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ABSTRACT
Zoantharians are sessile marine invertebrates and colonial organisms possessing sexual
and asexual reproductive ability. The zooxanthellate zoantharian genus Palythoa is
widely distributed in coral reef ecosystems. In theRyukyuArchipelago, Japan, sympatric
Palythoa tuberculosa and P. mutuki are the dominant species of this genus in the
intertidal zone. Previous phylogenetic analyses have shown that these two species
are closely related, and additionally revealed a putative sympatric hybrid species
(designated as Palythoa sp. yoron). In this study, we attempted to delineate Palythoa
species boundaries and to clarify the relationships among these three groups plus
another additional putative sympatric species (P. aff.mutuki) by multiple independent
criteria. The morphology of these four lineages was clearly different; for example the
number of tentacles was significantly different for each species group in all pairwise
comparisons. From observations of gonadal development conducted in 2010 and 2011,
P. sp. yoron and P. aff.mutuki appear to be reproductively isolated from P. tuberculosa.
In the phylogenetic tree resulting frommaximum likelihood analyses of the ITS-rDNA
sequence alignment, P. tuberculosa and P. sp. yoron formed a very well supported
monophyletic clade (NJ = 100%, ML = 95%, Bayes = 0.99). This study demonstrates
that despite clear morphological and/or reproductive differences, P. tuberculosa and
P. sp. yoron are phylogenetically entangled and closely related to each other, as are
P. mutuki and P. aff. mutuki. Additionally, no single molecular marker was able to
divide these four lineages into monophyletic clades by themselves, and a marker that
has enough resolution to solve this molecular phylogenetic species complex is required.
In summary, the morphological and reproductive results suggest these lineages are four
separate species, and that incomplete genetic lineage sorting may prevent the accurate
phylogenetic detection of distinct species with the DNA markers utilized in this study,
demonstrating the value of morphological and reproductive data when examining
closely related lineages.
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INTRODUCTION
Zoantharians are sessile marine invertebrates and colonial organisms possessing sexual and
asexual reproductive ability (Ryland, 1997). Zoantharians belong to subclass Hexacorallia
(Cnidaria, Anthozoa) and they have the significant feature of embedding small particles
(sand, detritus) into their body column. Zooxanthellate zoantharian species are found
worldwide in tropical and subtropical shallow water areas (Trench, 1974; Reimer, Takishita
& Maruyama, 2006).

Traditionally, zoantharian classification has been based on morphological characters
such as the relative degree of coenenchyme development, number of tentacles per polyp,
oral disk diameter, and position and features of the sphincter muscle (Ryland & Lancaster,
2003). However, sand encrustation (Reimer et al., 2010) and large intraspecific variation
have often made histological classification difficult (Muirhead & Ryland, 1985; Mueller &
Haywick, 1995; Reimer et al., 2010). Phylogenetic work using mitochondrial 16S ribosomal
DNA and cytochrome oxidase subunit I (mtCOI) and the nuclear internal transcribed
spacer region of ribosomal DNA (ITS-rDNA) as molecular markers have begun to reveal
evolutionary relationships in this group (e.g., Reimer et al., 2004; Sinniger et al., 2005;
Reimer et al., 2007b).

The zooxanthellate zoantharian genus Palythoa Lamouroux, 1816 is widely distributed
in coral reef ecosystems as a common group of organisms. In the Ryukyu Archipelago
of southern Japan (Fig. 1), Palythoa tuberculosa (Esper, 1805) and P. mutuki Haddon
& Shackleton, 1891 are the dominant species of this genus in the intertidal zone (Irei,
Nozawa & Reimer, 2011). Reimer et al. (2007a) showed that these two species are closely
related with phylogenetic analyses based on ITS-rDNA and mtCOI. Furthermore, they
revealed a putative hybrid species (designated as Palythoa sp. yoron), which was presumed
to have originated via interspecies hybridization between P. tuberculosa and P. mutuki,
based on shared additive patterns of nucleotide polymorphisms of ITS-rDNA sequences,
and indicated a potential reticulate evolutionary history in these three species groups. A
subsequent investigation conducted by Shiroma & Reimer (2010) revealed that P. sp. yoron
was sympatric in the intertidal zone with these two other species in Okinawa, but also
was present in a different microenvironment than P. tuberculosa and P. mutuki. As well,
P. sp. yoron is intermediate in morphological form between P. tuberculosa and P. mutuki.
(Fig. 2, Table 1), with all three species readily distinguishable from one another (Shiroma
& Reimer, 2010).

In this study, we attempted to determine the delimitation of Palythoa species boundaries
and to clarify the relationships among species groups using multiple independent criteria.
We first made primary hypotheses of species delimitation based onmorphology and habitat
preference. We then re-examined these hypotheses via genetic data and investigated ovary
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Fig. 1. Map of Palythoa species specimen locations in the Ryukyu Archipelago, including Okinawa-
jima I., Zamami -jima I., Yoron -to I., O kinoerabu-jima I., and Tokunoshima I. Locations for 
specimens collected in this study represented by closed symbols, location for spawning timing 
investigations represented by open symbol. 
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Figure 1 Map of Palythoa species specimen locations in the Ryukyu Archipelago in this study.Map of
Palythoa species specimen locations in the Ryukyu Archipelago, including Okinawa-jima I., Zamami-jima
I., Yoron-to I., Okinoerabu-jima I., and Tokunoshima I. Locations for specimens collected in this study
represented by closed symbols, location for spawning timing investigations represented by open symbol.

Full-size DOI: 10.7717/peerj.5132/fig-1
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Figure 2 In situ images of Palythoa species examined in this study. In situ images of (A) Palythoa tuber-
culosa, (B) P. mutuki, (C) P. sp. yoron, (D) P. aff.mutuki, (E) P. tuberculosa (left; ‘‘Pt’’) and P. sp. yoron
(right, ‘‘Py’’), and (F) P. mutuki (left, ‘‘Pm’’) and P. aff.mutuki (right, ‘‘Pam’’). Scale bars in (A), (C), (E)
are 2 cm, in (B), (D), (F) 1 cm. All images taken by MMizuyama.

Full-size DOI: 10.7717/peerj.5132/fig-2

development through time as a proxy to clarify the timing of spawning and the possibility
of cross-hybridization among putative species.

MATERIALS AND METHODS
Specimen collection
Specimens of Palythoa species were collected in the intertidal zone from several sites in the
Ryukyu Archipelago, including Okinawa-jima Island, Yoron-to Island, Okinoerabu-jima
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Table 1 Characters employed for identification of Palythoa species.

Species P. tuberculosa P. sp. yoron P. mutuki P. aff.mutuki

Typical environment Backreef moat - out
reef

Reef flat, tide pool Reef flat, reef edge,
surge channel

Reef flat, reef edge,

Coenenchyme development Well-developed Moderately developed Not well developed;
or stoloniferous

Not well developed;
or stoloniferous

Polyp structure immersae
(= ‘‘embedded’’)

intermediae
(= ‘‘moderate’’)

liberae
(= ‘‘free-standing’’)

liberae
(=‘‘free-standing’’)

Surface structure of capitular ridges Smooth Smooth Jagged Smooth
Number of polyps/colony >10 <10 >10 >10

Island, and Tokunoshima Island (Fig. 1, Table 2) between March 2010 to October 2012.
All specimens were stored in 99.5% ethanol for DNA analyses or 5% formalin-SW solution
for morphological and anatomical analyses.

Each specimen was identified according to morphological classification methodology
(Pax, 1910), supplemented with a key to field identification (Reimer, 2010), and ecological
and morphological aspects of P. sp. yoron (Shiroma & Reimer, 2010). Characters
employed for identification of Palythoa species were environment (habitat), coenenchyme
development, polyp structure, number of polyps per colony, and numbers of tentacles
per polyp. All specimens were identified preliminarily as Palythoa tuberculosa (Fig. 2A),
P. mutuki (Fig. 2B) and P. sp. yoron (Fig. 2C). During collection, it was noticed that certain
specimens had a similar external appearance with P. mutuki but with less well developed
marginal ridges and larger polyp sizes. Such specimens were found sympatrically with other
specimens, and these were designated as P. aff. mutuki (Fig. 2D). In addition, spawning
timing investigations for all species groups were carried out between June 2010 toDecember
2010, and from June 2011 to February 2012 at Kaminomine, Tokunoshima, Kagoshima
(27◦46′09′N, 129◦02′16′E) by monthly sampling. In particular, for collecting P. tuberculosa,
investigation was conducted in a wide area from lagoon tide pools to the outer reef in 2010.
However, in 2011–2012 investigations were conducted only in tide pools due to rough sea
conditions. At least five different colonies of approximately ten polyps for each species
were collected in whole or partially.

