2017, 2018). National Health and Family Planning Commission of the

People’s Republic of China reported that China has 456,718 influenza cases with the

incidence rate of 33.0994 per 100,000 in 2017 (National Health and Family Planning

Commission of the People’s Republic of China, 2018). Influenza epidemics pose significant

social and economic challenges in China (Yang et al., 2015;Wang et al., 2015). It is necessary

to establish a real-time flu surveillance system for rapid and effective responses in China.

A national noticeable infectious disease reporting system has been established to

continuously report the influenza cases in China, while the system reports the flu activity

one month before, putting the flu data lagged for a month. Traditional flu surveillance

methods for prediction were mainly based on hospital or laboratory data (Wang et al.,

2017). The idea of applying internet search query data for the infectious diseases

prediction was from Ginsberg et al. (2009), who presented a brand-new method providing

nearly real-time surveillance of influenza-like illness and overcoming the limitations of

lag-time in the traditional flu surveillance systems of the United States. Online search

query data have a stronger tendency and immediacy and can maintain full synchronization

with the flu epidemic. In addition, internet search query data can be measured in real time.

In order to monitor the infectious diseases activity in time, numerous studies have been

emerging recently based on online search query data or social media data, including Google

(Seo & Shin, 2017; Yang et al., 2017; Xu et al., 2017; Pollett et al., 2017), Yahoo (Polgreen et al.,

2008), Naver (Shin et al., 2016), Daum (Woo et al., 2016; Seo et al., 2014), Baidu search engine

(Guo et al., 2017b), Twitter (Wagner et al., 2017; Kagashe, Yan & Suheryani, 2017; Allen et al.,

2016; Yun et al., 2016) and Weibo (Fung et al., 2013; Zhang et al., 2015) social media,

Wikipedia (Hickmann et al., 2015; McIver & Brownstein, 2014), hospital or clinicians’

database (Bouzille et al., 2018; Santillana et al., 2014), and so on. As Google has been pulled

out of mainland China in 2010, Google search query data and Google Flu Trends cannot be

accessible in mainland China. This article will construct a forecasting model for influenza

based on the ensemble data integrating traditional influenza cases data and Baidu search

data, which is the most popular search engine in China.

Support vector machines (SVMs) are supervised learning models with associated

learning algorithms, the application of SVM to classification and regression has been a hot

topic recently. For solving the regression problem, SVMs have been applied to many fields:

air quality forecasting (Liu et al., 2017a), water demanding and water quality prediction

(Ghalehkhondabi et al., 2017; Zhang, Zou & Shan, 2017), biomedicine (Nickerson et al.,

2016), etc. SVMs can efficiently perform a non-linear classification which is based on the
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kernel trick, the inputs can be implicitly mapped into high-dimensional feature spaces.

Lampos et al. (2015) indicated that a nonlinear query modeling approach presented the

lowest cumulative nowcasting error.Woo et al. (2016) found that the SVM regression model

based on weekly influenza incidence data and query data from the Korean website Daum

performed well.Guo et al. (2017b) comprehensively assessed six machine learning algorithms

based on Baidu search engine data and Dengue case data in Guangdong proposed that SVM

regression model had a better performance than other forecasting techniques. Thus, this

article attempted to build a SVM regression model to predict the flu activity.

The influenza epidemic situation varies greatly among different regions. China has a

vast territory that spans tropical, subtropical and temperate regions, and it is a large

challenge to establish an influenza prediction mechanism in the whole country. Liaoning

province is located in both a coastal and bordered region in the northeastern part of

China, where the feasibility of influenza prediction models based on internet search query

data is still unknown. Thus, the purpose of this study was to investigate whether an early

warning model utilizing both online influenza query data and traditional surveillance data

could improve influenza prediction.

MATERIALS AND METHODS
Study setting and data collection
Liaoning is a coastal province in the northeast of China with a population of approximately

43.77 million in 2016 and a temperate continental monsoon climate. Official monthly

reported number of influenza cases in Liaoning province in China was acquired from

China National Scientific Data Center for Public Health (http://www.phsciencedata.cn)

from January 2011 to December 2015. China National Scientific Data Center for Public

Health is open for those registered users in mainland China and the latest influenza incidence

data was the data in December 2015. Based on Baidu Index (http://index.baidu.com), an

online keyword research tool which is publicly open for the public across the globe, search

queries potentially related to influenza over the corresponding period were identified.

