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ABSTRACT
The analysis of bone surface modifications (BSMs) is a prominent part of paleoan-
thropological studies, namely taphonomic research. Behavioral interpretations of the
fossil record hinge strongly upon correct assessment of BSMs. With the significant
impact of microscopic analysis to the study of BSMs, multiple authors have discussed
the reliability of these technological improvements for gaining resolution in BSM
discrimination. While a certain optimism is present, some important questions are
ignored and others overemphasized without appropriate empirical support. This
specifically affects the study of cut marks. A diversity of geometric morphometric
approaches applied to the study of cut marks have resulted in the coexistence (and
competition) of different 2D and 3D methods. The present work builds upon the
foundation of experiments presented by Maté-González et al. (2015), Courtenay et
al. (2017) and Otárola-Castillo et al. (2018) to contrast for the first time 2D and
3D methods in their resolution of cut mark interpretation and classification. The
results presented here show that both approaches are equally valid and that the use
of sophisticated 3D methods do not contribute to an improvement in accuracy.

Subjects Evolutionary Studies, Statistics
Keywords Taphonomy, Experimental archaeology, Cut marks, Geometric morphometrics,
Microscopy

INTRODUCTION
Cut mark analysis has had a long history in archaeology. The first studies regarding these
traces date back to the 19th century, with themain objective lying in differentiating whether
these marks were part of decorations on portable art or if they were the by-product of other
types of activities (namely, butchery) (Lartet, 1860; Peale, 1870; Lartet & Christy, 1875). At
the beginning of the 20th century, the first experimental works oriented towards explaining
these bone surface modifications (BSMs) found in multiple French Palaeolithic sites came
to light (Martin, 1906;Martin, 1907;Martin, 1909;Martin, 1907-10). Research in this area,
however, went by unnoticed at least until the second half of the 20th century.
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During this period (especially after the 1980s) there have been a considerable growth
in the number of cut mark taphonomic analyses. For several decades, emphasis was laid
on the analysis and interpretation of cut marks (e.g., Binford, 1981; Domínguez-Rodrigo,
1997; Greenfield, 1999; Greenfield, 2006; Nilssen, 2000; Bello & Soligo, 2008; Bello, Parfitt &
Stringer, 2009; De Juana, Galán & Domínguez-Rodrigo, 2010; Bello, 2011; Maté-González
et al., 2015; Courtenay et al., 2017). Amongst these studies, experimental replication of
butchery processes complemented by ethnoarchaeological work with hunter-gatherers
have addressed questions related to cut mark anatomical distribution with respect to to
different butchery activities, such as defleshing, dismembering, skinning and carcass part
selection (e.g., White, 1952; White, 1953; White, 1954; White, 1955; Binford, 1981; Lupo,
1994; Nilssen, 2000; Galán & Domínguez-Rodrigo, 2013; Wallduck & Bello, 2018). Other
studies have analysed cut mark frequencies and their location in order to understand
different human behavioural processes related to carcass acquisition and butchery
(Domínguez-Rodrigo, 1997; Domínguez Rodrigo, 2002; Capaldo, 1998; Lupo & O’Connell,
2002; Domínguez-Rodrigo & Barba, 2005). Another important perspective was added
through the analysis and definition of cut marks themselves, by taking into consideration
the possible equifinality (lack of resolution to linking effect to cause) produced by other
natural phenomena such as trampling or the distorting effect of diagenesis (Binford,
1981; Shipman, 1981; Behrensmeyer, 1984; Fiorillo, 1984; Behrensmeyer, Gordon & Yanagi,
1986; Olsen, 1988; Olsen & Shipman, 1988; Fisher, 1995; Bello, Parfitt & Stringer, 2009;
Domínguez-Rodrigo et al., 2009; De Juana, Galán & Domínguez-Rodrigo, 2010; Bello, 2011;
Marín-Monfort, Pesquero & Fernández-Jalvo, 2013; Pineda et al., 2014). Equally important
was the differentiation of cut marks produced by different raw materials including lithic,
metal, wood, bamboo and shell tools (Walker, 1978; Shipman & Rose, 1983; Olsen, 1988;
Greenfield, 1999; Greenfield, 2006; Choi & Driwantoro, 2007; West & Louys, 2007; Bello
& Soligo, 2008; Bello, Parfitt & Stringer, 2009; Domínguez-Rodrigo et al., 2009; De Juana,
Galán & Domínguez-Rodrigo, 2010; Galán & Domínguez-Rodrigo, 2013). Alongside these
developments in analogical frameworks for the interpretation of cut marks, other studies
have begun to scrutinize the conditions under which these marks are produced and their
variability (Lyman, 1987; Gifford-Gonzalez, 1989; Domínguez-Rodrigo & Yravedra, 2009).

