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ABSTRACT
Background:Many species of birds are morphologically and physiologically adapted

for migration. Migratory movements of birds can range from thousands of

kilometers, such as when birds migrate from wintering to breeding sites in summer,

to several kilometers, such as when birds migrate among habitats in a single

mountain system. The main factor that influences bird migration is the seasonal

fluctuation of food resources; climate, predation, competition for resources and

endogenous programming are also important factors. Hummingbirds are highly

dependent on nectar, so their migration is likely correlated with the blooming of

plant species. The ecological implications of altitudinal migration in the mountains

of North America as well as the latitudinal migration of Selasphorus rufus

through Mexico are still poorly understood. To explore these issues, over three

non-consecutive years, we evaluated interannual variation in the phenologies of a

latitudinal migrant (S. rufus) and an altitudinal migrant (Amazilia beryllina) and

their visited plants.

Methods: We assessed the relationship between two migratory hummingbirds and

flower abundance in 20 fixed-radius plots (25 m radius). All available flowers were

counted along transects (40 � 5 m) inside each fixed-radius plot. Sampling was

performed every 10 days from November 12 through February 20 of 2010–2011,

2013–2014 and 2015–2016, resulting in a total of 11 samples of each plot per period.

Phenological variation and the relationships among hummingbird abundance,

flower abundance and vegetation type were evaluated using a generalized additive

mixed model.

Results: S. rufus abundance was related to sampling time in the first and third

periods; this relationship was not significant in the second period. A. beryllina

abundance was related with the sampling time over all three periods. The abundance

of S. rufus hummingbirds was significantly related to the number of Salvia iodantha

flowers. The abundance of A. beryllina hummingbirds was related to the number of

S. iodantha and Cestrum thyrsoideum flowers and the total number of flowers.

We found a non-significant correlation between S. rufus and A. beryllina abundance

and vegetation types.

How to cite this article López-Segoviano et al. (2018), Hummingbird migration and flowering synchrony in the temperate forests of

northwestern Mexico. PeerJ 6:e5131; DOI 10.7717/peerj.5131

Submitted 13 September 2017
Accepted 8 June 2018
Published 6 July 2018

Corresponding author
Maria del Coro Arizmendi,

coro@unam.mx

Academic editor
Stuart Pimm

Additional Information and
Declarations can be found on
page 12

DOI 10.7717/peerj.5131

Copyright
2018 López-Segoviano et al.

Distributed under
Creative Commons CC-BY 4.0

http://dx.doi.org/10.7717/peerj.5131
mailto:coro@�unam.�mx
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj.5131
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/


Conclusion: Contrary to expectations, the long-distance migration of S. rufus was

not consistent over the sampling periods. The migration of S. rufus through the

study region may be altered by changes in climate, as has occurred with other species

of migratory birds. In the present study, the migration of S. rufus was correlated with

the blooming of S. iodantha. In comparison, the altitudinal migrant A. beryllina

responded to the availability of floral resources but was not associated with a

particular plant. The migration of this latter species in the area probably depends on

multiple factors, including climatic and demographic factors, but is particularly

dependent on the supply of floral resources and competition for these resources.

Subjects Animal Behavior, Ecology, Ecosystem Science, Zoology, Climate Change Biology

Keywords Hummingbird migration, Flowering phenology, Selasphorus rufus, Amazilia beryllina,

Local migration, Altitudinal migration

INTRODUCTION
Many species of birds are morphologically and physiologically adapted for migratory

movements (Newton, 2007). The main factor that influences bird migration movement is

the seasonal fluctuation of food resources (Levey & Stiles, 1992;Newton, 2007; Faaborg et al.,

2010); climate, predation, competition for resources and endogenous programming

(related to reproduction, molting, fat deposition and migratory restlessness) are also

important (Newton, 2007). A large number of bird species breed at northern latitudes in the

summer and then travel thousands of kilometers to tropical wintering destinations (Newton,

2007; Faaborg et al., 2010), while others migrate locally and seasonally from high to

lower altitudes (Newton, 2007). For example, nectarivorous and frugivorous species depend

on the seasonality of floral and fruit resources, which are their main source of energy, andmake

seasonal movements at many scales following available food sources (Levey & Stiles, 1992).

Only 29 out of the 328 known hummingbird species (8.84%) are long-distance

migrants (Rappole & Schuchmann, 2003). Of these, 13 inhabit North America (Rappole &

Schuchmann, 2003); these species breed during the summer in Canada and the United

States and then migrate southwards during autumn (Howell, 2003). Hummingbirds

migrate along established migration routes and make refueling stops at flowering grounds

(Phillips, 1975; Gass, 1979; Carpenter, Paton & Hixon, 1983; Carpenter et al., 1993;

Calder & Contreras-Martı́nez, 1995; Schuchmann, 1999; Calder, 2004; Zenzal & Moore,

2016). The duration of their stay at a particular site can be as short as one day to as long as

three weeks (Gass, 1979; Carpenter et al., 1993; Nemeth & Moore, 2012; Zenzal & Moore,

2016). As hummingbirds are highly dependent on floral nectar (Gass, 1979; Hixon,

Carpenter & Paton, 1983; Schuchmann, 1999), their migrations are correlated with

flowering phenologies (Bertin, 1982; Calder, 1987; McKinney et al., 2012).