Morphological analyses
External anatomy
Fixed specimens were cut horizontally at the oral disk height by surgical knife and tweezers
under stereomicroscope (S8APO, Leica, Tokyo) and the number of tentacles, which is
one of the characters for Palythoa species (e.g., Ryland & Lancaster, 2003), were counted
(Table 3). To eliminate pseudo-replication in comparison among species, a single polyp
was chosen with the table of random number from each colony. The mean numbers of
tentacles per polyp for each species pair were compared using Mann–Whitney U test with
Bonferroni correction.
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Table 2 Examined Palythoa specimens in this study from the Ryukyu Archipelago.

Specimen
code

Location/region GPS
code

Species ID Date
(m/d/y)

Collected
by

Fixed by mt
COI

mt
16S-rDNA

ITS-rDNA ALG11

2PtOkOd Odo/Okinawa 1 P. tuberculosa Aug 18. 09 MM*1 99.5% EtOH NA NA NA KX389373

4PtOkOd Odo/Okinawa 1 P. tuberculosa Aug 23. 09 MM 99.5% EtOH NA KX389335 NA KX389374

5PtOkOd Odo/Okinawa 1 P. tuberculosa Aug 23. 09 MM 99.5% EtOH NA NA NA KX389375

37PtYoMa Maehama/Yoron 2 P. tuberculosa Mar 03. 10 JDR*2 99.5% EtOH NA KX389336 NA KX389376

39PtYoUk Ukachi/Yoron 3 P. tuberculosa Mar 04. 10 MM 99.5% EtOH NA KX389337 KX389459 KX389377

40PtYoUk Ukachi/Yoron 3 P. tuberculosa Mar 04. 10 MM 99.5% EtOH NA NA NA KX389378

49PtYoUk Ukachi(West)/Yoron 4 P. tuberculosa Mar 04. 10 MM 99.5% EtOH NA NA NA KX389379

63PtErYa Yakomo/Okinoerabu 5 P. tuberculosa Mar 05. 10 MM 99.5% EtOH NA KX389338 NA KX389380

65PtErYa Yakomo/Okinoerabu 5 P. tuberculosa Mar 05. 10 MM 99.5% EtOH NA NA NA KX389381

91PtToYo Yonama/Tokunoshima 6 P. tuberculosa Mar 08. 10 MM 99.5% EtOH NA NA NA KX389382

98PtToKa Kaminomine/Tokunoshima 7 P. tuberculosa Mar 09. 10 MM 99.5% EtOH NA NA NA KX389383

100PtToKa Kaminomine/Tokunoshima 7 P. tuberculosa Mar 09. 10 MM 99.5% EtOH NA KX389339 NA KX389384

358PtOkAk Akazaki/Okinawa 8 P. tuberculosa Jun 24. 12 MM 99.5% EtOH NA KX389340 NA KX389385

361PtOkOk Oku/Okinawa 9 P. tuberculosa Jun 25. 12 MM 99.5% EtOH NA NA NA KX389386

371PtZaAm Ama/Zamami 10 P. tuberculosa Jul 16. 12 YM*3 99.5% EtOH NA KX389341 NA KX389387

3PyOkOd Odo/Okinawa 1 P. sp. yoron Aug 18. 09 MM 99.5% EtOH KX389439 KX389342 KX389460 KX389388

14PyOkOd Odo/Okinawa 1 P. sp. yoron Aug 23. 09 MM 99.5% EtOH KX389440 KX389343 KX389472 KX389389

15PyOkOd Odo/Okinawa 1 P. sp. yoron Sep 05. 09 MM 99.5% EtOH KX389441 KX389344 KX389461 KX389390

16PyOkOd Odo/Okinawa 1 P. sp. yoron Sep 05. 09 MM 99.5% EtOH NA KX389345 KX389462 KX389391

43PyYoUk Ukachi/Yoron 3 P. sp. yoron Mar 04. 10 MM 99.5% EtOH KX389442 KX389346 KX389470 KX389392

44PyYoUk Ukachi/Yoron 3 P. sp. yoron Mar 04. 10 MM 99.5% EtOH NA KX389347 KX389471 KX389393

51PyYoUk Ukachi(West)/Yoron 4 P. sp. yoron Mar 04. 10 MM 99.5% EtOH KX389443 KX389348 KX389466 KX389394

53PyYoUk Ukachi(West)/Yoron 4 P. sp. yoron Mar 04. 10 MM 99.5% EtOH NA KX389349 NA KX389395

81PyErYa Yakomo/Okinoerabu 5 P. sp. yoron Mar 05. 10 MM 99.5% EtOH KX389444 KX389350 KX389463 KX389396

83PyErYa Yakomo/Okinoerabu 5 P. sp. yoron Mar 05. 10 MM 99.5% EtOH NA KX389351 KX389464 KX389397

85PyErYa Yakomo/Okinoerabu 5 P. sp. yoron Mar 05. 10 MM 99.5% EtOH KX389445 KX389352 KX389465 KX389398

87PyErYa Yakomo/Okinoerabu 5 P. sp. yoron Mar 05. 10 MM 99.5% EtOH NA KX389353 NA KX389399

105PyToKa Kaminomine/Tokunoshima 7 P. sp. yoron Mar 09. 10 MM 99.5% EtOH KX389446 KX389354 KX389467 KX389400

107PyToKa Kaminomine/Tokunoshima 7 P. sp. yoron Mar 09. 10 MM 99.5% EtOH KX389447 KX389355 KX389468 KX389401

109PyToKa Kaminomine/Tokunoshima 7 P. sp. yoron Mar 09. 10 MM 99.5% EtOH NA KX389356 KX389469 NA

359PyOkAk Akazaki/Okinawa 8 P. sp. yoron Jun 24. 12 MM 99.5% EtOH KX389448 KX389357 NA KX389402

42PmYoUk Ukachi/Yoron 3 P. mutuki Mar 04. 10 MM 99.5% EtOH NA KX389366 KX389488 KX389403

61PmYoUk Ukachi/Yoron 3 P. mutuki Mar 04. 10 JDR 99.5% EtOH NA NA NA KX389404

73PmErYa Yakomo/Okinoerabu 5 P. mutuki Mar 05. 10 MM 99.5% EtOH NA NA KX389484 KX389405

75PmErYa Yakomo/Okinoerabu 5 P. mutuki Mar 05. 10 MM 99.5% EtOH NA KX389367 KX389482 KX389406

77PmErYa Yakomo/Okinoerabu 5 P. mutuki Mar 05. 10 MM 99.5% EtOH NA NA KX389481 KX389407

93PmToYo Yonama/Tokunoshima 6 P. mutuki Mar 08. 10 MM 99.5% EtOH NA NA NA KX389408

94PmToYo Yonama/Tokunoshima 6 P. mutuki Mar 08. 10 MM 99.5% EtOH NA NA NA KX389409

95PmToYo Yonama/Tokunoshima 6 P. mutuki Mar 08. 10 MM 99.5% EtOH NA KX389368 KX389487 NA

216PmOkOd Odo/Okinawa 1 P. mutuki May 04. 11 MM 99.5% EtOH NA KX389369 NA KX389410

218PmOkOd Odo/Okinawa 1 P. mutuki May 04. 11 MM 99.5% EtOH NA NA KX389483 KX389411

(continued on next page)
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Table 2 (continued)

Specimen
code

Location/region GPS
code

Species ID Date
(m/d/y)

Collected
by

Fixed by mt
COI

mt
16S-rDNA

ITS-rDNA ALG11

220PmOkOd Odo/Okinawa 1 P. mutuki May 04. 11 MM 99.5% EtOH NA NA KX389489 KX389412