All these different lines of research reflect on the importance of cut mark analysis.
Some works embrace modern technologies for cut mark identification and interpretation,
with a special reference to microscopic analysis, including SEM (Shipman, 1981; Olsen,
1988; Greenfield, 1999; Greenfield, 2006; Fritz, 1999; Smith & Brickley, 2004; Lewis, 2008),
binocularmicroscopes with high resolution images (Shipman, 1981;Olsen, 1988;Greenfield,
1999; Greenfield, 2006; Smith & Brickley, 2004; Lewis, 2008), digital imaging techniques
(Gilbert & Richards, 2000), 3D reconstruction (During & Nilsson, 1991;Bartelink, Wiersema
& Demaree, 2001; Kaiser & Katterwe, 2001; Crezzini et al., 2014), 3D digital microscopes
(Boschin & Crezzini, 2012; Crezzini et al., 2014), the Alicona 3D Infinite Focus Imaging
microscope (Bello & Soligo, 2008; Bello, Parfitt & Stringer, 2009; Bello, 2011; Bonney, 2014)
and the laser scanning confocal microscope (Archer & Braun, 2013).

Alongside these techniques, aided by high-resolution microscopy, a number of
alternative approaches have become popular over recent years offering promising results
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in establishing the agency in BSM creation. The most important of these approaches is the
use of microphotogrammetry and geometric morphometrics with the use of reflex cameras
(Maté-González et al., 2015; Maté-González et al., 2016; Maté-González et al., 2017a; Maté-
González et al., 2017b), and the use of a DAVID structured-light scanner SLS-2s in both
2D (Maté-González et al., 2017c) and 3D analysis (Courtenay et al., 2017). These types of
methodological approaches have recently been complemented by studies using white-light
non-contact confocal profilometers using Digital Surf’s Mountains R© software (Pante et
al., 2017) as well as full 3D morphometrics aided by Bayesian analysis (Otárola-Castillo
et al., 2018). Here ‘‘full 3D’’ is understood as the analysis of BSM features in 3D (i.e., the
complete mark with its dimensions and shape) as opposed to the bidimensional analysis
of 3D properties of BSMs (i.e., mark section angles or metric properties derived from the
3D reconstruction of the mark). This full 3D method has been argued to be better at BSM
identification than any of the other methods listed above, considering how 2D approaches
exclude vast portions of bone mark morphologies, while ‘‘researchers rely heavily on the
ability of profiles or ‘slices’ ofmarks to represent themore complexwhole’’ (Otárola-Castillo
et al., 2018; p. 3). Although (Otárola-Castillo et al. (2018); p. 8) emphatically claim that
their method improves the quality of cut mark micro-morphology analysis, experimental
evidence to support such a claim is lacking. For such a case, a contrasting hypothesis,
preferably comparing methods on the same data set, would have been the best testing
scenario. For example, this was recently done when testing which technique (3D digital
microscope, laser scanner confocal microscopy or micro-photogrammetry) best captures
the original cut mark’s morphology (Maté-González et al., 2017b).

We welcome the addition of 3D morphometric analysis as an additional tool to identify
and interpret cut marks. Here our goal is to test whether other approaches, referred
to by some authors as 2D because they treat 3D-derived information bidimensionally,
possess less resolution in identifying BSM types (i.e., cut- or tooth-marks) than the full
3D approach used by Otárola-Castillo et al. (2018) by using complete 3D reconstruction of
marks as the unit of analysis. Those bidimensional approaches also qualify as 3D methods,
because they reconstruct BSMs tridimensionally prior to selecting 3D-derived units of
analysis (e.g., mark section along different parts of the groove) for bidimensional statistical
analysis. We are also interested in testing the potential bias attributed to these 2D analyses,
considering the misrepresentation of mark morphology when using sections instead of
continuous surfaces, as well as the difficulty and bias of identifying homologous landmarks
and semi-landmarks and inaccurate estimates of correct mark classifications. If that were
the case, classification errors should be higher in assemblages analysed via 2Dmethods than
in 3D methods. In order to test this hypothesis, we replicated the experiments presented
by Otárola-Castillo et al. (2018) and compared the results generated using both 2D and 3D
analysis of cut mark morphology through our methodology (Maté-González et al., 2015;
Courtenay et al., 2017).

MATERIALS AND METHODS
Otárola-Castillo et al. (2018) argue that 3D methods are superior to 2D methods and tested
this by using two structurally-different types of cut marks: cuts and slices. Cuts were defined
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as BSMsmade with the knife perpendicular to the bone surface. Slices were defined as BSMs
made with the knife adopting an oblique angle with respect to the bone surface. As a result,
cuts had a more symmetrical groove section in relation to the horizontal cortical surface
than slices. These structural differences were easily differentiated when using 3D methods.
Otárola-Castillo et al. (2018), however, did not contrast the accuracy of their method with
any of the 2D methods available and, therefore, their assertion that 3D methods were
superior to alternative methods remained untested.