Similar behavior can be observed among tropical hummingbirds that move up or down

foothills following the blooming of their preferred plant species (Des Ganges, 1979;

Arizmendi & Ornelas, 1990; Hobson et al., 2003; Tinoco et al., 2009; Fraser, Diamond &

Chavarria, 2010). Rappole & Schuchmann (2003) define altitudinal migration as the seasonal

movement of a species with a home range that shifts over a distance of <10 km; altitudinal
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migrants generally return on a seasonal basis to their site of origin. These authors suggested

that 87 hummingbird species make altitudinal migrations (26.52% of known species). These

migratory movements of hummingbird species occur throughout different mountain

systems of America (Des Ganges, 1979; Stiles, 1985; Des Ganges, 1979; Levey & Stiles, 1992;

Hobson et al., 2003; Tinoco et al., 2009). At a local scale, altitudinal migrations are likely also

related to the availability of floral resources, but birds must weigh the cost and intensity of

competition for these resources (Wolf, Stiles & Hainsworth, 1976; Des Ganges, 1979).

In addition, recent climate changes can alter the timing of bird migrations

(Cotton, 2003; Gordo et al., 2005; Marra et al., 2005; Saino et al., 2007; Cohen et al., 2015),

resulting in an increasing mismatch between migratory birds and food resources (Both

et al., 2006, 2009; Jones & Cresswell, 2010). Similarly, food resources can be influenced by

climatic events, thus affecting the availability of resources for migratory birds (Visser,

Holleman & Gienapp, 2006; Reed, Jenouvrier & Visser, 2013). Such phenomena can negatively

affect migratory bird populations (Both et al., 2006, 2009; Jones & Cresswell, 2010).

We studied two hummingbird species: one latitudinal migrant, Selasphorus rufus

(Healy & Calder, 2006), and one altitudinal migrant, Amazilia beryllina (Des Ganges, 1979;

Arizmendi, 2001). S. rufus breeds in the Pacific Northwest of the United States and Canada

and, during winter, migrates from the southwestern United States through central Mexico

(Healy & Calder, 2006). Like other species of hummingbirds (Kodric-Brown & Brown, 1978;

McKinney et al., 2012; Nemeth & Moore, 2012; Graham et al., 2016; Zenzal & Moore, 2016)

and songbirds (Moore et al., 2017), S. rufus requires refueling stops in different places along

its flyway (Gass, 1979; Carpenter, Paton & Hixon, 1983; Carpenter et al., 1993; Calder, 2004).

The arrival of S. rufus at stopover sites is correlated with the blooming of its feeding plants

(Calder, 1987; Kodric-Brown & Brown, 1978; Russell et al., 1994).

A. beryllina is most commonly found between 500 and 1,800 masl (Weller & Kirwan,

2017). In the study region, A. beryllina is common and abundant at mid-mountain

ranges at around 1,000 masl (López-Segoviano, 2018). Des Ganges (1979) stated that

A. beryllina is an opportunistic species that follows the blooming of feeding plants;

this species may also be more sensitive than resident species to variations in the

availability of nectar. A. beryllina are larger and heavier than S. rufus and migrate to

the upper ranges of mountains in the study region during fall/winter (López-Segoviano,

Bribiesca & Arizmendi, 2018). In addition, A. beryllina exhibits an intermediate level

of aggressive dominance, while S. rufus has a low level of dominance at the study site

(López-Segoviano, Bribiesca & Arizmendi, 2018). So, S. rufus is subordinate to

A. beryllina (López-Segoviano, Bribiesca & Arizmendi, 2018).

The ecological implications of altitudinal migrations in the mountains of

North America (Boyle, 2017) as well as the latitudinal migration of S. rufus through

Mexico (Schondube et al., 2004) are still poorly understood. Therefore, we evaluated

interannual variation in the phenologies of the S. rufus and A. beryllina hummingbird

species and their visited plants in three nonconsecutive years. For S. rufus, we expected to

find a consistent pattern in its migratory phenology because long-distance migrants are

more influenced by endogenous rhythms in comparison to short-distance migrants

(Newton, 2007). For A. beryllina, we expected to find a more variable pattern in its
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migratory phenology, as this species is likely influenced by local flowering and by the

abundances of other hummingbird species in the local assemblage.

METHODS
Study area
The study site was located along a western slope of the Sierra Madre Occidental mountain

range at the El Palmito Concordia ejidal lands (23�34′16″ N; 105�50′15″ W) in Sinaloa,

Mexico, between 1,800 and 2,200 masl (Fig. 1B). The climate is temperate sub-humid with

an average annual precipitation of 1,247 mm (SMN, 2018). The Sierra Madre Occidental

is the longest and most continuous mountain range in Mexico and represents an

important temperate forest corridor (González-Elizondo et al., 2012). A vegetation

gradient of oak forest, pine-oak forest and cloud forest mixed with riparian areas and

secondary forest is present at the study site (Dı́az, 2005).

A total of 14 hummingbird species have been described for the region: five residents

(Hylocharis leucotis, Lampornis clemenciae, Eugenes fulgens, Selasphorus platycercus and

Atthis heloisa), four altitudinal migrants (Amazilia violiceps, A. beryllina, Cynanthus

latirostris and Colibri thalassinus) and five latitudinal migrants (Selasphorus rufus, S. sasin,

S. calliope, Calypte costae and Archilochus colubris; López-Segoviano, 2012).

Hummingbird censuses
To determine the migratory phenology of the studied hummingbirds, we counted

individuals in 20 fixed-radius plots (25 m radius) separated by at least 188 m

(minimum distance between two plots; mean distance = 332.42 m; SD = 116.33 m). At the

center of each plot, all detected hummingbirds were counted for 10 min. The plots

were located in a 300 ha area covered with different types of vegetation (six plots with

pine-oak forest, three plots with cloud forest, four plots with forest edges, four plots with

clear-cut secondary vegetation and three plots with riparian vegetation; Fig. 1C). The plots

were fixed and distributed to represent the heterogeneity of the study site (Fig. 1C).