“Influenza” was first adopted as a primary indicator term to find more related queries

about influenza on the Chinese website (http://tool.chinaz.com/baidu/words.aspx).

The website is a free online platform that providing internet keyword mining of the

Baidu search engine in mainland China. Monthly average volume of those related search

queries from Liaoning was extracted from Baidu Index website, from January 2011 to

December 2015.

Statistical analysis
The related influenza search terms were ranked first and those terms that having no data

within one calendar year during the study period were excluded. Pearson correlation

analysis was performed to explore the correlation between influenza-related search queries

and the reported number of influenza cases in Liaoning. Those search terms that with the

statistically significant correlation coefficient above 0.4 were sent to the construction of

SVM regression model. The selection of maximum cross-correlation coefficient has been

proposed in previous studies (Guo et al., 2017a; Yuan et al., 2013).
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The influenza case surveillance data was divided into two parts, the fitting dataset and

the validation dataset in SVM regression model. Forty-five months’ data from January

2011 to September 2014 was used for model training, and the rest 15 months’ data from

October 2014 to December 2015 was used as the test set for model prediction. The choice

of three parameters (C, �, ε) in the SVM regression model was determined by leave-one-

out cross-validation (LOOCV) during the model construction process. Three metrics

were adopted to measure the performance of the SVM regression model, including Root

Mean Square Error (RMSE), Root Mean Square Percentage Error (RMSPE), and Mean

Absolute Percentage Error (MAPE). These three metrics are measures of prediction

accuracy of a forecasting method in statistics. RMSE is very sensitive to the extreme errors

or very small errors in a set of measurements, therefore RMSE can well reflect the

precision of the forecasting. RMSPE is a percent difference between predicted and true

values. MAPE is the most common measure of forecast error and it functions best

when there are no extremes to the data (including zeros). The definitions of these

three metrics are provided below. The notation in the study is as follows: yi denotes the

observed value of the influenza cases at time ti, ŷi denotes the predicted value by SVM

regression model at time ti.

Root Mean Squared Error, a measure of the difference between predicted and true

values, is defined as:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn
i¼1

ðyi � ŷiÞ2
s

(1)

Root Mean Square Percentage Error, a measure of the percent difference between

predicted and true values, is defined as:

RMSPE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn
i¼1

� yi � ŷi
yi

�2

s
� 100% (2)

Mean Absolute Percentage Error, is the mean or average of the absolute percentage

errors of forecasts and is defined as:

MAPE ¼ 1

n

Xn
i¼1

yi � ŷi
yi

����
����� 100% (3)

The statistical analysis and the construction of SVM regression model were performed

using R statistical software version 3.4.2 with package e1071.

RESULTS
Baidu search terms filtering
According to the filtering criteria, there were 46 search terms left due to the available

sequential data within one calendar year during the study period (Table S1). The Pearson

correlation analysis was made between search terms and influenza cases across different

lag periods (in the same month, at a lag of one month, at a lag of two months and three

months). The correlation value of search terms with the influenza cases in the non-flu
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Table 1 Pearson correlation coefficients between search terms from Baidu search engine and the number of influenza cases in Liaoning,

for the time period January 2011–December 2015.

Search terms The same month Lag one month Lag two months Lag three months Non-flu season

Flu 0.608** 0.536** 0.500** 0.395** 0.672**

Flu symptoms 0.618** 0.374** 0.273* 0.04 0.430*

Influenza type A 0.489** 0.134 0.005 -0.287* 0.048

Influenza vaccine 0.259* 0.436** 0.645** 0.764** 0.328

Is it necessary to get vaccinated

against the flu?

0.103 0.362** 0.626** 0.814** 0.255

Flu virus 0.621** 0.435** 0.282* 0.175 0.711**

The symptom of flu 0.656** 0.438** 0.209 -0.054 0.235

Influenza drugs 0.639** 0.431** 0.218 -0.116 0.337

The symptoms of type A flu 0.157 0.029 -0.061 -0.225 0.320

Prevent flu 0.623** 0.644** 0.663** 0.511** 0.374*

Swine flu 0.371** 0.290* 0.172 0.075 0.459*

H1N1 flu 0.021 -0.157 -0.231 -0.409** -0.302
Beijing flu 0.249 0.055 0.037 -0.148 0.313