In order to provide consistency between the sample used and the confidence in the
interpretation of the results, and since hypothesis-testing methods were to be used (such as
MANOVA) we initially estimated the size of the experimental sample needed to produce
reliable statistical estimates. Given that most experimental tests do not consider the impact
of Type II errors (false negatives), we initially tested the adequacy of a theoretical sample
for a power of 0.80. This is the standard for reliability of minimizing the error of retaining
a false null hypothesis (i.e., false negatives) (Cohen, 1988). We did so using the ‘‘pwr’’ R
library (using the pwr.t.test function) (version 3.3.4), in which we estimated that in order
to have a powerful sample to discriminate two experimental scenarios, in which one could
be 80% sure of identifying differences if these existed, and 95% sure that non-significant
differences due to random variability would not be declared as significant, one would
need a minimum sample size per group of 59 cases to detect a moderate effect (Cohen’s
d = 0.52).

Following this a total of 120 cutmarks (60 cuts and 60 slices) were generated reproducing
the experimental methodology published by Otárola-Castillo et al. (2018) to test mark
classification according to cuts (knife perpendicular to bone surface [trend = 90◦]) and
slices (knife held at acute angle with respect to bone surface [trend = 45◦]). The different
angles created structurally different cut marks, which could be subsequently tested with 3D
and 2Dmethods. A metal knife model MolybdenumVanadium C0.5 CR was used to create
cut marks on partially defleshed pig bones. During the process the edge was controlled
so that no blunting occurred. Half of the marks were inflicted by holding the knife at
approximately a 90◦ angle on 2 radii, and the other half with the tool at approximately
a 45◦ angle along the cranial plane of 3 radii to reproduce cutting and slicing marks,
respectively (Fig. 1). All marks were generated with a single motion along the length of
the diaphysis, orienting the knife perpendicular to the long axis of the bones. The marks
were made by the same butcher who applied similar pressure to all of them. Bones were
subsequently cleaned with boiling water and a small solution of neutral detergent.

Digitalization of marks
The resulting cut marks were digitalized with a DAVID structured-light scanner SLS-2
located at TIDOP at the University of Salamanca (Spain). This laser scanner consists of
a DAVID USB CMOS Monochrome camera, an ACER K132 projector, and a calibration
marker board. The equipment was calibrated and positioned as explained inMaté-González
et al. (2017b).

The use of this scanning process provides a 3D surface model of the bone external
topography (Fig. 2) in less than 1 min. The DAVID structured-light scanner SLS-2 can
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Figure 1 Porcine radii with cut marks performed at different angles along the long axis. Images by
Miguel Ángel Maté-González.

Full-size DOI: 10.7717/peerj.5133/fig-1

produce a density of up to 1.2 million points providing high-resolution 3D models,
that can either be directly imported into Avizo (Visualisation Sciences Group, USA) to
conduct the 3D analysis (i.e., feature extraction and analysis), or can be treated with
Global Mapper software to define mark profiles along the groove. Cut mark sections were
obtained at mid-length (always between 30% and 70% of the mark length) as suggested by
Maté-González et al. (2015) in order to perform the 2D analysis.

2D statistical analysis of cut marks
First, the free software tpsDig2 (v.2.1.7) was used to take seven measurements (Fig. 3) on
the cross-section of each mark (Table 1). Measurements indicating the thickness, depth,
and angles of the mark were selected following Bello, De Groote & Delbarre (2013). This
biometric data was imported into the free software R (http://www.rproject.org, R Core
Team, 2014) to test if cutting (tool at a 90◦ angle) and slicing (tool at a 45◦ angle) marks
could be differentiated based on simple 2D measurements. If accuracy in the classification
of these marks using 2D methods was similar or superior to 3D methods, this would
endorse the use of 2D methods in the interpretation of archaeological BSMs.

Multivariate analysis of variance (MANOVA) was applied to statistically assess
the presence of separate groups (cuts and slices) by comparing their means. The
MANOVA.RM package (Friedrich, Konietschke & Pauly, 2018) in the R environment
was preferred to conduct the analysis after confirming that when using the MVN package
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Figure 2 3D scanning using the DAVID structured-light scanner SLS2 and results obtained from data
collection. Images by Miguel Ángel Maté-González.

Full-size DOI: 10.7717/peerj.5133/fig-2

Figure 3 Location of the seven landmarks used in the 2DMorphometric Analysis of cut mark cross-
sections (Maté-González et al., 2015) and the measurements taken for each cut mark profile (Bello &
Soligo, 2008). Images by Miguel Ángel Maté-González.