All plots were sampled every 10 days from November 12 to February 20 in 2010–2011,

2013–2014 and 2015–2016, resulting in a total of 11 samples of each plot per sampling period.

We followed all recommended ethical guidelines to avoid harming hummingbird

species and other animals in the research area and to minimize any effects on the

environment (Fair, Ellen & Jones, 2010).

We obtained permits from the Sub-Secretariat for Environmental Protection

Management, General Directorate for Wildlife (Subsecretarı́a de Gestión para la

Protección Ambiental, Dirección General de Vida Silvestre; permit numbers

SGPA/DGVS/01833/11 and SGPA/DGGFS/712/1289/16) of Mexico. The collection

permit allowed voucher specimens of plants to be collected for identification by specialists.

Flower censuses
To evaluate flower availability, all flowers inside the fixed-radius plots used for bird counts

were counted along transects of 40 m in length and 5 m in width. These transects

intersected the center of each plot and were oriented toward the direction where the
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majority of flowers within the plot were found. The abundance and identity of all flowers

were recorded. Floral censuses were carried out at the same frequency as the bird counts:

11 times per period for each plot.

Statistical analysis
The migratory phenologies and the relationship between hummingbird and flower

abundances were analyzed using a generalized additive mixed model (GAMM). We used

the numbers of A. beryllina and S. rufus species in each plot as the response variable and

time, vegetation type (Fig. 1C) and the numbers of S. iodantha and C. thyrsoideum flowers

and total flowers (total flowers of 15 plant species) as the predictor variables. Time was

measured from 0 to 100 days where day 0 was the initial sampling date on November

12 and day 100 was the final sampling date on February 20. We fitted a GAMM with a

Poisson (S. rufus) and Quasipoisson (A. beryllina) distribution, and the plots were

incorporated as a random effect (Crawley, 2007; Zuur et al., 2009). We analyzed the model

using the package mgcv (Wood, 2009) in R software version 3.3.3 (R Core Team, 2017).

RESULTS
Migratory phenology
In the three studied periods, A. beryllina and S. rufus were abundant in the region and

were only surpassed in abundance by the resident speciesH. leucotis. Selasphorus rufus was

Figure 1 Map of the study site at El Palmito in Sinaloa, Mexico. (A) Location of the study site in North-

western Mexico. (B) Location of the study site at El Palmito, Sinaloa. (C) Location of plots at study site;

different symbols represent distinct vegetation types. Full-size DOI: 10.7717/peerj.5131/fig-1
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the second most abundant species in the region, representing 10.6% of the total

hummingbirds recorded during the first sampling period, 12.2% during the second

sampling period and 20.4% during the third sampling period (Table S1). A. beryllina

was the third most abundant species in the region during the first and third sampling

periods (representing 9.1% and 8.4%, respectively, of the total hummingbirds observed)

and the fourth most abundant species (representing 5.4% of the total hummingbirds

observed) during the second sampling period (Table S1). The peak of abundance of

A. beryllina and S. rufus were separate during the three studied periods; A. beryllina’s peaks

of abundance occurred first followed by the peak of abundance of S. rufus (Fig. 2). The

GAMM showed that the abundance of S. rufus was related with the time of sampling

during the first and third periods (Table 1; Fig. 2), yet this relationship was not significant

for the second period (Table 1). During 2013–2014 S. rufus arrived earlier and maintained

low numbers and high variation during all the winter (Fig. 2). Notably, a comparatively

higher level of precipitation was recorded during the second period (Table S2). The

abundance of A. beryllina was related with the time of sampling over all three periods

(Table 1).

Flowering synchrony
We registered 15 plant species at the phenological transects. S. iodantha and C. thyrsoideum

were the most abundant species. Over the three sampling periods, S. iodantha represented

69%, 61% and 77%, respectively, of total flowers counted in the region, followed by

C. thyrsoideum, which represented 24%, 35% and 14%, respectively, of total flowers

(Table S3). The flowering phenology of S. iodantha was similar during each sampling

period and corresponded with the arrival of S. rufus to the study site; S. rufus tended to

follow the flowering of S. iodantha, a pattern that repeats each sampling period (Fig. 2).

Meanwhile, A. beryllina arrival to the study site much earlier than S. rufus (Fig. 2); in

the first period A. beryllina peak of abundance were when C. thyrsoideum flowering

occurred, in the second period it followed C. thyrsoideum weakly. C. thyrsoideum

presented a distinct blooming tendency in third sampling period. The flowering of

C. thyrsoideum was almost finished when S. rufus presented its peak of abundance in

each sampling period (Fig. 3).

According to the GAMM models, a significant correlation was found between the

number of S. rufus hummingbirds and the number of S. iodantha flowers (Table 1;

Fig. 3). A non-significant correlation was found between the number of S. rufus

hummingbirds and the number of C. thyrsoideum flowers and total flowers (Table 1;

Fig. 3). Also, a non-significant correlation was found between the number of S. rufus

hummingbirds and the vegetations type in each plot (Table 1). A. beryllina was related to

the number of S. iodantha flowers, C. thyrsoideum (Fig. 3) flowers and total number of

flowers (Table 1). Finally, we found a non-significant correlation between the number

A. beryllina hummingbirds and the vegetation types in each plot (Table 1).
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Figure 2 Abundance of hummingbirds S. rufus and A. beryllina and of flowers S. iodantha and

C. thyrsoideum during the following sampling periods. (A) 2010–11, (B) 2013–14 and (C) 2015–16.

The total of numbers of S. rufus (open black circle), A. beryllina (black asterisk), flowers of S. iodantha

(open red triangle) and flowers of C. thyrsoideum (open red square) are shown.