222PmOkOd Odo/Okinawa 1 P. mutuki May 04. 11 MM 99.5% EtOH NA NA KX389485 KX389413

240PmErSu Sumiyoshi/Okinoerabu 11 P. mutuki Jun 18. 11 MM 99.5% EtOH NA NA NA KX389414

280PmToKa Kaminomine/Tokunoshima 7 P. mutuki Oct 05. 11 MM 99.5% EtOH NA NA NA KX389415

316PmOkKo Komesu/Okinawa 12 P. mutuki ? Feb 25. 12 MM 99.5% EtOH NA KX389370 KX389480 KX389416

319PmOkMi Mizugama/Okinawa 13 P. mutuki ? Mar 29. 12 MM 99.5% EtOH NA KX389371 KX389486 KX389417

320PmOkMi Mizugama/Okinawa 13 P. mutuki Mar 29. 12 MM 99.5% EtOH NA NA NA KX389418

323PmOkTe Teniya/Okinawa 14 P. mutuki Apr 05. 12 MM 99.5% EtOH NA NA NA KX389419

324PmOkTe Teniya/Okinawa 14 P. mutuki Apr 05. 12 MM 99.5% EtOH NA NA NA KX389420

349PmOkSh Shioya Bay/Okinawa 15 P. mutuki Jun 17. 12 MM 99.5% EtOH NA NA NA KX389421

362PmOkOk Oku/Okinawa 9 P. mutuki Jun 25. 12 MM 99.5% EtOH NA NA NA KX389422

155PamErYa Yakomo/Okinoerabu 5 P. aff.mutuki July 25. 10 MM 70% EtOH KX389449 KX389358 KX389473 KX389423

159PamToKa Kaminomine/Tokunoshima 7 P. aff.mutuki July 28. 10 MM 70% EtOH NA NA NA KX389424

229PamErYa Yakomo/Okinoerabu 5 P. aff.mutuki Jun 17. 11 MM 99.5% EtOH KX389450 KX389359 KX389474 NA

231PamErYa Yakomo/Okinoerabu 5 P. aff.mutuki Jun 17. 11 MM 99.5% EtOH KX389451 KX389360 KX389475 KX389425

233PamErYa Yakomo/Okinoerabu 5 P. aff.mutuki Jun 17. 11 MM 99.5% EtOH KX389452 KX389361 KX389476 KX389426

237PamErSu Sumiyoshi/Okinoerabu 11 P. aff.mutuki Jun 18. 11 MM 99.5% EtOH KX389453 KX389362 KX389479 NA

248PamToKa Kaminomine/Tokunoshima 7 P. aff.mutuki Jun 21. 11 MM 99.5% EtOH KX389454 KX389363 KX389478 KX389427

250PamToKa Kaminomine/Tokunoshima 7 P. aff.mutuki Jun 21. 11 MM 99.5% EtOH KX389455 KX389364 KX389477 KX389428

328PamOkTe Teniya/Okinawa 14 P. aff.mutuki Apr 05. 12 MM 99.5% EtOH KX389456 NA NA KX389429

364PamOkOk Oku/Okinawa 9 P. aff.mutuki Jun 25. 12 MM 99.5% EtOH KX389457 KX389365 NA KX389430

215PsOkIk Ikei E/Okinawa 16 Palythoa sp. sakurajimensis Apr 29. 11 MM 99.5% EtOH NA KX389372 KX389491 KX389431

1595a Wanli Tung/Taiwan 2 Palythoa sp. sakurajimensis Sep. 09 JDR 99.5% EtOH KF499697 KF499661 KX389490 KX389432

1597a Wanli Tung/Taiwan 1 Palythoa sp. sakurajimensis Sep. 09 JDR 99.5% EtOH KF499696 KF499662 KF499778 KX389433

1635a Bitouchiao/Taiwan 8 Palythoa sp. sakurajimensis Sep. 09 JDR 99.5% EtOH KF499735 KF499652 KF499783 KX389434

321PhOkMi Mizugama/Okinawa 13 P. heliodiscus Mar 29. 12 MM 99.5% EtOH KX389458 NA NA KX389435

TN116 Mizugama/Okinawa 13 P. heliodiscus Aug 19. 10 TN*4 99.5% EtOH NA NA NA KX389436

TN119 Mizugama/Okinawa 13 P. heliodiscus Jul 4. 12 TN 99.5% EtOH NA NA NA KX389437

TN121 Mizugama/Okinawa 13 P. heliodiscus Jul 4. 12 TN 99.5% EtOH NA NA NA KX389438

Notes.
MM*1, Masaru Mizuyama; JDR*2, James Davis Reimer; YM*3, Yu Miyazaki; TN*4, Tohru Nishimura.

aSpecimen from Reimer et al. (2013).
GPS code: 1, N26◦05′15 ′′, E127◦42′30′′; 2, N27◦01′16′′, E128◦26′28′′; 3, N27◦04′00′′, E128◦25′24′′, 4, N27◦03′54′′, E128◦25′11′′; 5, N27◦20′05′′, E128◦32′49′′; 6, N27◦52′17′′,
E128◦53′23′′; 7, N27◦46′13′′, E129◦02′18′′; 8, N26◦49′17′′, E128◦18′50′′; 9, N26◦50′49′′, E128◦17′12′′; 10, N26◦13′35′′, E127◦17′33′′; 11, N27◦21′21′′, E128◦31′44′′; 12,
N26◦05′17′′, E127◦42′06′′; 13, N26◦21′35′′, E127◦44′20′′; 14, N26◦34′07′′, E128◦08′48′′; 15, N26◦39′50′′, E128◦06′31′′; 16, N26◦23′40′′, E128◦00′22′′.

Cnidae
Cnidae analyses were conducted using undischarged nematocysts from the tentacles,
column, pharynx, and mesenteriel filaments of polyps (n= 3/species group) under a
Nikon Eclipse80i stereomicroscope (Nikon, Tokyo). Cnidae sizes were measured using
ImageJ v1.45s (Rasband, 2012). Cnidae classification followed England (1991) and Ryland
& Lancaster (2004; see also Table 4).

Spawning period investigation
Ovary development of all preserved colonies was observed via cross sections made by
cutting polyps vertically through the mouth located at the center of oral disk under a
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Table 3 The mean number of tentacles± standard deviation and results of Mann–WhitneyU test
with Bonferroni correction between each Palythoa species pairs.N = total number of examined polyps
for each species (one per colony).

Species P. tuberculosa P. sp. yoron P. mutuki P. aff.mutuki

Mann–WhitneyU test

P. tuberculosa 31.6± 3.4
(N = 11)

<0.001 <0.001 <0.001

P. sp. yoron 40.5± 2.56
(N = 8)

<0.001 <0.001

P. mutuki 54.4± 7.43
(N = 7)

<0.001

P. aff.mutuki 71± 4.14
(N = 8)

stereomicroscope. During anthozoans’ oogenesis, oocytes form a single-layered germinal
ribbon down the mesoglea of the central third of the septa. Subsequently, the germinal
ribbon develops a sequence of swollen nodes where the septum folds locally in an S and
the layers fuse (Ryland, 1997; Ryland, 2000). When we observed a germinal ribbon in
a polyp, we counted the polyp as ‘‘possessing developing ovaries’’, and the number of
polyps possessing developing ovaries were totaled. To evaluate the spawning period of each
species, the ratio of the number of polyps possessing developing and/or developed ovaries
to the total number of polyps examined was calculated over time. When the calculated
proportion of developed/developing ovaries dropped dramatically, we designated this as
the start of the estimated spawning period. The end of the estimated spawning period was
defined as the point where the number of developed/developing ovaries reached 0%.

Molecular analyses
DNA extraction, PCR amplification and direct sequencing
DNA from each specimen was extracted using a DNeasy Blood and Tissue Kit (QIAGEN,
Tokyo, Japan) according to the manufacturer’s instructions. A small amount of tissue from
each specimen was removed using a surgical knife sterilized by open flame. Extracted DNA
was subsequently stored at−20 ◦C, and then we amplified target sequences via polymerase
chain reaction (PCR).