Full-size DOI: 10.7717/peerj.5133/fig-3

(Korkmaz, Goksuluk & Zararsiz, 2014) the condition of variance homogeneity was not
fulfilled. The MANOVA.RM package includes variance analyses that do not assume
multivariate normality or homogeneity.

The Principal Components Analysis (PCA) included in the FactoMineR library (Lê, Josse
& Husson, 2008) was applied to the seven variables described in Table 1 to assess patterns
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Table 1 Landmarks used in the morphometric 2D and 3D analysis of cut marks.

No. Location

2Dmodel 1 Beginning of the left line in the mark section
2 Middle of the left line in the mark section
3 At 10% of end of the mark on the left line
4 Deepest point of the mark
5 At 10% of end of the mark on the right line
6 Middle of the right line in the mark section
7 Beginning of the right line in the mark section

3Dmodel 1 Beginning of the cut mark
2 End of the cut mark
3 Deepest point in the middle of the mark
4 Left hand shoulder of the middle of the mark
5 Right hand shoulder of the middle of the mark
6 Left hand shoulder, halfway between the beginning and the middle of the mark
7 Right hand shoulder, halfway between the beginning and the middle of the mark
8 Left hand shoulder, halfway between the middle and the end of the mark
9 Right hand shoulder, halfway between the middle and the end of the mark
10 Left hand shoulder, at the opening angle of the mark
11 Right hand shoulder, at the opening angle of the mark
12 Left hand shoulder, at the closing angle of the mark
13 Right hand shoulder, at the closing angle of the mark

of variation among the data and define the weight of the explanatory variables contained
in the sample. PCAs were made using the correlation matrix. In the PCA, each cut mark is
a single point, which can be easily plotted in a graph. Plots were made using the ggplot2 R
library (Wickham, 2009).

A jackknife cross-validated Linear Discriminant Analysis (LDA) was conducted to
determine differences among the two a priori established groups (cuts and slices)
by calculating confusion matrices (Efron & Stein, 1981). This method is based on an
iterative process that generates random data samples from the population under study by
systematically leaving one observation out at a time. Sensitivity was considered adequate
given the number of variables and sample size. The LDA function included in the MASS R
package was used.

Themagnitude of the differences calculated bymeans ofMANOVA and LDAwas further
tested with an estimation of the effect size using Cohen’s d (Cohen, 1988). Group means
and standard deviations were first calculated and the commonly used approach based on
dividing the difference between the group means by the pooled standard deviation was
applied.

Because one of the variables suggested by Bello, De Groote & Delbarre (2013) had amajor
impact on the variance explanation, tests were also performed without considering the
opening angle of the incision (OA). Additionally, a geometric morphometric analysis was
performed. All 2D profiles were landmarked in tpsDig2 (v. 2.1.7) using seven homologous
landmarks (Table 1, Fig. 3).

Courtenay et al. (2018), PeerJ, DOI 10.7717/peerj.5133 7/24

https://peerj.com
http://dx.doi.org/10.7717/peerj.5133


The resulting files containing the 2D landmark coordinates were edited and imported
into MorphoJ (Klingenberg, 2011). This software is based on a full Procrustes fit and an
orthogonal tangent projection (Dryden & Mardia, 1998) that prepares the sample for usual
multivariate statistical analyses. This technique, commonly known as generalized Procrustes
analysis (GPA), standardizes the form information by the application of superimposition
procedures that involve the translation, rotation, and scaling of the shapes. The remaining
differences among the structures under study expose patterns of variation and covariation
that can be assessed by means of several statistical tests (Slice, 2001; Rohlf, 1999).

A PCA in shape space, carried out on Procrustes superimposed landmarks, was
performed in Morphologika 2.5 (O’Higgins & Jones, 1998) where changes in shape were
also visualized with the aid of transformation grids (Bookstein, 1989). PCA scores were later
used to examine variance (MANOVA) between the two groups and to estimate the power
of discrimination between cutting and slicingmarks bymeans of a jackknife cross-validated
LDA. The amount of PC scores used to conduct the MANOVA was limited to gain power
performance. For the 2D shape analysis the first 5 PC scores were selected, as they account
for almost 99% of the total variance. Before selecting the PC scores, we made sure that no
important information was thrown away by observing the correlation of the landmarks
with each PC score in MorphoJ and Morphologika 2.5. The LDA test on the shape data
were performed using all PC scores calculated by the PCA.

3D statistical analysis of cut marks
The 3D landmark configuration consists of 13 identical points on the exterior and interior
surface of each cut mark (Table 1, Fig. 4). Following Courtenay et al. (2017), the 13
landmarks that represent qualitative features were established using Avizo (Visualisation
Sciences Group, USA) only when their location was unambiguous.