Full-size DOI: 10.7717/peerj.5131/fig-2
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DISCUSSION
Migratory phenology
Our study showed variation in the relationship between the abundance of S. rufus and the

sampling date during the second period, while a constant relationship was found for

A. beryllina over all three sampled periods. This result contrasts with those of Supp et al.

(2015) where long-migration hummingbird species like S. rufus were found to have

migratory periods with lower interannual variation in comparison to hummingbird

species with shorter migratory routes. However, variation in climatic conditions can

affect the migration times of some bird species (Cotton, 2003; Gordo et al., 2005;

Marra et al., 2005; Saino et al., 2007).Marra et al. (2005) suggested that variation in spring

temperatures influences the migration of long-distance migratory birds; in this study,

birds were found to migrate earlier in warm years and later in colder years. The

environmental conditions (i.e., precipitation) varied in the second period of our study,

yet the change in the migration pattern of S. rufus may also be the result of variation in

local environmental conditions at its breeding sites.

Meanwhile, altitudinal migrant hummingbirds may perform movements of only a few

kilometers but can search for resources along an altitudinal gradient. Generally, altitudinal

migration is optional in the short term; sedentary species might migrate, for example,

to avoid periods of adverse weather (reviewed by Faaborg et al., 2010). The altitudinal

migrant A. beryllina examined in our study may migrate depending on local climate

conditions and resource quality. Several additional studies establish that seasonal variation

of food resources is the main factor that influences the altitudinal migration of birds

(Levey & Stiles, 1992; Newton, 2007; Faaborg et al., 2010; Boyle, 2017). For altitudinal

migrant hummingbirds, the availability of food resources as well as competition with other

hummingbirds for shared resources is an important factor (Wolf, Stiles & Hainsworth,

1976; Des Ganges, 1979). Wolf, Stiles & Hainsworth (1976) stated that dominance

interactions and floral availability influence the migration of altitudinal migrant

hummingbirds. Meanwhile, Rappole & Schuchmann (2003) proposed that hummingbird

Table 1 Results from the generalized additive mixed model (GAMM) to assess relationships between

the abundances of S. rufus and A. beryllina and flowering plants (S. iodantha, C. thyrsoideum and

total number of flowers), time per sampling.

S. rufus A. beryllina

df/edf F P df/edf F P

Vegetation 4 0.46 0.765 4 0.947 0.436

s(Times):Period 1 2.375 3.408 0.037 6.783 46.25 <0.001

s(Times):Period 2 1.000 0.111 0.738 1.000 95.85 <0.001

s(Times):Period 3 3.775 19.656 <0.001 4.119 59.37 <0.001

s(S. iodantha) 6.405 9.932 <0.001 1.648 11.87 <0.001

s(C. thyrsoideum) 1.000 0.884 0.347 1.000 20.50 <0.001

s(Total flowers) 1 1.207 0.272 6.436 23.02 <0.001

Note:
Later, the ANOVA command was used to clarify the significance of the individual terms (Crawley, 2007). df, degrees of
freedom; edf, effective degrees of freedom for the spline function.

López-Segoviano et al. (2018), PeerJ, DOI 10.7717/peerj.5131 8/17

http://dx.doi.org/10.7717/peerj.5131
https://peerj.com/


migrations respond to seasonal scarcity of resources as well as seasonal flushes of resources

at other sites. However, more studies are needed to determine the importance of

competition for resources and climatic conditions for A. beryllina’s altitudinal migration.

Figure 3 Scatter plots of the number of S. rufus (open red circle) and A. beryllina (black cross) and the

number offlowersofS. iodantha andC. thyrsoideumduring the following sampling periods. S. iodantha:

(A) 2010–11, (C) 2013–14 and (E) 2015–16; C. thyrsoideum: (B) 2010–11, (D) 2013–14 and (F) 2015–16.

Full-size DOI: 10.7717/peerj.5131/fig-3
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Furthermore, annual variation in the climatic conditions of winter sites could decouple

birds from their usual migratory phenology (Cotton, 2003; Saino et al., 2007). If migratory

hummingbirds are unable to adjust their migration to specific flowering dates or

shortened flowering duration of their preferred plants along their migratory routes,

these hummingbirds will be less successful, and their populations will likely be reduced

(Faaborg et al., 2010). Thus, the decoupling of migrants and food resource availability

along migratory routes can have direct consequences for the state of migratory

populations (Both et al., 2006, 2009; Jones & Cresswell, 2010). For example,

Reed, Jenouvrier & Visser (2013) found such a mismatch can have strong effects on the

relative fitness and egg-laying dates of the migratory bird Parus major (Great Tits) for

several years, although a weak effect was found for mean demographic rates. However,

population decline as a result of phenological mismatching cannot be considered as a

common process affecting all migratory bird species, as this may depend on multiple

factors such as migration distance, continent and habitat seasonality (Both et al., 2009;

Jones & Cresswell, 2010).

Flowering synchrony
Our study found a relationship between the number of S. rufus migratory birds and the

number of S. iodantha flowers. As the migration of S. rufus is the longest of all migrating

hummingbirds in North America (Supp et al., 2015), the coupling of its migratory route

with a diverse assemblage of blooming plant species is expected (Calder, 1987;

Kodric-Brown & Brown, 1978; Russell et al., 1994). In this study, the presence of S. rufus

was coupled with the flowering of S. iodantha in northwestern Mexico; this was also found

in another area of western Mexico (Manantlán, Jalisco) where S. rufus was the most

abundant migratory hummingbird in winter and visited S. iodantha flowers (vs. other

flowers) more frequently (Arizmendi, 2001). This confirms the importance of the

flowering phenology of S. iodantha for the fall migration of S. rufus along its migratory

route in western Mexico. This can be considered equivalent to the role of Impatiens biflora

flowers for the fall migration of the Ruby-Throated Hummingbird (Archilochus colubris);

the peak in flowering times of I. biflora is closely related to the peak migration time of the

Ruby-Throated Hummingbird throughout the eastern United States (Bertin, 1982).