Three molecular markers that have previously been used for differentiation of Palythoa
were chosen; (1) the mitochondrial 16S of ribosomal DNA (mt 16S-rDNA), (2) the
mitochondrial cytochrome c oxidase subunit I (mtCOI), and (3) the internal transcribed
spacer region of nuclear ribosomal DNA (ITS-rDNA) (Reimer et al., 2004; Sinniger et al.,
2005; Reimer et al., 2007a, etc.). Furthermore, a nuclear housekeeping gene, (4) asparagine-
linked glycosylation 11 protein (ALG11) region, was also examined for the first time in
zoantharians. Thismarker has been found to bemore informative thanmtCOI in examining
sponge relationships and succeeded in solving previously debated nodes (Hill et al., 2013)
and has also been considered to be useful for resolving cnidarian relationships (Belinky et
al., 2012).
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Table 4 Cnidae types and sizes of Palythoa aff.mutuki, Palythoa mutuki, Palythoa sp. yoron and Palythoa tuberculosa. Frequency: relative abundance of cnidae type
in decreasing order; numerous, common, occasional, rare, very rare (N = number of specimens found/total specimens examined).

Palythoa aff.mutuki Palythoa mutuki Palythoa sp. yoron Palythoa tuberculosa

Length×width
(µm)

Frequency Length×width
(µm)

Frequency Length×width
(µm)

Frequency Length×width
(µm)

Frequency

Tentacles

Spirocysts 12–36× 3–8 Numerous (3/3) 13–41× 2–8 Numerous (3/3) 11–36× 2–6 Common (3/3) 17–37× 3–7 Numerous (3/3)

Basitrichs 16–55× 4–7 Common (3/3) 14–63× 3–8 Numerous (3/3) 25–73× 2–9 Numerous (3/3) 25–37× 4–6 Common (3/3)

Holotrichs small 15–20× 5–9 Rare (1/3) – 0 – 0 – 0

Holotrichs large 35–77× 19–31 Occasional (2/3) 39–78× 18–32 Numerous (3/3) 47–82× 21–34 Numerous (3/3) 28–85× 17–37 Occasional (2/3)

P-mastigophores 25–50× 5–10 Common (3/3) 15× 4 Very rare
(single specimen)

26–29× 5–6 Occasional (2/3) 46–51× 6–8 Rare (1/3)

Column

Spirocysts – 0 – 0 – 0 16–34× 3–6 Rare (1/3)

Basitrichs 21–53× 5–7 Occasional (2/3) 25–83× 5–9 Common (3/3) – 0 25–69× 4–10 Common (3/3)

Holotrichs small 21× 7 Very rare
(single specimen)

19–24× 8 Rare (1/3) – 0 – 0

Holotrichs large 32–69× 15–30 Numerous (3/3) 24–85× 17–31 Numerous (3/3) 39–88× 18–36 Numerous (3/3) 34–81× 14–38 Numerous (3/3)

P-mastigophores 21–46× 6–8 Rare (1/3) – 0 – 0 52–54× 7–8 Occasional (2/3)

Actinopharynx

Spirocysts – 0 18–32× 4–6 Occasional (2/3) 16–65× 3–8 Occasional (2/3) 19–36× 4–7 Rare (1/3)

Basitrichs 19–55× 4–10 Numerous (3/3) 16–72× 3–8 Numerous (3/3) 17–69× 3–9 Numerous (3/3) 22–62× 3–10 Numerous (3/3)

Holotrichs small 19–20× 7–8 Rare (1/3) – 0 – 0 – 0

Holotrichs large 34–93× 18–33 Numerous (3/3) 34–72× 4–31 Numerous (3/3) 38–77× 10–33 Common (3/3) 40–85× 18–38 Numerous (3/3)

P-mastigophores 29–40× 7–11 Rare (1/3) – 0 21–29× 6–7 Occasional (2/3) 28–52× 5–8 Rare (1/3)

Mesenteries filaments

Spirocysts 15× 24 Very rare
(single specimen)

– 0 – 0 28× 8 Very rare
(single specimen)

Basitrichs 25–69× 4–10 Numerous (3/3) 41–80× 5–10 Numerous (3/3) 33–66× 4–9 Numerous (3/3) 24–74× 5–9 Numerous (3/3)

Holotrichs small – 0 – 0 – 0 – 0

Holotrichs large 37–64× 22–35 Numerous (3/3) 44–83× 21–32 Numerous (3/3) 51–90× 21–35 Numerous (3/3) 45–85× 22–42 Numerous (3/3)

P-mastigophores 27–39× 5–10 Occasional 2/3 21× 6 Very rare
(single specimen)

21–29× 4–8 Common (3/3) 21–57× 5–11 Occasional (2/3)
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Thermal cycler programs were set to the following conditions: (1) mt 16S-rDNA; an
initial denaturing step at 94 ◦C for 2 min, followed by 40 cycles of 30 s 94 ◦C, 1 min
annealing at 52 ◦C and 2 min extension at 72 ◦C, followed by 5 min final elongation at
72 ◦C with Zoantharia-specific primer set 16Sant1a (5′-GCC ATG AGT ATA GAC GCA
CA-3′) and 16SbmoH (5′-CGA ACA GCC AAC CCT TGG-3′) (Sinniger et al., 2005); (2)
mtCOI; 1 min at 95 ◦C, then 35 cycles: 1 min at 95 ◦C, 1 min at 40 ◦C and 90 s at 72 ◦C,
followed by 7 min at 72 ◦C with the universal primers HCO2198 (5′-TAA ACT TCA GGG
TGA CCA AAA AAT CA-3′) and LCO1490 (5′-TAA ACT TCA GGG TGA CCA AAA
AAT CA-3′) (Folmer et al., 1994); and (3) ITS-rDNA; 1 min at 95 ◦C , then 35 cycles of
1 min at 94 ◦C, 1 min at 50 ◦C, and 2 min at 72 ◦C, followed by 10 min at 72 ◦C with
Zoantharia-specific primers Zoan-f (5′-CTT GAT CAT TTAGAGGGAGT-3′) and Zoan-r
(5′-CGG AGA TTT CAA ATT TGA GCT-3′) (Reimer et al., 2007a).

Amplification for the remaining coding region (ALG11) was performed by touch-down
PCR and nested PCR because of low numbers of copies in the whole genome as this is
a single-copy gene. For ALG11, although we basically followed the original protocols
(Sperling, Pisani & Peterson, 2007; Belinky et al., 2012), some modifications were required
to fit the thermal cycler we used, and the conditions were as follows: (4) ALG11 first
touchdown, 2 min at 95 ◦C, then 13 cycles of 1 min at 95 ◦C, 1 min at 52-40 ◦C (dropping
one degree for each cycle), 1.5 min at 72 ◦C; followed by 20 cycles of 1 min at 95 ◦C, 1
min at 52 ◦C, 1.5 min at 72 ◦C; lastly 5 min at 72 ◦C with primers ALG11-D1 (5′-TTY
CAY CCN TAY TGY AAY GCN GGN GG-3′) and ALG11-R1 (5′-ATN CCR AAR TGY
TCR TTC CAC AT-3′), and (5) MAT-f (5′-GGN GAR GGN CAY CCN GAY AA-3′). In
the second touchdown procedure an amplicon of the first touchdown was utilized as the
template, followed by 2 min at 95 ◦C, then 35 cycles of 1 min at 95 ◦C, 1 min at 52 ◦C,
and 1.5 min at 72 ◦C. In the end, nested PCR was performed with 2 min at 95 ◦C, and then
35 cycles of 1 min at 95 ◦C, 1 min at 52 ◦C, and 1.5 min at 72 ◦C with primers ALG11-D2
(5′-TGY AAY GCN GGN GGN GGN GGN GA-3′) and ALG11-R2 (5′-CCR AAR TGY
TCR TTC CAC ATN GTR TG-3′).

Amplicons were outsourced for sequencing to a private sequencing company (Fasmac
Co., Ltd., Kanagawa, Japan) on an Applied Biosystems 3730xl DNA sequencer, using
BigDye Terminator V3.1 and the same primer sets as for PCR as described above. Sequence
data were edited using BioEdit v.7.2.0 (Hall, 1999).