Geometric morphometric analyses were performed in the same manner as in 2D
analyses. Additionally, along with morphometric analyses in shape space, form space was
investigated after re-scaling the data obtained after Procrustes superimposition using the
natural logarithm of Centroid Size. PCAs in shape and form space were computed in
Morphologika 2.5 (O’Higgins & Jones, 1998) to assess patterns of variation among the
data considering shape and size differences. Changes in shape and form were visualized
in the form of transformation grids and warpings computed using thin-plate splines
(Bookstein, 1989).

The PC scores obtained in shape and form space were exported into R to examine
differences between the two groups of cut marks. In addition, MANOVA and LDA tests
were also carried out in R to determine if, on a statistical level, slicing and cutting marks
could be distinguished, and to define the classification rates based on the 3D model,
respectively. LDA tests were performed using all PC scores calculated by the PCAs in shape
and form space, but only the first 10 PC scores were needed to conduct the MANOVA tests
as they account for 93.7% of the shape variance and 98% of the total form variance. The
magnitude of the differences was tested by calculating the effect size according to Cohen’s
d (Cohen, 1988).
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Figure 4 Location of the 13 landmarks used to capture the shape of each mark, as described by Courte-
nay et al. (2017). (A) Orthogonal view and (B) lateral view of each cut mark in 3D. Images by Miguel Án-
gel Maté-González.

Full-size DOI: 10.7717/peerj.5133/fig-4

RESULTS
2D Analysis
The PCA analysis of cut marks represented in Fig. 5 present clear differences between the
two groups representing different cutting angles. The first two components represent a very
high percentage of the sample variance (100% in A and 98.1% in B). The two types of cut
marks are differentiated along the first axis in A, which embodies most of the within-sample
variance, and a combination of both axes in B. While the exclusion of the opening angle
variable in B allows a clearer separation of the two types of cut marks, the inclusion of this
variable still enables the differentiation of two clear patterns separating the samples. These
results are strongly supported by the numeric results presented in Tables 2 and 3 through
significant p values in the case of the MANOVA tests and at least 95.83% of the sample
being correctly classified in the confusion matrix in the LDA. Though differences between
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Figure 5 PCA plots in shape space. (A) Including all measurements. (B) Excluding OA.
Full-size DOI: 10.7717/peerj.5133/fig-5

the two groups are very much expressed by the opening angle of the incision as cut marks
are inflicted by holding the tool either perpendicular or at acute angle with respect to the
bone surface, the Cohen’s d stresses that the magnitude of the differences among groups is
greater when the angle measurement is excluded from the analysis (Table 4).

The PCA generated using the 2D 7-landmark model yielded a two-component solution
that accounts for 95%of the sample variance as shown in Fig. 6. The exceptional distribution
data in the Euclidean space shows a complete lack of overlapping samples, clearly separating
the two cut mark types in two separate groups. Both groups show no overlap along PC1,
which represents changes in cut mark depth and opening angle. Cut marks created with
the tool perpendicular to bone surface are narrower and deeper than those created with
the tool held at oblique angle. The second PC expresses changes in the opening angle of
the mark and the relative proportion of each side. Cutting marks (trend = 90◦) show
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Table 2 MANOVA results for the comparison between slicing (45◦) and cutting (90◦) marks.

F p

All 2D biometric measurements 31.6 <0.0001
2D biometric measurements excluding OA 54.87 <0.0001
2D shape space 138.1 <0.0001
3D shape space 52.09 <0.0001
3D form space 48.53 <0.0001

Table 3 LDA confusionmatrix results and average % of correctly classified cut marks.

45◦ 90◦ %correct

All measurements 45◦ 57 3
90◦ 2 58 95.83%

Measurements excluding OA 45◦ 58 2
90◦ 1 59 97.5%

2D landmarks in shape space 45◦ 59 1
90◦ 0 60 99.17%

3D landmarks in shape space 45◦ 58 2
90◦ 3 57 95.83%

3D landmarks in form space 45◦ 57 3
90◦ 3 57 95%

Table 4 Cohen’s d and Effect-size for the comparison between slicing (45◦ ) and cutting (90◦ ) marks.

Cohen’s d Effect-size r

All 2D biometric measurements 0.0847 0.0423
2D biometric measurements excluding OA 0.6053 0.2897
2D shape space −0.4986 −0.2419
3D shape space 0.3172 0.1567
3D form space 0.5375 0.2596

a greater variance pattern along the first two PCs than slicing cut marks (trend = 45◦),
suggesting that an oblique position of the tool leaves less room for morphological variance.
Pairwise MANOVA tests (Table 2) derived from the PC scores differentiate perfectly both
samples, producing p values of 4.475e−52 (F = 138.1). Exploring the variation across the
PC morphological scores, we see a great variation in depth as well as the opening angle of
the cut mark; represented strongly through changes in all of the landmarks across both axis
of the graph (Fig. 6). Classification tables in the LDA matrix are able to correctly classify 98
to 100% of the sample to their correct group (Table 3). The calculated Cohen’s d represents
a medium effect size that confirms the existence of differences among groups (Table 4).
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Figure 6 PCA graph presenting variance in cut mark cross-section shape using the 7-landmarkmodel.
Variance in shape is presented for the extremities of both PC scores along their respected axis.