Swine flu symptoms 0.032 0.142 -0.104 -0.101 -0.039
How to prevent flu 0.023 -0.025 0.056 0.007 -0.006
Viral flu 0.484** 0.339** 0.234 -0.023 0.587**

How to prevent flu 0.129 0.087 0.201 0.125 -0.014
Spanish flu 0.459** 0.479** 0.405** 0.409** 0.491**

Flu prevention 0.178 0.012 -0.092 -0.133 0.380*

Side effects of flu vaccine 0.084 0.379** 0.657** 0.804** 0.254

The prevention measures of flu -0.079 -0.056 0.043 0.061 -0.108
Type A H1N1 flu 0.089 -0.024 -0.281* -0.362** -0.379*

Flu therapy 0.438** 0.183 0.168 -0.075 0.291

The prevention of flu -0.335** -0.357** -0.251 -0.285* -0.394*

Influenza epidemic 0.09 -0.075 -0.207 -0.375** 0.108

Influenza vaccine price -0.273* -0.185 -0.002 0.126 -0.124
Type A flu 0.383** 0.326* 0.025 -0.193 0.508**

Type A flu virus 0.586** 0.395** 0.276* 0.002 0.369*

New type of flu 0.352** 0.430** 0.037 -0.076 0.387*

Type A influenza 0.016 -0.222 -0.138 -0.345** -0.197
Love flu strain 0.054 -0.165 -0.166 -0.296* -0.425*

Flu concept stock 0.266* 0.226 0.011 -0.072 0.349

Seasonal influenza -0.046 -0.122 -0.12 -0.172 0.515**

Love flu -0.300* -0.310* -0.350** -0.368** -0.114
Type A H1N1 flu virus -0.109 -0.22 -0.24 -0.131 -0.160
New flu -0.048 -0.064 -0.151 -0.25 -0.016
How to treat swine flu 0.223 0.547** 0.476** 0.381** 0.200

Influenza transmission route 0.228 0.1 -0.09 -0.076 0.346

The route of transmission of flu 0.216 -0.011 -0.12 -0.164 0.207

Treatment program of A type H1N1 flu -0.145 -0.19 -0.24 -0.304* 0.102

(Continued)
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season is provided as a basal level of their relationship (Table 1). Twenty-nine of the

remaining 46 terms were excluded, because their Pearson correlation coefficients between

the search terms and influenza cases were less than 0.4 across every lag period. A total of

17 search terms which were strongly correlated with influenza cases across different lag

periods were retained for the construction of SVM regression model, including nine

queries in the same month, three queries at a lag of one month, one query at a lag of two

months and four queries at a lag of three months (Table 2). Meanwhile, the amount of

influenza cases might have an impact on the amount of incident cases of the following

months. The Pearson correlation analysis was performed to compare the relationship

between the reported number of influenza cases of the month and historically reported

number of influenza cases. The correlation coefficients were 0.672, 0.498 and 0.151 at the

lag time of one month, two months and three months, respectively. The reported number

of influenza cases at the lag time of one month has shown the strongest correlation, thus it

was submitted to SVM regression model.

Parameter selection of SVM regression model
The mathematical formula of SVM regression model is provided below: a, a� are
Lagrangian operator. C is the upper bound of all variables, Q is a k by k positive

semidefinite matrix, Qij = yi yj K(xi, xj), and K(xi, xj) is the kernel.

min
a;a�

1
2 a� a�ð ÞT Q a� a�ð Þ þ e

Pk
i¼1

ai � a�
i

� �þPk
i¼1

yi ai � a�
i

� �
s:t: 0 � ai;a

�
i � C; i ¼ 1; . . . ; k;Pk

i¼1

ai � a�
i

� � ¼ 0:

(4)

Table 1 (continued).

Search terms The same month Lag one month Lag two months Lag three months Non-flu season

Flu (space) symptom 0.147 0.042 -0.068 -0.157 0.358

H1N1 flu symptom 0.346** 0.196 0.141 0.064 0.260

Sheep flu 0.011 -0.038 -0.053 -0.107 0.211

Super flu 0.314* 0.248 0.133 0.16 0.172

The symptom of swine flu 0.134 0.071 -0.025 -0.124 0.341

Taiwan flu 0.124 0.066 0.104 -0.188 0.374*

Notes:
* Indicates the P value with statistically significance at 0.05 level.
** indicates the P value with statistically significance at 0.01 level.