Sequence alignment
The total number of novel sequences obtained from specimens in this study were (1) mt
16S-rDNA; 38; (2) mtCOI; 20; (3) ITS-rDNA; 35 and (4) ALG11; 65, respectively. Obtained
sequences were aligned by BioEdit v7.2.0 (Hall, 1999) with other sequences deposited in
GenBank (Table 5).

As numerous indels (inserts and deletions) were confirmed in ITS-rDNA sequences,
alignment was performed using ClustalW (Thompson, Higgins & Gibson, 1994) with gap
penalties of 10 for open and 1 for extended, followed by manual fixing for obviously
misaligned areas such as gap position. Sequences of the 5.8S rDNA region located between
internal transcribed spacer 1 (ITS1) and internal transcribed spacer 2 (ITS2) were removed
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Table 5 GenBank accession numbers of genus Palythoa sequences used in this study.

Sequence code Species mtCOI
accession number

mt 16S-rDNA
accession number

ITS-rDNA
accession number

Reference

PtEW3 P. tuberculosa NA NA DQ997902 Reimer et al. (2007a)
PtAT1 P. tuberculosa AB219195 NA NA Reimer, Takishita & Maruyama (2006)
PtAT2 P. tuberculosa AB219196 NA DQ997897 Reimer, Takishita & Maruyama (2006)
PtBA1 P. tuberculosa AB219197 NA NA Reimer, Takishita & Maruyama (2006)
PtWK1 P. tuberculosa AB219198 NA NA Reimer, Takishita & Maruyama (2006)
PtYS1 P. tuberculosa AB219200 NA NA Reimer, Takishita & Maruyama (2006)
PtMil1 P. tuberculosa AB219199 AB219218 NA Reimer, Takishita & Maruyama (2006)
PtIsK3 P. tuberculosa AB219203 NA NA Reimer, Takishita & Maruyama (2006)
PtEO1 P. tuberculosa AB219205 NA NA Reimer, Takishita & Maruyama (2006)
PtKK1 P. tuberculosa AB219206 NA NA Reimer, Takishita & Maruyama (2006)
PtIsK2 P. tuberculosa AB219207 NA NA Reimer, Takishita & Maruyama (2006)
PtYS4 P. tuberculosa NA NA DQ997903 Reimer, Takishita & Maruyama (2006)
PtIrHo16 P. tuberculosa NA NA DQ997909 Reimer, Takishita & Maruyama (2006)
PtCN1 P. tuberculosa NA NA DQ997896 Reimer, Takishita & Maruyama (2006)
PtCN14 P. tuberculosa NA NA DQ997933 Reimer, Takishita & Maruyama (2006)
PtIsO1 P. tuberculosa AB219202 NA NA Reimer, Takishita & Maruyama (2006)
PtIsO13 P. tuberculosa NA NA DQ997919 Reimer, Takishita & Maruyama (2006)
PtIsO11 P. tuberculosa NA NA DQ997929 Reimer, Takishita & Maruyama (2006)
PtIsrael13 P. tuberculosa NA NA DQ997931 Reimer, Takishita & Maruyama (2006)
PtOtsFu11 P. tuberculosa NA NA DQ997945 Reimer et al. (2007a)
PtIrHo11 P. tuberculosa NA NA DQ997914 Reimer et al. (2007a)
PtOtsNi3 P. tuberculosa NA NA DQ997939 Reimer, Takishita & Maruyama (2006)
PtIrHo13 P. tuberculosa NA NA DQ997911 Reimer et al. (2007a)
PtL1 P. tuberculosa NA EU333661 NA Reimer & Todd (2009)
PtK2 P. tuberculosa NA EU333654 NA Reimer & Todd (2009)
PtL3 P. tuberculosa NA EU333662 NA Reimer & Todd (2009)
PtK7 P. tuberculosa NA EU333657 NA Reimer & Todd (2009)
PtYoS1 P. sp. yoron AB219204 AB219219 DQ997921 Reimer et al. (2007a)
PmAT P. mutuki AB219209 NA NA Reimer, Takishita & Maruyama (2006)
PmPM2 P. mutuki AB219210 NA NA Reimer, Takishita & Maruyama (2006)
Pm1162 P. mutuki JF419796 NA NA Reimer et al. (2011)
Pm1163 P. mutuki JF419788 NA NA Reimer et al. (2011)
PmBA1 P. mutuki AB219215 NA NA Reimer, Takishita & Maruyama (2006)
PmYS1 P. mutuki AB219213 NA NA Reimer, Takishita & Maruyama (2006)
PmIrHo1 P. mutuki NA NA DQ997888 Reimer et al. (2007a)
PmYS2 P. mutuki NA NA DQ997892 Reimer et al. (2007a)
PpAT1 P. mutuki AB219211 AB219220 DQ997891 Reimer et al. (2007a)
PmMil1 P. mutuki AB219217 AB219225 DQ997889 Reimer et al. (2007a)
PmEs1 P. mutuki NA NA DQ997894 Reimer et al. (2007a)
PpAT2 P. mutuki AB219212 AB219221 NA Reimer, Takishita & Maruyama (2006)

(continued on next page)
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Table 5 (continued)

Sequence code Species mtCOI
accession number

mt 16S-rDNA
accession number

ITS-rDNA
accession number

Reference

PpYS1 P. mutuki NA AB219222 NA Reimer, Takishita & Maruyama (2006)
PamTOB51 P. aff.mutuki NA GQ464873 GQ464902 Swain (2010)
PsPSH1 P. sp. sakurajimensis NA DQ997842 DQ997886 Reimer et al. (2007a)
PsPWS1 P. sp. sakurajimensis NA DQ997863 DQ997887 Reimer et al. (2007a)
PsPEWn1 P. sp. sakurajimensis NA DQ997862 NA Reimer et al. (2007a)
PsGYi P. sp. sakurajimensis KF499720 NA NA Reimer et al. (2013)
Ps1595 P. sp. sakurajimensis KF499697 NA KX389490 Reimer et al. (2013)
Ps1597 P. sp. sakurajimensis KF499696 NA KF499778 Reimer et al. (2013)
Ps1635 P. sp. sakurajimensis KF499735 NA KF499776 Reimer et al. (2013)
PhIsK2 P. heliodiscus NA NA DQ997885 Reimer et al. (2007a)
PhIsK11 P. heliodiscus NA NA DQ997880 Reimer et al. (2007a)
PhEK1 P. heliodiscus NA NA DQ997882 Reimer et al. (2007a)
PhSaiLL1 P. heliodiscus AB219214 AB219223 NA Reimer, Takishita & Maruyama (2006)
PhEK1 P. heliodiscus NA AB219224 NA Reimer, Takishita & Maruyama (2006)
PhPpM1 P. heliodiscus AB219216 NA NA Reimer, Takishita & Maruyama (2006)

from analyses because the substitution rate is apparently lower than ITS1 and ITS2, and
an admixture of different substitution rates could lead to a misleading choice of the
appropriate substitution model. Additionally, in order to not overestimate for genetic
distance in following phylogenetic analyses, sites were removed if they had a percentage of
gaps and/or ambiguous sites higher than 95% (partial-deletion option).

Fifty-six out of sixty-five specimens had one or more degenerate codes in sequences of
the ALG11 region. All degenerate codes were divided into two standard bases using PHASE
v2.1.1, which implements a Bayesian statistical method for reconstructing haplotypes from
population genotype data (Stephens, Smith & Donnelly, 2001; Stephens & Scheet, 2005).
Furthermore, first and second codon positions were removed from the dataset by checking
amino acid sequences after translation.

Thus, eachdatasetwasmodified as needed,with additional previously reported sequences
added from GenBank, and we generated four alignments; (1) mtCOI; 451 bp of 47
sequences; (2) mt 16S-rDNA; 697 bp of 54 sequences; (3) ITS-rDNA; 317 bp of 60
sequences and (4) ALG11; 578 bp of 121 sequences. These were used for subsequent
phylogenetic analyses.