Full-size DOI: 10.7717/peerj.5133/fig-6

3D Analysis
Analysing the samples using the 13-landmark 3D model was able to produce a two-
component solution representing a total cumulative variance of 69.574% (Fig. 7). This
variance is lower than the variance produced by the 2D PCA. While a certain degree
of overlapping can be observed in this graph, taking into consideration the nature of
the 13-landmark model, it is understandable that the 3D model is conditioned by more
variables than the 2D model. The PCA results, however, are still fairly clear and present
two different patterns across the two PC components presented in Fig. 7. Exploring the
variation in shape, the majority of variation consists of the positioning of the landmark
that marks the middle-lowermost point of the cut mark: highlighting the depth and angle
of the mark. PC1, however, also presents a great deal of variability regarding one particular
edge of the cut mark, highlighting the angle of the incision. In contrast to the previous PCA
scatter plots, here slicingmarks (trend= 45◦) show a wider dispersion range than cutmarks
(trend= 90◦). When the entirety of the mark is observed, marks produced at an acute angle
with respect to bone surface show more morphological variance because the mark is less
homogeneous along its length. Cut marks appear to be almost symmetrical and similarly
wide along their length. Changes expressed by PC2 are more subtle and do not relate
to the longitudinal symmetry as PC1. Cut and slice marks overlap more along PC2, but
show opposite trends towards the negative and positive area of the y-axis, respectively. The
MANOVA results (Table 2) are perfectly capable of differentiating between groups through
significant differentiation (p= 1.119e−38) of both samples (F = 52.09). In this case, the
classification/misclassification matrix is able to correctly assign between 95 and 97% of
the sample to their correct group (Table 3). However, these differences that tentatively
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Figure 7 PCA graph presenting variance cut mark shape using the 13 landmark 3Dmodel.Variance in
shape is presented for the extremities of both PC scores along their respected axis.

Full-size DOI: 10.7717/peerj.5133/fig-7

allow the distinction between cut and slice marks are not large according to the Cohen’s d
(Table 4).

Analysing the 13-landmark model including the variable of Procrustes form space
produced a similarly successful PCA graph (Fig. 8). The PC scores presented in Fig. 8
represent an even higher portion of the sample variance than when the analysis was carried
out excluding form, producing a cumulative variance of 88.5% of the sample (71.6% of
which is distributed along the first component). The exploration of form change across
the PC scores describe incredibly similar results to the analysis excluding size, highlighting
an important variance in the curvature of the cut mark’s walls as well as the angle of the
incision. Only subtle differences are observed in comparison to shape changes, with form
variance expressed in PC2 being most affected by the inclusion of size. While a certain
degree of overlapping is observable through these PCA results, the two samples are still
statistically distinguishable through a multivariate analysis (Table 2) with a p value of
1.27e−37 (F = 48.53). Classification/misclassification tables in this case show that the
LDA is capable of correctly distinguishing a total of 95% of the sample (Table 3). Though
these results are very similar to the results obtained in shape space, the inclusion of the size
variable increases the magnitude of the differences among groups (Table 4).

Regarding the differences between the 2D analysis of cutmark profiles and those resulting
from the use of the 13-landmarkmodel to analyse the entire 3D cutmarkmorphology, these
can be logically explained considering the nature of both samples. It would be rational to
assume that the angle of incision would greatly affect the angle of the mark; thus impacting
all seven landmarks and measurements taken during the analysis of the cut mark profiles.
The 13-landmark model explaining the entire morphology of the mark, in fact, analyses
the shape, curvature and width of the mark whereas the angle of the incision is represented
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Figure 8 PCA graph presenting variance in cut mark form using the 13 landmark 3Dmodel.Variance
in form is presented for the extremities of both PC scores along their respected axis.

Full-size DOI: 10.7717/peerj.5133/fig-8

almost solely through landmark number 3. Thus, we can observe strong variations in the
landmarks regarding one edge of the mark in the 3D experimental sample; however, this
variation is not as strong in the analysis of mark profiles through 2D. The accuracy of the
2D results is slightly higher than the 3D model; however, both models are still capable of
producing highly similar results when splitting and correctly classifying the samples. The
significance of these results, as seen through all the statistical tests applied in this paper,
provide remarkably clear differentiation between both cut mark samples.