However, recent studies found that the correlation in phenology between Ruby-Throated

Hummingbirds and I. biflora is not supported in southern breeding individuals in

United States (Zenzal et al., 2018).

In this respect, migratory species’ selection of refueling sites directly influences their

survival. In an unknown environment, migratory species have limited time and energy to

sample the habitat and experience greater susceptibility to predation and increased

competition (McGrath, van Riper & Fontaine, 2009). In response, S. rufus has been shown

to establish territories that exclude other hummingbird species along its migratory route

in the United States to gain priority access to food resources (Gass, 1979; Kodric-Brown &

Brown, 1978; Kuban & Neill, 1980). However, in Mexico, local hummingbird species have

larger body sizes (including A. beryllina) and dominate smaller latitudinal migratory

species, displacing them to floral patches with less rewarding resources (Des Ganges, 1979;
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Calder & Contreras-Martı́nez, 1995; Rodrı́guez-Flores & Arizmendi, 2016; López-Segoviano,

Bribiesca & Arizmendi, 2018). For this reason, S. rufus individuals prefer to feed on floral

patches of S. iodantha; these flowers do not provide maximum energy quality but are

available to S. rufus because more dominant hummingbird species prefer other resources

(López-Segoviano, Bribiesca & Arizmendi, 2018). This synchrony between the latitudinal

migration of S. rufus and flowering phenology may also be present at other sites along

the migration route of S. rufus in Mexico (Calder & Contreras-Martı́nez, 1995).

Regarding abundances, we found that A. beryllina abundance was related to the

availability of floral resources in general (S. iodantha, C. thyrsoideum and total number

of flowers) in the study area. This confirms that altitudinal migratory hummingbirds

primarily respond to variability in the supply of local floral resources (Stiles, 1985).

During periods with less abundant floral resources, hummingbird species respond by

performing altitudinal or partial migrations to areas with better supplies of floral

resources (Stiles, 1985). Thus, hummingbird communities change depending on the

availability of local floral resources (Feinsinger, 1976; Arizmendi & Ornelas, 1990;

Cotton, 2007). This is especially evident in species with short altitudinal migrations, such

as A. beryllina, which can navigate through regions with different vegetation types and

climate. However, it is necessary to perform further studies on the additional factors that

influence the migration of A. beryllina such as biotic interactions (e.g., competition

among species) and abiotic factors (e.g., climatic conditions).

Finally, we did not find a relationship between the number of S. rufus and A. beryllina

hummingbirds and different vegetation types. Many temperate forests in Mexico have

been clear-cut; some of these areas are now regenerating, resulting in secondary vegetation

with abundant plants for hummingbirds to feed on. In some cases, secondary vegetation

may even have more available flowers than pristine vegetation (Calder & Contreras-

Martı́nez, 1995; Rodrı́guez-Flores & Arizmendi, 2016). Rodrı́guez-Flores & Arizmendi

(2016), for example, found more A. beryllina and S. rufus individuals in secondary

vegetation than in pine forest. Likewise, we found S. iodantha and C. thyrsoideum flowers

in all vegetation types but to a greater extent in clearings with secondary vegetation.

Even so, we did not find that vegetation type was important for the abundance of the

studied hummingbird species. In another study, Cohen, Moore & Fischer (2012) translocated

and released migrant songbirds in different forested habitat types during their spring

migration; these authors found that migrants explore the habitat the morning after release

and move further in habitat types characterized by reduced food resources. They also

suggested that migrant songbirds may search for areas with sufficient food as opposed

to areas with the most abundant food supply (Cohen, Moore & Fischer, 2012).

CONCLUSION
Contrary to expectations, the migration of the long-distance migratory hummingbird

S. rufus was not consistent over the sampled periods. During migratory movements,

birds decide where to stop over in response to a combination of endogenous and

exogenous factors (Cohen, Moore & Fischer, 2012). The migration of S. rufus through the

study region can be altered by changes in climate, as has been demonstrated for other
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species of migratory birds (Cotton, 2003; Gordo et al., 2005;Marra et al., 2005; Saino et al.,

2007); however, long-term data are necessary to establish that changes in migratory

patterns are associated with changes in climate. In our study, the presence of S. rufus

coincided with the blooming of S. iodantha, although this was not the case for the

altitudinal migratory species A. beryllina. Furthermore, S. rufus feeds more on S. iodantha

flowers than on C. thyrsoideum flowers (López-Segoviano, Bribiesca & Arizmendi, 2018).

In contrast, A. beryllina was not associated with a particular plant, as suggested by

Des Ganges (1979) at another study site, but responded to the overall availability of floral

resources. The migration of this latter altitudinal migratory species in the area likely

depends on the supply of floral resources and competition for such resources in addition

to multiple other factors, including climatic and demographic factors. More studies are

needed to clarify the migratory patterns of A. beryllina throughout the mountains of

Mexico.
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PAPIIT: IN216514, U.S. Fish and Wildlife Service’s Neotropical Migratory Bird

Conservation Act: 5087, and Consejo Nacional de Ciencia y Tecnologı́a (CONACyT):

239903. The funders had no role in study design, data collection and analysis, decision to

publish, or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:

Universidad Nacional Autónoma de México (UNAM) PAPIIT: IN216514 U.S.
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� Gabriel López-Segoviano conceived and designed the experiments, performed the

experiments, analyzed the data, prepared figures and/or tables, authored or reviewed

drafts of the paper, approved the final draft, follow up.