Substitution model selection
Substitution models for each gene were estimated by jModelTest v2.1.3 (Darriba et al.,
2012) through the following steps. Initially, likelihood calculations were carried out for all
substitution models with configurations of seven substitution schemes, equal or unequal
base frequencies (+F), rate variation among sites with a number of rate categories (+G,
nCat 5) and base tree topology (ML optimized). Subsequently, the most appropriate model
for each marker was selected under (i) the corrected Akaike information criterion (AICc)
for Maximum-Likelihood and neighbor-joining phylogenetic estimation, or (ii) Bayesian
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information criterion (BIC) for Bayes estimation. Thus, the (i)TrN/(ii)TrNef for mt 16S-
rDNA, (i)F81/(ii)JC for mtCOI, (i,ii)K80+0 for ITS-rDNA, and (i)K80+0/(ii)TPM1uf+0

models for ALG11 were employed, respectively.

Gene tree estimations
For four distinct datasets (mt 16S-rDNA, mtCOI, ITS-rDNA, ALG11), phylogenetic
analyses were applied independently with the optimal substitution model under AICc esti-
mated by jModelTest. Maximum-Likelihood (ML) analyses were performed using PhyML
(Guindon & Gascuel, 2003) and neighbor-joining (NJ) methods were performed using
MEGA5.2.2 (Tamura et al., 2011). All other parameters besides substitution model and the
discrete gamma distribution were implemented with the default value. Bootstrap analyses
(Felsenstein, 1985) of 1,000 replicates were tested to evaluate the support of every branch.

Bayesian inference for gene trees was performed using BEAST v.1.7.0 (Drummond
et al., 2010) with the optimal substitution model under BIC. All parameters were used
as default values except for the molecular clock, in which the rate was changed to the
log-normal relaxed model, while only the substitution model for ALG11 was modified
to TPM1uf after generating the initial setting file. Four Markov chain Monte Carlo
(MCMC) simulations were run for 10 million generations with sampling intervals of
1,000. Convergence of analyses and adequacy of the sample sizes, with ESS values above
200 (ESS = the number of effectively independent draws from the posterior distribution
that the Markov chain is equivalent to) were confirmed in Tracer v.1.5. (Rambaut et al.,
2013). Analyses were combined using LogCombiner v.1.8.0, which is included within
BEAST, after excluding the first 10% as burn-in. Obtained trees were summarized in a
maximum clade credibility tree using TreeAnotator v.1.8.0 and visualized in FigTree v.1.4.0.

Species tree estimations
*BEAST estimates the species tree directly from the sequence data, nucleotide substitution
model parameters and the coalescent process (Heled & Drummond, 2010). The species trees
were built by grouping all 235 sequences by putative species groups and simultaneously
estimating each of three individual gene trees (mt 16S-rDNA, ITS-rDNA and ALG11), and
the summary species trees using BEAST were drawn for two different species model; (1)
a six species model including P. tuberculosa, P. sp. yoron, P. mutuki, P. aff. mutuki, P. sp.
sakurajimensis sensu Reimer et al. (2007a) and Reimer et al. (2007b) and P. heliodiscus, and
(2) a four species model combining P. sp. yoron with P. tuberculosa, and P. aff.mutuki with
P. mutuki, along with P. sp. sakurajimensis and P. heliodiscus.

All parameters were used as default except for; (1) the molecular clock rate, which was
changed to the log-normal relaxedmodel (Drummond et al., 2006), (2) the substitution rate
for mt 16S-rDNA, for which the range was calibrated to between 0.001-0.002/Mya based
on the reported substitution rate for mtCOI (Shearer et al., 2002), and (3) the substitution
model for ALG11 wasmodified to TPM1uf after generating the setting file. MCMC analyses
were run for 100 million generations with sampling intervals of 10,000 and excluding the
first 10% as burn-in. All the parameters in the output file were confirmed in Tracer v1.5.
Obtained trees were summarized in a maximum clade credibility tree using TreeAnotator
v.1.8.0.
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RESULTS
Morphological analyses
The numbers of tentacles were measured for single randomly selected polyps from eleven
colonies of P. tuberculosa, eight colonies of P. sp. yoron, seven colonies of P. mutuki, and
eight colonies of P. aff. mutuki. The mean number of tentacles ± standard deviation
per polyp was 31.6 ± 3.4 for P. tuberculosa, 40.5 ± 2.6 for P. sp. yoron, 54.4 ± 7.4 for
P. mutuki, and 71.0± 4.1 for P. aff.mutuki. Each respective mean number of tentacles was
significantly different (p< 0.01) from all others in all pair tests (Table 3).

For cnidae, many subtle differences in sizes of the various types of cnidae present in
different tissues were present (Table 4; Fig. 3). However, the most obvious differences were
in small holotrichs, which were rarely observed in the tentacles of column of both P. aff.
mutuki and P. mutuki, and additionally observed in the tentacles and pharynx of P. aff.
mutuki, but were never observed in tissues of P. sp. yoron or P. tuberculosa (Table 4).
However, these small holotrichs were only observed in one out of three specimens each
of P. aff. mutuki and P. mutuki, and thus no diagnostic differences were observed in the
cnidae of all four species-groups examined (Table 4).

In summary, we could clearly distinguish all four Palythoa species groups based on
tentacle numbers (Table 3), as well as gross external morphology (Fig. 2), but not via
cnidae analyses (Table 4).

Estimated spawning period
During the initial investigation of June to December in 2010, developed ovaries were
observed in P. tuberculosa from the middle of June to the middle of September with
decreasing numbers of polyps possessing ova (Fig. 4A, Table 6). Additionally, matured eggs
were also observed multiple times (on 28 July and 20 September). In contrast, developed
ovaries and matured eggs were observed (Figs. 5A, 5B) only one time (on 26 October)
in P. sp. yoron. As well, developing ovaries were observed in P. mutuki from the end of
July to the middle of September, however, no matured eggs were observed during this
investigation.

In 2011, developed ovaries were observed in P. aff.mutuki on 15 June (Figs. 5E, 5F, 4B),
and subsequently developed ovaries were observed in P. sp. yoron in early October and
early November (Figs. 5C, 5D), for the second consecutive year. On the other hand, no
fully developed ovaries were observed in P. tuberculosa and P. mutuki despite developing
ovaries being observed continuously during the summer season (on 23 July, 22 August and
5 October), similar as observed in 2010.

Phylogenetic analyses
Molecular phylogenetic trees
mtCOI. The phylogenetic tree resulting from maximum likelihood analyses of the mtCOI
sequence alignment is shown in Fig. 6A. Palythoa tuberculosa, P. sp. yoron, P. mutuki and
P. aff. mutuki formed one mixed clade with low bootstrap support (Maximum-Likelihood
[ML] ≤ 50%, Neighbor-joining [NJ] = 64%, Bayes [B] = 0.99). Three sequences of
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Figure 3 Cnidae of Palythoa species examined in this study. Cnidae in tentacles, column, pharynx,
and filaments of (A) Palythoa aff.mutuki, (B) Palythoa mutuki, (C) Palythoa sp. yoron, and (D) Palythoa
tuberculosa. S, spirocysts; B, basitrichs; HS, holotrichs small; HL, holotrichs large; P, microbasic p-
mastigophores.

Full-size DOI: 10.7717/peerj.5132/fig-3

P. mutuki used in previous research (Reimer et al., 2007a; Reimer et al., 2007b; Reimer et
al., 2011) formed one group with sequences from P. sp. sakurajimensis.

mt 16S-rDNA. The phylogenetic tree resulting from maximum likelihood analyses of
the mt 16S-rDNA sequence alignment is shown in Fig. 6B. Palythoa tuberculosa, P. sp.
yoron, P. mutuki and P. aff. mutuki formed one mixed clade with low bootstrap support
(ML = 65%, NJ = 64%, B< 0.50). Within this mixed clade, P. mutuki and P. aff. mutuki
formed a mixed subclade with low bootstrap support in ML and NJ analyses, however, this
monophyletic clade was strongly supported in Bayesian analyses (ML = 64%, NJ = 64%,
B= 1.0). Additionally, two sequences of P. mutuki from GenBank that were distinguished
from other sequences of P. mutuki in previous research (Reimer, Takishita & Maruyama,
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Figure 4 Monthly change of ratio of number of polyps possessing developing and/or developed
ovaries (N) on total number of examined polyps (Nt). (A) Monthly change of ratio of number of polyps
possessing developing and/or developed ovaries (N) on total number of examined polyps (Nt) in 2010.
Red, P. tuberculosa; blue, P. mutuki; yellow, P. sp. yoron. (B) Monthly change of ratio of number of
polyps possessing developing and/or developed ovaries (N) on total number of examined polyps (%) in
2011. Red, P. tuberculosa; blue, P. mutuki; yellow, P. sp. yoron; green, P. aff.mutuki.