DISCUSSION
Although Otárola-Castillo et al. (2018) refer to other geometric morphometric approaches
(i.e., those used by Maté-González et al., 2015; Maté-González et al., 2016; Maté-González
et al., 2017a;Maté-González et al., 2017b) as bidimensional, the truth is that those methods
are tridimensional in the way information is derived and sequentially bidimensional
(i.e., multidimensional) in the way data are interpreted. Given that these approaches
rely on 3D-micromorphology of marks, it would be erroneous to qualify them as
bidimensional. Likewise, the presentation of the development of BSM analysis in
taphonomy by Otárola-Castillo et al. (2018) is incomplete. For example, Domínguez-
Rodrigo & Yravedra (2009) actually argue that regardless of their variability, specific
butchery processes are characterized by specific cut mark frequency ranges, which can be
used to differentiate certain behaviors. Otárola-Castillo et al. (2018: p. 3) argue that 2D
approaches are insufficient because ‘‘2D profile data observed on 3D models do not fully
exploit the 3D morphological information encapsulated in the BSMs models’’. If that were
the case, we would observe that 3Dmorphometric models should yield higher classification
accuracy than 2D models. Here, we have shown that this is not the case. Therefore, 2D
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models seem to capture by a sequence of sections the same shape information as 3D
topography. Otherwise said, if 2D methods did not capture enough of the 3D topography
of BSMs, that would not be relevant because 2D models show similar (even slightly) higher
rates of correct mark classification as 3D models. Otárola-Castillo et al. (2018) likewise
complain that these 2D models are affected by irregular use of landmarks. Here we have
shown that 2D models use a semi-landmark system by regularly spacing each landmark
on the same portion of each mark, as is typical of geometric morphometric analyses in
Fourier systems. As proof that this method does not impact the accuracy of 2D methods, it
suffices to compare the accuracy of these with that resulting from 3Dmodels. In essence, no
argument has been empirically provided to suggest that this is a problem that can impact
the method’s heuristics or its ‘‘statistical properties, power, bias and error’’.

In contrast, this is not something that could be argued in the case of in Otárola-Castillo
et al. (2018)’s own analysis. Although they use exploratory methods, Otárola-Castillo
et al. (2018) also use hypothesis-testing methods (e.g., MANOVA). The multivariate
approach to power analyses of multidimensional designs are more demanding than simple
t -test methods regarding power. The power in Otárola-Castillo et al. (2018)’s analysis
is questionable, since they used a two-sample experiment with 43 marks. In order to
differentiate moderate effect sizes between both samples for a simpler t -test model, a
power analysis shows that they would have needed a much larger sample (Cohen’s delta =
0.5), comprising a minimum of 85 cases per sample (total = 170) if aspiring to a power of
0.9. If lowering the power to 0.8 and aiming at detecting minor differences between both
samples, they would have needed a total sample of 175 marks per group. Their current
sample size (17 slices and 27 cuts) shows a power of 0.16 to detect small effect sizes (0.3)
and of 0.36 to detect moderate effect size (0.5); that is, the probability of having Type II
errors in their sample range from 0.84 to 0.64. Although Otárola-Castillo et al. (2018) are
not performing comparative metric analyses but classification tests, the small sample they
used can also affect the classification rates they derived and the multivariate analysis of
their data, especially the MANOVA results (Chartier & Allarie, 2007; Faul et al., in press).

An additional element of concern is that 2D analysis usemark sections that (if the camera
is properly calibrated) do not distort the original shape of the section. In contrast, 3D data
retrieved through confocal microscope needs a transformation of the raw data for model
creation and cleaning that commonly does not reproduce the mark with its exact shape but
a distortion thereof. Eventually, the process ends up with a ‘‘smoothing’’ of the surface that
‘‘removes any remaining extraneous variation’’, including the original variation introduced
by the roughness of the mark surface. Additionally, an algorithm is applied, which helps
select alignment point in a similar fashion to landmarks in bidimensional studies, which
are also non-homologous. This smoothed surface reproduces a proxy of the mark shape
that is not the original mark shape. Otherwise put, sections of this smoothed mark may
differ from the original shape more than sections of the samemark taken by 2D approaches
on the original photogrammetric reconstruction of the mark. The typical angularity of the
cut mark is lost through this smoothing process as can be seen in the ‘‘taco shell-shape’’
resulting thereof in Otárola-Castillo et al. (2018)’s Fig. 5. Otárola-Castillo et al. (2018; p. 8)
admit additional bias when they acknowledge that ‘‘subjective variation could have been
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introduced during the mark selection and isolation steps. However, if subjective error was
added, it was likely introduced to all specimens in a random manner. Consequently, such
error is unlikely to have affected the differences between groups’’. This remains to be tested.
What has not been discarded in the accuracy rates obtained byOtárola-Castillo et al. (2018)
is that the two comparative data sets were made on structurally different marks (slices and
cuts). The different angle of orientation in the production of these marks created structural
differences that the smoothing process did notmask.One set displayed a trend for symmetry
and the other set displayed a trend for the contrary. This makes mark distinction fairly
easy, even if using hand-lenses and subjective individual assessment. The full 3D method
would have benefitted from having tested more complicated scenarios in which BSMs are
structurally similar (e.g., trampling marks and cut marks made with retouched flakes).
In this more challenging experimental scenario, 2D methods have succeeded repeatedly
in differentiating structurally-similar marks (Maté-González et al., 2015; Maté-González
et al., 2016; Maté-González et al., 2017a; Maté-González et al., 2017b). It remains to be
tested if the full 3D method can pass similar tests with such high accuracy rates as those
documented in 2D methods. It would be interesting to see how Otárola-Castillo et al.’s
(2018) 3D method works distinguishing morphological BSM variability produced by raw
material type (e.g., flint, basalt and quartzite) (Maté-González et al., 2016;Maté-González et
al., 2017a; Yravedra et al., 2017a; Yravedra et al., 2017b) or the BSMs differences caused by
different tool types (Courtenay et al., 2017). In this regard, Otárola-Castillo et al.’s (2018)
method does not present any improvement in the interpretation of cut mark analysis that
was not achieved through the use of photogrammetric techniques.