� Maribel Arenas-Navarro performed the experiments, analyzed the data, prepared

figures and/or tables, authored or reviewed drafts of the paper, approved the final draft.

López-Segoviano et al. (2018), PeerJ, DOI 10.7717/peerj.5131 12/17

http://dx.doi.org/10.7717/peerj.5131
https://peerj.com/


� Ernesto Vega analyzed the data, prepared figures and/or tables, authored or reviewed

drafts of the paper, approved the final draft.

� Maria del Coro Arizmendi conceived and designed the experiments, analyzed the data,

contributed reagents/materials/analysis tools, prepared figures and/or tables, authored

or reviewed drafts of the paper, approved the final draft.

Animal Ethics
The following information was supplied relating to ethical approvals (i.e., approving body

and any reference numbers):

Permits were obtained from the Mexican government from the Subsecretarı́a de

Gestión para la Protección Ambiental: Dirección General de Vida Silvestre (permit

numbers SGPA/DGVS/01833/11 and SGPA/DGGFS/712/1289/16).

Data Availability
The following information was supplied regarding data availability:

The raw data are provided as a Supplemental File.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/

10.7717/peerj.5131#supplemental-information.

REFERENCES
Arizmendi MC. 2001. Multiple ecological interactions: nectar robbers and Hummingbirds in a

highland forest in Mexico. Canadian Journal of Zoology 79(6):997–1006 DOI 10.1139/z01-066.

Arizmendi MC, Ornelas JF. 1990.Hummingbirds and their floral resources in a tropical dry forest

in Mexico. Biotropica 22(2):172–180 DOI 10.2307/2388410.

Bertin RI. 1982. The Ruby-throated Hummingbird and its major food plants: ranges,

flowering phenology, and migration. Canadian Journal of Zoology 60(2):210–219

DOI 10.1139/z82-029.

Both C, Bouwhuis S, Lessells CM, Visser ME. 2006. Climate change and population declines in a

long-distance migratory bird. Nature 441(7089):81–83 DOI 10.1038/nature04539.

Both C, Van Turnhout CAM, Bijlsma RG, Siepel H, Van Strien AJ, Foppen RPB. 2009.

Avian population consequences of climate change are most severe for long-distance migrants in

seasonal habitats. Proceedings of the Royal Society B: Biological Sciences 277(1685):1259–1266

DOI 10.1098/rspb.2009.1525.

Boyle WA. 2017. Altitudinal bird migration in North America. Auk 134(2):443–465

DOI 10.1642/AUK-16-228.1.

Calder WA. 1987. Southbound through Colorado: migration of Rufous Hummingbirds. National

Geographic Research 3:40–51.

Calder WA. 2004. Rufous and broad-tailed Hummingbird. In: Nabhan GP, Brusca RC,

Van Devender TR, Dimmitt MA, eds. Conserving Migratory Pollinators and Nectar Corridors in

Western North America. Tucson: The University of Arizona Press and The Arizona-Sonora

Desert Museum, 204–224.

Calder WA, Contreras-Martı́nez S. 1995. Migrant Hummingbird and warblers in Mexican

wintering grounds. In: Wilson MH, Sader SA, eds. Conservation of Neotropical Migratory Birds in

Mexico. Orono: Agricultural and Forest Experiment Station Miscellaneous Publications, 727.

López-Segoviano et al. (2018), PeerJ, DOI 10.7717/peerj.5131 13/17

http://dx.doi.org/10.7717/peerj.5131/supp-4
http://dx.doi.org/10.7717/peerj.5131#supplemental-information
http://dx.doi.org/10.7717/peerj.5131#supplemental-information
http://dx.doi.org/10.1139/z01-066
http://dx.doi.org/10.2307/2388410
http://dx.doi.org/10.1139/z82-029
http://dx.doi.org/10.1038/nature04539
http://dx.doi.org/10.1098/rspb.2009.1525
http://dx.doi.org/10.1642/AUK-16-228.1
http://dx.doi.org/10.7717/peerj.5131
https://peerj.com/


Carpenter FL, Hixon MA, Beuchat CA, Russell RW, Paton DC. 1993. Biphasic mass gain in

migrant Hummingbirds: body composition changes, torpor, and ecological significance.

Ecology 74:1173–1182 DOI 10.2307/1940487.

Carpenter FL, Paton DC, Hixon MA. 1983. Weight gain and adjustment of feeding territory size

in migrant Hummingbirds. Proceedings of the National Academy of Sciences of the United States

of America 80(23):7259–7263 DOI 10.1073/pnas.80.23.7259.

Cohen EB, Moore FR, Fischer RA. 2012. Experimental evidence for the interplay of exogenous

and endogenous factors on the movement ecology of a migrating songbird. PLOS ONE

7(7):e41818 DOI 10.1371/journal.pone.0041818.

Cohen EB, Nemeth Z, Zenzal TJ, Paxton K, Diehl R, Paxton E, Moore FR. 2015. Spring resource

phenology and timing of songbird migration across the Gulf of Mexico. In: Wood EM,

Kellermann JL, eds. Phenological synchrony and bird migration: changing climate and seasonal

resources in North America. Boca Raton: CRC Press, 63–82.

Cotton PA. 2003. Avian migration phenology and global climate change. Proceedings of the

National Academy of Sciences of the United States of America 100(21):12219–12222

DOI 10.1073/pnas.1930548100.

Cotton PA. 2007. Seasonal resource tracking by Amazonian Hummingbirds. Ibis 149(1):135–142

DOI 10.1111/j.1474-919X.2006.00619.x.

Crawley MJ. 2007. The R Book. London: John Wiley & Sons, Ltd.