Table 2 Strongly correlated search terms with the number of influenza cases in different lag periods.

Lag time Search keywords

The same month Flu, flu symptoms, influenza type A, flu virus, the symptoms of flu, influenza drugs, viral flu, flu therapy, type A flu virus

Lag one month Spanish flu, new type of flu, how to treat swine flu

Lag two months Prevent flu

Lag three months Influenza vaccine, is it necessary to get vaccinated against the flu, H1N1 flu, side effects of flu vaccine
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The expression of radial basis function is provided below:

K xi; xj
� � ¼ exp �� xi � xj

�� ��2n o
(5)

During the process of leave-one-out cross-validation, we started from the default value

(� = 0.0556, ε = 0.1), then we adjusted the C value to observe the model fitting results

(Table 3). The same method was applied to the selection of the other two parameters,

� and ε (Tables 4 and 5). The values of these three parameters were evaluated according to

the lowest test error, then the optimal parameters of the model were determined (C = 2,

� = 0.005, ε = 0.0001).

Comparison and prediction of SVM regression models from
different data sources
Compared with the model based on influenza case data at the lag time of one month and

the source of Baidu search data, the SVM regression model based on ensemble data

Table 3 The SVM model precision of different C values (g = 0.05556, ε = 0.1).

C Training error Test error

0.0001 8,812.675 8,834.564

0.001 8,768.452 8,806.329

0.01 8,363.176 8,532.467

0.1 5,831.012 6,661.826

1 1,4647.06 4,052.645

2 498.3551 3,900.983

3 215.0484 4,003.317

4 175.4402 4,116.998

5 147.7603 4,215.681

10 76.7374 4,756.99

100 71.55703 4,792.467

Table 4 The SVM model precision of different g values (C = 1, ε = 0.1).

g Training error Test error

0.0001 8,130.444 8,199.893

0.001 4,533.864 4,933.536

0.005 1,932.273 3,239.05

0.01 1,604.143 3,502.44

0.02 1,493.212 3,655.345

0.03 1,465.351 3,773.955

0.04 1,466.39 3,873.576

0.05 1,459.852 3,982.198

0.1 1,470.783 4,796.493

1 2,441.952 7,936.262
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integrating historical influenza surveillance data and Baidu search data showed the best

accuracy with lowest RMSE (42.654) and best robustness with lowest MAPE (26.197%),

as seen in Table 6.

The predicted values of the above three models and the actual number of influenza

cases from October 2014 to December 2015 have been presented in Fig. 1. It was easily to

find that the SVM model prediction’s curve was almost identical when comparing the

model based on internet search query data with the model based on ensemble data, and

trend of the curve were consistent with the overall development trend of the actual

influenza cases curve. The SVM regression model based on ensemble data was capable of

predicting the timing and magnitude of most periods, whereas it failed to predict the

influenza outbreak peak in March 2015. The predictions of the model based on flu data at

the lag time of one month were significantly lower than the actual value in the previous

six-month forecasting, but the overall trend was consistent in the following nine months.

The residual of each predictor is displayed in Fig. 2.

DISCUSSION
This article presented an efficient SVM regression model to predict flu activity and track

the epidemic orbit in Liaoning province of China. The entire analysis demonstrated that

the SVM regression model based on ensemble data was better than the model based on

Table 5 The SVM model precision of different ε values (C = 1, � = 0.05556).

ε Training error Test error

0.0001 1,388.189 3,985.145

0.001 1,388.479 3,986.231

0.01 1,392.287 3,993.167

0.05 1,412.391 4,027.2

0.08 1,440.697 4,051.417

0.09 1,452.264 4,052.576

0.1 1,464.717 4,052.645

0.2 1,539.904 4,060.86

0.3 1,709.969 4,153.16

0.4 1,965.82 4,346.04

0.5 2,361.972 4,643.752

1 5,522.041 7,408.229

Table 6 Similarity metrics between 3 data sources: the number of influenza cases at a lag of one

month, Baidu keywords, ensemble data, for the time period October 2014–December 2015.

RMSE RMSPE (%) MAPE (%)

Influenza cases at a lag of one month 82.874 40.658 35.150

Baidu keywords 43.472 30.438 26.806

Ensemble model 42.654 29.687 26.197
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conventional data. It could be a complement to the traditional surveillance for influenza

dynamics.