In sum, the present work shows that full 3D analysis of BSMs is a great addition to
the range of microscopic and photogrammetric tools available for BSM identification and
classification. However, contrary to claims of a higher accuracy yielded by the 3Dmethods,
here we have shown that 2D methods match (and even surpass) classification rates yielded
by 3D methods. The rates of both methods in the present work (>95%) are higher than
those reported by Otárola-Castillo et al. (2018) for a similar experiment (accuracy= 88%).
This difference remains unexplained. The lack of mark surface distortion by smoothing
in the 3D method applied in the present work (in contrast with those applied by Otárola-
Castillo et al., 2018) may be in part responsible. Since one argument that potentially limits
the potential of 3D methods is that they evaluate artificially distorted marks, since they
are unable to faithfully reproduce the micro-topography of BSMs and generate their
topography through computer algorithms. The higher classification rate obtained here
detracts any arguments against the lack of capability of the 2D method in capturing all
the essentials of the mark morphology through either sections at the same intervals or
semi-landmarks also placed at the same intervals. The results presented here also detract
the argument that full 3D methods improve on the heuristics of 2D methods. Both seem
to work equally well, and we should all be glad for it.

The claim thatOtárola-Castillo et al. (2018)’s work presents the first 3D analysis of BSMs
need nuancing. While several papers have been published presenting the use of 3D images
in BSMs (Bello & Soligo, 2008; Bello, Parfitt & Stringer, 2009; Bello, 2011; Bonney, 2014;
Boschin & Crezzini, 2012; Crezzini et al., 2014; Maté-González et al., 2017b) some authors
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have even worked directly with these 3D digital reconstructions to create statistical models
(Aramendi et al., 2017; Courtenay et al., 2017).

CONCLUSIONS
The response to the use of new 2D–3D techniques in BSM analysis has been mixed.
Regarding photogrammetric techniques, contrasting arguments have been made regarding
the quality of the results and resolution as opposed to the results produced by the Alicona
3D Infinite Focus Imaging microscope or the laser scanning confocal microscope. These
arguments have even been extended to the use of reflex cameras (Maté-González et al.,
2017b) or the DAVID structured-light SLS-2s scanner (Courtenay et al., 2017; Maté-
González et al., 2017c) which allow the differentiation of not only cut marks but have also
been applied to the analysis of BSMs produced by different carnivores (Aramendi et al.,
2017; Arriaza et al., 2017; Yravedra et al., 2017c).

Otárola-Castillo et al. (2018) present an experiment comparing the morphological
differences of cut marks produced through slicing (45◦) and cutting (90◦). Through
statistical analysis of the morphologies present and the use of a non-homologous semi-
landmark model, these authors describe the differences between the two BSMs samples
in order to prove the degree of resolution of their method. Their success rate in accurate
classification is 88%. Here, we have reported on 3D and 2D methods that allow a correct
classification of >95% of cut and slicing marks. This shows that: (a) 2D sections of marks
do capture the essential morphology of the mark without any distortion; (b) the use of
semi-landmarks does not create any methodological bias; and (c) no improvement is
detected through the use of the complete mark 3D surface.

This shows that no geometric morphometric method is best for classifying cut
marks. Taphonomists can dispose of several options depending on their resources.
Photogrammetric 2D methods, which require less investment than any of the alternative
methods, yield equally accurate (or even slightly better) results than more sophisticated
3D models. Ideally, one should combine methods and select the one producing the best
results (i.e., lowest error or highest classification accuracy) in each case, as statisticians do
with machine learning methods.
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