Des Ganges JL. 1979. Organization of a tropical nectar feeding bird guild in a variable

environment. Living Bird 17:199–236.

Dı́az J. 2005. Tipos de Vegetación y Flora del Ejido el Palmito, Concordia Sinaloa. Culiacan:

PRONATURA A.C. Available at http://www.conabio.gob.mx/institucion/proyectos/resultados/

VegetacionCQ014.pdf (accessed 2 August 2010).

Faaborg J, Holmes RT, Anders AD, Bildstein KL, Dugger KM, Gauthreaux SA, Heglund P,

Hobson KA, Jahn AE, Johnson DH, Latta SC, Levey DJ, Marra PP, Merkord CL, Nol E,

Rothstein SI, Sherry TW, Sillett TS, Thompson FR, Warnock N. 2010. Recent advances in

understanding migration systems of New World land birds. Ecological Monographs 80(1):3–48

DOI 10.1890/09-0395.1.

Fair JM, Ellen P, Jones J. 2010. Guidelines to the Use of Wild Birds in Research. Washington, D.C.:

Ornithological Council.

Feinsinger P. 1976. Organization of a tropical guild of nectarivorous birds. Ecological Monographs

46(3):257–291 DOI 10.2307/1942255.

Fraser KC, Diamond AW, Chavarria L. 2010. Evidence of altitudinal moult-migration in a Central

American Hummingbird, Amazilia cyanura. Journal of Tropical Ecology 26(6):645–648

DOI 10.1017/S0266467410000404.

Gass CL. 1979. Territory regulation, tenure and migration in rufous Hummingbirds. Canadian

Journal of Zoology 57(4):914–992 DOI 10.1139/z79-112.
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López-Segoviano G. 2018. Estructura de las comunidades de Colibrı́es (Trochilidae) en un

gradiente altitudinal y su relación con la disponibilidad de alimento. Doctoral thesis,

Universidad Nacional Autónoma de México.

López-Segoviano G, Bribiesca R, Arizmendi MDC. 2018. The role of size and dominance in the

feeding behaviour of coexisting Hummingbirds. Ibis 160(2):283–292 DOI 10.1111/ibi.12543.

Marra PP, Francis CM, Mulvihill RS, Moore FR. 2005. The influence of climate on the timing and

rate of spring bird migration. Oecologia 142(2):307–315 DOI 10.1007/s00442-004-1725-x.

McGrath LJ, Van Riper C III, Fontaine JJ. 2009. Flower power: tree flowering phenology as a settlement

cue formigrating birds. Journal of Animal Ecology 78(1):22–30DOI 10.1111/j.1365-2656.2008.01464.x.

McKinney AM, CaraDonna PJ, Inouye DW, Barr B, Bertelsen CD, Waser NM. 2012.

Asynchronous changes in phenology of migrating Broad-tailed Hummingbirds and their early-

season nectar resources. Ecology 93(9):1987–1993 DOI 10.1890/12-0255.1.

Moore FR, Covino KM, Lewis WB, Zenzal TJ, Benson TJ. 2017. Effect of fuel deposition rate on

departure fuel load of migratory songbirds during spring stopover along the northern coast of

the Gulf of Mexico. Journal of Avian Biology 48(1):123–132 DOI 10.1111/jav.01335.

Nemeth Z, Moore FR. 2012. Differential timing of spring passage of Ruby-throated

Hummingbirds along the northern coast of the Gulf of Mexico. Journal of Field Ornithology

83(1):26–31 DOI 10.1111/j.1557-9263.2011.00352.x.

Newton I. 2007. The Migration Ecology of Birds. Oxford: Academic Press.

Phillips AR. 1975. The migrations of Allen’s and other Hummingbirds. Condor 77(2):196–205

DOI 10.2307/1365790.

López-Segoviano et al. (2018), PeerJ, DOI 10.7717/peerj.5131 15/17

http://bna.birds.cornell.edu.bnaproxy.birds.cornell.edu/bna/species/053
http://bna.birds.cornell.edu.bnaproxy.birds.cornell.edu/bna/species/053
http://dx.doi.org/10.1086/284141
http://dx.doi.org/10.1007/s00442-003-1271-y
http://dx.doi.org/10.1111/j.1365-2656.2009.01610.x
http://dx.doi.org/10.2307/1936374
http://dx.doi.org/10.2307/1367475
http://dx.doi.org/10.1086/285421
http://dx.doi.org/10.1111/ibi.12543
http://dx.doi.org/10.1007/s00442-004-1725-x
http://dx.doi.org/10.1111/j.1365-2656.2008.01464.x
http://dx.doi.org/10.1890/12-0255.1
http://dx.doi.org/10.1111/jav.01335
http://dx.doi.org/10.1111/j.1557-9263.2011.00352.x
http://dx.doi.org/10.2307/1365790
http://dx.doi.org/10.7717/peerj.5131
https://peerj.com/


Rappole JH, Schuchmann KL. 2003. Ecology and evolution of Hummingbird population

movements and migration. In: Berthold P, Gwinner E, Sonnenschein E, eds. Avian Migration.

Berlin, Heidelberg: Springer Berlin Heidelberg, 39–51.

R Core Team. 2017. R: A Language and Environment for Statistical Computing. Vienna:

R Foundation for Statistical Computing. Available at http://www.R-project.org/.

Reed TE, Jenouvrier S, Visser ME. 2013. Phenological mismatch strongly affects individual fitness

but not population demography in a woodland passerine. Journal of Animal Ecology

82(1):131–144 DOI 10.1111/j.1365-2656.2012.02020.x.

Rodrı́guez-Flores CI, Arizmendi MC. 2016. The dynamics of Hummingbird dominance and

foraging strategies during the winter season in a highland community in Western Mexico.