Full-size DOI: 10.7717/peerj.5132/fig-4
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Table 6 Ovary development in polyps of four species of Palythoa. Number of polyps possessing developing and/or developed ovaries (N), total
number of examined polyps (Nt) and ratio of N to Nt for collected specimens of P. tuberculosa, P. mutuki, P. sp. yoron and P. aff.mutuki on each
sampling date.

Species P. tuberculosa P. mutuki P. sp. yoron P. aff.mutuki

Date N Nt N/Nt (%) N Nt N/Nt (%) N Nt N/Nt (%) N Nt N/Nt (%)

2010.06.15 2 60 3 0 13 0 0 18 0 – – –
07.28 36 61 59a 12 22 55 0 49 0 – – –
08.30 42 80 53 5 20 25 0 52 0 – – –
09.20 27 118 23a 7 25 28 0 51 0 – – –
10.26 0 198 0 NA NA NA 16 52 31a – – –
12.08 0 89 0 0 54 0 0 53 0 – – –
2011.06.21 40 78 51 1 36 3 0 54 0 4 4 100a

07.23 9 63 14 14 30 47 0 53 0 4 5 80
08.22 10 63 16 14 40 35 1 43 2 1 7 14
10.05 10 65 15 15 37 41 18 46 41a 0 6 0
11.09 0 72 0 2 34 6 15 40 40a 0 6 0
11.28 5 52 10 0 31 0 0 44 0 NA NA NA
12.16 0 63 0 0 36 0 0 40 0 0 9 0
2012.02.12 0 82 0 0 52 0 0 47 0 0 8 0

Notes.
aIndicates observation of developed ovaries in specimens.

2006; AB219220, AB219221) formed a monophyletic subclade with two novel sequences
from this study (KX389366, KX389368; ML = 64%, NJ = 63%, B= 1.0).

ITS-rDNA. The phylogenetic tree resulting frommaximum likelihood analyses of the ITS-
rDNA sequence alignment is shown in Fig. 6C.Palythoa tuberculosa and P. sp. yoron formed
a very well supported monophyletic clade (ML = 95%, NJ = 99%, B= 0.96). Within this
clade were two comparatively well supported sub-clades, one made by sequences obtained
only from P. sp. yoron sequences (=KX389470, KX389471, DQ997921; ML = 90%,
NJ = 99%, B= 1.0), and the other including three P. tuberculosa sequences (DQ997909,
DQ997929, DQ997919;ML= 70%,NJ= 83%,B= 0.97). Palythoa mutukiwas paraphyletic
and two well supported clades that included sequences from both P. mutuki and P. aff.
mutuki were present (KX389473, KX389474, KX389475, KX389476, KX389481; ML =
93%, NJ =99%, B= 1.0; and DQ997892, KX389479, KX389480, KX389483; ML =72%,
NJ = 77%, B= 1.0).

ALG11. The phylogenetic tree resulting from maximum likelihood analyses of the ALG11
sequence alignment is shown in Fig. 6D. Compared to the above phylogenetic trees, this
tree was the most admixed, regardless of morphospecies. For example, sequences from
P. sp. sakurajimensis (used as outgroup here) appeared throughout the tree. Only three
terminal clades showed high bootstrap values (KX389373, KX389374, KX389379; ML
=80%, NJ =86%, B= 1.0; and KX389403, KX389422; ML =90%, NJ =95%, B= 1.0; and
KX389414, KX389418, KX389422; ML =78%, NJ =78%, B= 1.0).
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Figure 5 Cross sections of Palythoa sp. yoron and P. aff.mutuki showing ovary development. Cross
section of polyp of (A) Palythoa sp. yoron (26 October 2010) and (B) matured eggs; (C) P. sp. yoron (9
November 2011) and (D) germinal ribbon inside a mesentery; (E) P. aff.mutuki (21 June 2011), and (F)
developed ovaries. Abbreviations: te, tentacles; od, oral disk; co, coenenchyme; mo, mouth; ph, pharynx;
eg, eggs; mf, mesenterial filament; gr, germinal ribbon; ov, ovary. Scale bars: 2 mm in (A) and (E) 500 µm
in (B) 1 mm in (C, D and F) All images taken by MMizuyama.

Full-size DOI: 10.7717/peerj.5132/fig-5

Topology comparison between trees. Examining the two outgroups used in this study,
Palythoa sp. sakurajimensis was phylogenetically much closer to P. tuberculosa, P. sp.
yoron, P. mutuki and P. aff. mutuki compared to P. heliodiscus in every gene tree. There
were few differences in sequences from the other four species groups, with only one base
pair difference in the mtCOI tree, resulting in P. sp. sakurajimensis’ sequences forming
one group with some P. mutuki specimens, and only one to two base pairs’ difference in
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the mt 16S-rDNA tree for all four species groups. In particular, in the ALG11 tree, P. sp.
sakurajimensis’ sequences were admixed with the other four species groups.

Palythoa tuberculosa and P. sp. yoron (designated as the ‘‘Palythoa tuberculosa group’’
here), and P. mutuki and P. aff. mutuki (designated as ‘‘Palythoa mutuki group’’ here)
did not separate into four species groups in each DNA marker’s tree. The P. tuberculosa
group formed a monophyletic clade in the ITS-rDNA tree and one grouping in the mt
16S-rDNA gene tree with one base difference from the P. mutuki group. On the other
hand, the P. mutuki group did not show any common pattern, i.e., admixed with all other
species groups except for P. heliodiscus in the ALG11 gene tree, most sequences forming
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one monophyletic clade with the P. tuberculosa group due to no differences in sequences
with some sequences forming one group with P. sp. sakurajimensis due to a one base pair
difference from other specimens in the mtCOI tree, forming a monophyletic clade with one
subclade in the mt 16S-rDNA tree, and forming a paraphyletic clade with a monophyletic
subclade of P. tuberculosa in the ITS-rDNA tree.

Species trees. All hypothetical species were fully supported with posterior probability under
both the four and six species models (Figs. 7A, 7B). The divergence time from the most
recent common ancestor of P. tuberculosa, P. sp. yoron, P. mutuki and P. aff. mutuki,
(divergence of P. sp. sakurajimensis in both cases), was calculated as 147,000 years before
present with 95% credible interval [lower 30,900–upper 292,000] under the six species
model and as 113,000 years under the four species model with 95% credible interval [lower
25,500–upper 231,000].

DISCUSSION
The purpose of this study was to re-evaluate the systematics of some Palythoa species
using an integrative approach. Primary hypotheses of species delimitation were based on
external morphology (phenetic criterion) and habitat preferences (ecological criterion).
These hypotheses were then examined in the light of additional characters, namely the
number of tentacles, spawning periods and genetic data.

Morphology and plasticity
The mean numbers of tentacles were significantly different among specimens of the
four putative species; P. tuberculosa, P. sp. yoron, P. mutuki and P. aff. mutuki (Table 3).
However, in previous research, the tentacle number of P. tuberculosa has been reported as
various ranges, i.e., 30 to 40 (Klunzinger, 1877), up to 50 (Walsh & Bowers, 1971), 38 to
52 (Reimer & Todd, 2009), 30 to 37 (Shiroma & Reimer, 2010), or 30 to 50 (Hibino et al.,
2013). A wider range of variations has been reported in P. mutuki, with 88 to 144 (Ryland &
Lancaster, 2003), 60 to 74, approximately 80 for P. mutuki-related (Reimer & Todd, 2009),
or 42 to 66 (Shiroma & Reimer, 2010) reported. Thus, the ranges of tentacle numbers can
be assumed to be 30 to 52 for P. tuberculosa and 42 to 144 for P. mutuki, and therefore
tentacle numbers of P. sp. yoron and P. aff.mutuki observed in this study are within ranges
of previously reported intraspecific variation. These differences between tentacle numbers
reported in the literature and our data may be partly explained by the fact that previous
authors did not consider P. sp. yoron and P. aff. mutuki as different species.