With the rapid development and popularity of the Internet, this new method of

infectious diseases surveillance system based on online search query data is more

convenient and accurate. According to the 41st Statistical Report on Internet

Development released by China Internet Network Information Center (CINIC), the

internet users in China have steadily increased and up to 772 million, and the internet

popularity rate reached 55.8%, exceeding the global average level until December 2017

(China Internet Network Information Center, 2018). Baidu search engine is the most widely

accepted search engine in China, making it the most representative and available data

source for the studies targeting tracking the online seeking behavior of Chinese people.

Based on Baidu search query data, Chinese scholars have made great efforts in the field of

disease monitoring, such as Norovirus (Liu et al., 2017b), Dengue (Li et al., 2017), Hand,

foot, and mouth disease (Du et al., 2017), and epidemic erythromelalgia (EM) (Gu et al.,

2015). These forecasting models got great performances in the field of early warning.

Figure 1 The performance of the three available predictors.

Full-size DOI: 10.7717/peerj.5134/fig-1

Figure 2 The residuals of the three predictors. Full-size DOI: 10.7717/peerj.5134/fig-2
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However, most of the researches focused on southeastern coastal regions of China, such as

Guangdong and Zhejiang, and few disease prediction models was constructed and applied

in the coastal areas in the northeast China. It is a significant attempt to predict the influenza

activity in Liaoning province located in the northeast of China. This article could provide

some hints and lessons for the flu forecasting and alerting in the Northeast of China.

Strong correlation between influenza cases and search terms of Baidu was found in the

present study. Influenza is characterized by a short incubation period and a sudden onset

of symptoms such as fever, cough (usually dry), etc., and it is reasonable that most of

search terms about flu virus, symptoms and therapy closely correlated with influenza cases

at the same month. The most effectively vaccine injection timing is about one to two

months prior to the flu season. Winter and spring are the peak flu seasons in Liaoning,

China, thus September and October are the best months for flu vaccination in the study

area. The search behavior about flu vaccine is often earlier than the vaccination timing, so

we found that the search terms of Baidu at a lag of three months had a strong correlation

with the occurrence of influenza cases.

The present study showed that the forecasting model based on internet search query

was better than the model based on traditional data in terms of accuracy and stability.

The results were consistent with the results of other studies (Guo et al., 2017b; Yuan et al.,

2013). However,Olson et al. (2013) investigated the reliability of Google Flu Trends (GFT) of

2003 to 2013 and compared the flu timing and intensity between forecasting data and actual

influenza incidence at the national, regional and local levels. They concluded that GFT

data could not serve as the reliable surveillance for seasonal or pandemic influenza and

traditional surveillance are still irreplaceable. The main reason was that GFT was based on

internet data without considering the epidemiological factors such as the age distribution of

patients, geographical location, illness complaints or clinical manifestations. Our study

proved the advantages of ensemble source data integrating traditional influenza incidence

data and search engine data in the field of forecasting. Meanwhile, there may be some

space to improve the SVM model presented in the present study. Although most of the

forecasting values were fitted well with actual influenza cases in the SVM regression model,

they failed to identify the influenza’s peak in March 2015. The climatic factors have great

impact on Influenza incidence (Gomez-Barroso et al., 2017), thus the possible reason of

their missing might be that March are the cold month and the flu peak seasons in

northeastern China while internet search query data could not distinguish the situation.

Several limitations in influenza forecasting model based on ensemble data integrating

traditional influenza cases data and Baidu search engine data need to be mentioned.

Firstly, media report may influence the internet searching behavior, which will have an

impact on the performance of forecasting model directly. In addition, without considering

the impact factors of influenza, such as seasonal and meteorological factors, the

forecasting results may have bias to some degree. Furthermore, correlation analysis of the

search keywords mainly was based on previous vocabularies data. However, in pace with

the rapid changes of the internet environment, many fresh online search vocabularies

produced at every moment. The fresh vocabularies were hard to be tracked and usually

have been overlooked.
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CONCLUSIONS
The present study built a forecasting model based on ensemble data integrating Baidu

search query data and traditional flu data in Liaoning province. The model based on

ensemble data showed the best accuracy and best robustness in SVM regression model,

rather than the models based on other single data sources. It could be a complement of the

traditional surveillance for influenza dynamics in Liaoning.
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