Journal of Zoology 299(4):262–274 DOI 10.1111/jzo.12360.

Russell RW, Carpenter FL, Hixon MA, Paton DC. 1994. The impact of variation in stopover

habitat quality on migrant Rufous Hummingbirds. Conservation Biology 8(2):483–490

DOI 10.1046/j.1523-1739.1994.08020483.x.

Saino N, Rubolini D, Jonzén N, Ergon T, Montemaggiori A, Stenseth NC, Spina F. 2007.

Temperature and rainfall anomalies in Africa predict timing of spring migration in

trans-Saharan migratory birds. Climate Research 35:123–134 DOI 10.3354/cr00719.

Schondube JE, Contreras-Martinez S, Ruan-Tejeda I, Calder WA, Santana CE. 2004. Migratory

patterns of the rufous Hummingbird in Western Mexico. In: Nabhan GP, Brusca RC,

Van Devender TR, Dimmitt MA, eds. Conserving Migratory Pollinators and Nectar Corridors in

Western North America. Tucson: The University of Arizona Press and The Arizona-Sonora

Desert Museum, 204–224.

Schuchmann KL. 1999. Familia Trochilidae (Hummingbirds). In: Del Hoyo J, Elliot A,

Sargatal J, eds. Handbook of the Birds of the World. Barcelona: Lynx Edicions, 468–680.

Servicio Metereológico Nacional (SMN). 2018.Normales Climatológicas. El Palmito: Información

Climatológica. Available at http://smn.cna.gob.mx/tools/RESOURCES/Normales5110/

NORMAL15333.TXT (accessed 2 February 2017).

Stiles FG. 1985. Seasonal patterns and coevolution in the Hummingbird-flower community of a

Costa Rican subtropical forest. Ornithological Monographs 36:757–787 DOI 10.2307/40168315.

Supp SR, La Sorte FA, Cormier TA, Lim MCW, Powers DR, Wethington SM, Goetz S,

Graham CH. 2015. Citizen-science data provides new insight into annual and seasonal

variation in migration patterns. Ecosphere 6(1):1–19 DOI 10.1890/ES14-00290.1.

Tinoco BA, Astudillo PX, Latta SC, Graham CH. 2009. Distribution, ecology and conservation of

an endangered Andean Hummingbird: the violet-throated metaltail (Metallura baroni).

Bird Conservation International 19(1):63–76 DOI 10.1017/S0959270908007703.

Visser ME, Holleman LJM, Gienapp P. 2006. Shifts in caterpillar biomass phenology due to

climate change and its impact on the breeding biology of an insectivorous bird. Oecologia

147(1):164–172 DOI 10.1007/s00442-005-0299-6.

Weller AA, Kirwan GM. 2017. Berylline Hummingbird (Amazilia beryllina). In: del Hoyo J,

Elliott A, Sargatal J, Christie DA, De Juana E, eds. Handbook of the Birds of the World Alive.

Barcelona: Lynx Edicions. Available at https://www.hbw.com/node/55510 (accessed

20 December 2017).

Wolf LL, Stiles FG, Hainsworth FR. 1976. Ecological organization of a tropical, highland

Hummingbird community. Journal of Animal Ecology 45(2):349–379 DOI 10.2307/3879.

Wood SN. 2009. mgcv. R Package Version 1.6-0. Available at http://CRAN.R-project.org/

package=mgcv (accessed 20 February 2017).

López-Segoviano et al. (2018), PeerJ, DOI 10.7717/peerj.5131 16/17

http://www.R-project.org/
http://dx.doi.org/10.1111/j.1365-2656.2012.02020.x
http://dx.doi.org/10.1111/jzo.12360
http://dx.doi.org/10.1046/j.1523-1739.1994.08020483.x
http://dx.doi.org/10.3354/cr00719
http://smn.cna.gob.mx/tools/RESOURCES/Normales5110/NORMAL15333.TXT
http://smn.cna.gob.mx/tools/RESOURCES/Normales5110/NORMAL15333.TXT
http://dx.doi.org/10.2307/40168315
http://dx.doi.org/10.1890/ES14-00290.1
http://dx.doi.org/10.1017/S0959270908007703
http://dx.doi.org/10.1007/s00442-005-0299-6
https://www.hbw.com/node/55510
http://dx.doi.org/10.2307/3879
http://CRAN.R-project.org/package=mgcv
http://CRAN.R-project.org/package=mgcv
http://dx.doi.org/10.7717/peerj.5131
https://peerj.com/


Zenzal TJ, Contina AJ, Kelly JF, Moore FR. 2018. Temporal migration patterns between natal

locations of ruby-throated Hummingbirds (Archilochus colubris) and their Gulf Coast stopover

site. Movement Ecology 6(1):2 DOI 10.1186/s40462-017-0120-2.

Zenzal TJ, Moore FR. 2016. Stopover biology of Ruby-throated Hummingbirds (Archilochus

colubris) during autumn migration. Auk 133(2):237–250 DOI 10.1642/AUK-15-160.1.

Zuur AF, Ieno EN, Walker N, Saveliev AA, Smith GM. 2009. Mixed Effects Models and Extensions

in Ecology with R. New York: Springer Science + Business Media.

López-Segoviano et al. (2018), PeerJ, DOI 10.7717/peerj.5131 17/17

http://dx.doi.org/10.1186/s40462-017-0120-2
http://dx.doi.org/10.1642/AUK-15-160.1
http://dx.doi.org/10.7717/peerj.5131
https://peerj.com/

	Hummingbird migration and flowering synchrony in the temperate forests of northwestern Mexico
	Introduction
	Methods
	Results
	Discussion
	Conclusion
	flink6
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