However, Ong, Reimer & Todd (2013) also demonstrated phenotypic plasticity in
P. tuberculosawith high ability to acclimate against changes in light-induced environments.
From in situ observations, P. sp. yoron seems to prefer locations exposed to strong current
such as extensive reef flats where the back reef moat is widely developed. Correspondingly,
P. sp. yoron is also often found in back reef moats, as Shiroma & Reimer (2010)mentioned,
covered with sand or other loose detritus. High numbers of tentacles enable them to acquire
nutritious detritus and feed on planktonic organisms, but strong-current environments
repeatedly cover colonies with sand. From the viewpoint of its small, tetrapod colony shape,
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P. sp. yoron seems have adapted to such an environment. Therefore, to ensure whether
differences in tentacle numbers and colony form between P. tuberculosa and P. sp. yoron
are caused by species differentiation, the observation of reaction norms of each species
with transplantation experiments is needed.
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Although previous cnidae research with detailed statistical analyses revealed finer-scale
differences among Palythoa species (Ryland & Lancaster, 2004), we did not observe any use-
ful diagnostic differences with utility for rapid identification of species groups in this study.

Spawning periods and reproductive isolation
Over the two years analyzed, P. sp. yoron consistently developed ovaries later than the
three other putative species. If we assume a sharp drop in the proportion of developed
ovaries as the consequence of the release of eggs, the annual spawning period estimated for
P. sp. yoron was early to mid-November and that of P. aff. mutuki mid- to late June. The
spawning period of P. tuberculosa in Okinawa-jima I. has been reported in early August
(Yamazato, Yoshimoto & Yoshihara, 1973), from the end of July to middle August (Shiroma
& Reimer, 2010), and on 19 and 20 August in 2009 (Hirose et al., 2011). In our study,
spawning was estimated to have occurred in August in 2010 and possibly from early July
in 2011. The reproductive season of P. mutuki was presumed that be synchronized with
P. tuberculosa in 2010, although developed eggs were not confirmed. Little is known about
the sexual reproductive ability of this species, and according to Ryland & Lancaster (2003)
the only previous records of P. mutuki possessing developed oocytes are from Fiji and
Tuvalu. To overcome this lack of knowledge, closer examinations via staging of histological
sections for gonadal development (such as done by Polak et al., 2011) are required.

Interpreting these results in terms of putative reproductive isolation is not
straightforward. Even assuming that a sharp drop in the proportion of developed ovaries
translates into a major spawning event, which seems to be a reasonable hypothesis, this
does not exclude the possibility of eggs being released much later than the initial peak.
For example, while we estimated the spawning period of P. tuberculosa to have occurred
in August in 2010, nearly 20% of individuals still had developing or developed ovaries
on September 20th, which may have been released as mature eggs at any time from then
until October 26th (Fig. 4A), and enabled potential cross-fertilization with P. sp. yoron.
On the other hand, data thus far indicate spawning on one or two nights per year for
brachycneminic zoantharians (Ryland, 1997), and reabsorption of oocytes (Ono et al.
2005) that did not spawn. More work is needed to determine exact spawning patterns
of Palythoa tuberculosa and closely Palythoa related species, but the asynchrony of both
ovary development (P. sp. yoron) and spawning peaks for P. tuberculosa and P. aff.mutuki
suggest that at least partial pre-zygotic reproductive isolation is possible among P. sp.
yoron, P. tuberculosa and P. aff. mutuki at Tokunoshima I.

Species boundaries in phylogenetic trees
The four genetic markers analyzed in this study displayed contrasting patterns. The
two mitochondrial genes were relatively conservative, as has been reported for other
anthozoans (Shearer et al., 2002;Huang et al., 2008), butmt 16S-rDNAallowed the recovery
of P. heliodiscus, P. sp. sakurajimensis, the P. mutuki group and the P. tuberculosa group as
four genetically homogeneous groups (phenetic criterion), and all species or species groups
were reciprocally monophyletic with the exception of P. tuberculosa. ITS-rDNA showed
a similar pattern with the P. mutuki group and the P. tuberculosa group represented in
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distinct clades, although the P. mutuki group was paraphyletic. This consistency across
mitochondrial and nuclear markers also suggests that there is no genetic exchange (biologic
criterion) between these four groups, and thus provides a first level of species delimitation.
In contrast, all Palythoa spp. besides P. heliodiscus were largely mixed in the tree recovered
from the ALG11 marker, which strongly suggests incomplete lineage sorting for this gene.

Despite obvious differences in morphology and reproductive season between
P. tuberculosa and P. sp. yoron, as well between P. mutuki and P. aff. mutuki, no molecular
marker was successful in dividing these species pairs into their own monophyletic clades.
Palythoa sp. yoron formed a subclade from two specimens inReimer et al. (2007a), however,
in this study reconstructing phylogenetic trees based on the same genomic region with
more specimens of P. sp. yoron, one mixed monophyletic clade was supported well with
all the other P. tuberculosa specimens. The same pattern was observed with P. mutuki
and P. aff. mutuki. These results imply either gene flow between each pair of nominal
species or incomplete lineage sorting. Although these two alternative hypotheses are not
mutually exclusive, the absence of intermediate morphotypes and the presence of distinct
spawning periods lead us to favor the latter over extensive gene flow. Sequences from other
single-copy nuclear markers like ALG11 are required to more thoroughly resolve these two
species pairs.

Sympatric speciation timing
Recently, sympatric speciation has come to be understood as a major generator of marine
biodiversity (reviewed in Bowen et al., 2013). Under such situations, ecological (e.g.,
behavior or microhabitat) boundaries lead to isolation. However, the hierarchy of timing
of sympatric speciation processes (e.g., the order that separation occurs via phylogenetic,
reproductive, and morphological criteria) as lineages diverge remains not well understood,
with no clear consensus (Norris & Hull, 2012; Pabijan et al., 2017). For example, in tropical
bivalves, phylogenetic differences (=cryptic species) have been observed without any clear
evidence of morphological differences (e.g., Lemer et al., 2014). On the other hand, in many
marine taxa, it has been proposed that during sympatric speciation, reproductive isolation
is one driving force behind lineage divergence (Palumbi, 1994).

In this study, morphology and reproductive data sets showed four Palythoa lineages,
while DNA markers showed either two lineages (ITS-rDNA, mtCOI, mt 16S-rDNA) or
one admixed lineage (ALG11). Combined molecular analyses suggested either two or four
lineages were equally possible (Fig. 7). Such varied results along a speciation continuum
between different datasets reflect the patterns to be expected during ongoing or incomplete
speciation events (Nosil, Harmon & Seehausen, 2009). As all four Palythoa lineages can
be found in sympatry at Tokushima I., our results suggest that reproductive isolation,
perhaps caused by past hybridization and back-crossing events (Reimer et al., 2007a;
MacLeod et al., 2015), led to the generation of these different lineages and morphological
differentiation. Phylogenetic differentiation currently remains incomplete due to the
evolutionary recentness of these events, estimated as less than 200,000 years before present.
Such confounding data, with reproductive isolation but incomplete genetic lineage sorting,
can be expected due to the extended duration of speciation events (Norris & Hull, 2012).
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CONCLUSIONS
Overall, the data imply that Palythoa species have a much more complex evolutionary
history at the species level than previously expected (e.g., in Reimer et al., 2007a). However,
natural hybridization between P. tuberculosa, P. sp. yoron and P. aff. mutuki seems to
not be currently occurring, at least for populations at Tokunoshima I. observed in this
study. In spite of ambiguous phylogenetic differentiation between P. tuberculosa and P. sp.
yoron, and between P. mutuki and P. aff. mutuki, we consider these four lineages are all
distinct species based on their morphological differentiation and distinct spawning periods.
In situ observation of spawning events combined with genomic level examinations will
help further clarify the hierarchy of timing in speciation events, and these four sympatric
Palythoa lineages present a potential model system for such studies.
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