- Habitat use, preference and utilization distribution of two crane species 1
- (Genus: Grus) in Huize National Nature Reserve, Yunnan-Guizhou 2
- Plateau, China 3
- Dejun Kong 1, 2, §, Weixiong Luo^{1, §}, Guoyue Huan³, Zhuoqing Li⁴, Xiaojun Yang^{1, *} 4
- 1 Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming 650223, China 5
- $2\ Key\ Laboratory\ of\ Special\ Biological\ Resource\ Development\ and\ Utilization\ of\ Universities\ in\ Yunnan\ Province,$ 6
- 7 Kunming University, Kunming 650214, China
- 8 3 Administrative Bureau, National Nature Reserve of Black-necked Cranes in Huize, Beihuan Road, Huize 654200,
- 9
- 4 Yunnan Institute of Environmental Science, Kunming 650034, China 10

11

- 12 § These authors contributed equally to this work.
- 13 Corresponding author: Xiaojun Yang
- 14 Email address: Xiaojun Yang, yangxj@mail.kiz.ac.cn
- 15
- 16 Funding: This study was supported by the National Natural Science Foundation of China (31201725) and the
- 17 Applicable Basic Research Project of Yunnan Province (2012FB186). The funders had no role in study design, data
- 18 collection and analysis, decision to publish, or preparation of the manuscript.
- 19 Competing interests: the authors have no competing interests.

Abstract: Understanding habitat use and spatial distribution of wildlife could help

conservationists determine high-priority areas and enhance conservation efforts. In this study, we studied habitat use, preference and utilization distribution of two Gruidae species (Black-necked Cranes *Grus nigricollis* and Eurasian Cranes *G. grus*) in Huize National Natural Reserve, Yunnan-Guizhou Plateau, SW China. Line transect method indicated that the anthropogenic habitat of farmland was utilized the most by these two species (>90% of flocks observed for both). But Black-necked Cranes preferred marsh to farmland and grassland while Eurasian Cranes favored grassland in our study. Nearly all the Black-necked Cranes (99.30% of the flocks observed) utilized habitats in the core area of the reserve, covering an area of 283.84 ha close to the common roost, Eurasian Cranes were mostly (55.39% of the flocks observed) distributed in the buffer zone with higher elevation and further distance to the roost, covering an area of 558.73 ha. We believe that our findings could help guide habitat management, functional zoning planning and adjustment in the future. According to our results, we recommended restoration of more wetlands, retain large areas of farmland, and protect the areas that cranes use most frequently.

Keywords: *Grus nigricollis*; *Grus grus*; habitat use; spatial distribution; threatened species; coexistence

Introduction

Understanding the habitat use and spatial distribution of wildlife is important for conservation and management (Morris, 2003; Nina et al., 2008). Conservation planning should be drawn up more carefully for protected area managers when more than one species are taken into consideration. And things are going to be more complicated when the area is surrounded by human beings and anthropogenic habitats (e.g. farmland) are utilized by wildlife (Fujioka et al., 2010; Li et al., 2013), such as wintering crane species.

Black-necked (*Grus nigricollis*, Przevalski, 1876) and Eurasian Cranes (*G. grus*, Linnaeus, 1758) are two large Gruidae-waders in the Gruidae family. Black-necked Cranes were are Vulnerable (Vu) species on the IUCN Red List of Threatened Species (BLI, 2016) and Biodiversity Red List of China, while Eurasian Cranes were are recognized as Least Concern (LC) and Near Threatened (NT) species on the Red List of Threatened Species of IUCN and China, respectively.

Both of the species are typical migrators. Eurasian Cranes are vastly distributed across Eurasia. Their breeding range extends from northern and western Europe across Eurasia to northern Mongolia, northern China, and eastern Siberia; and the winter range includes the Mediterranean region of northern Africa, the Persian Gulf, the India Peninsula, as well as southern China to northern Indo-China, Myanmar and Assam (Johnsgard, 1983; Meine and Archibald, 1996). The Black-necked Crane mainly inhabits the alpine wetlands of the Qinghai-Tibet and Yunnan-Guizhou Plateaus of China with a population of 10,000–10,200 individuals (Li and Li, 2005; Li, 2014). Nearly all the Black-necked Crane breeding populations are distributed on the Qinghai-

Commented [CD1]: As written this seems counter intuitive.

The authors state that cranes use farmland the most but prefer marsh and grasslands. I suggest recasting these two sentences. I understand where they are coming from but I think it may detract from the article if left unchanged

Commented [CD2]: This paragraph could be expanded a bit more to capture the larger landscape / broader issues at hand and the importance of knowing habitat use and spatial distribution. Other paper suggestions would be: (Fielding and Bell 1997; McClean et al. 1998; McDonald and McDonald 2002; Millspaugh et al. 2006, Kruse et al. 2017)

Commented [CD3]: I could not find this in the author instructions but in my opinion this reads much better if the authors would use the "active" voice but if that is not the suggested voice by the journal I have no problems with changing back.

Commented [CD4]: Will the general audience know what a "typical" migrator is? Do they exhibit the same migration strategy and if so which one and if not which one? Is this relevant to the paper? If it is this needs to be developed further.

Commented [CD5]: You report a population size for Blakcnecked Cranes it would be nice to have one for Eurasian Cranes for comparison.

Tibet Plateau, China, except for a small number of pairs (maximum 139 birds) in adjacent Ladakh, India (Chandan et al., 2014). The wintering area of Black-necked Cranes includes lower elevations of the Qinghai-Tibet and Yunnan-Guizhou Plateaus of China, Bhutan, with occasional records in Nepal, Myanmar, Vietnam and Kashmir region (Li, 2014; Chandan et al., 2014). These two crane species have a clearly divided breeding range while-overlapping on-their wintering grounds mainly on the Yunnan-Guizhou Plateau, SW China (Wang and Wang, 2004).

The lake and lakeshore area on the Yunnan-Guizhou Plateau has been regarded as an important wintering place for waterbirds, e.g. geese, ducks, gulls, storks and cranes (Chen, 1998). As a typical mountain area, the majority of lakes on the Yunnan-Guizhou Plateau were formed by faulting (Wang and Dou, 1998) and the lakeside wetland ecosystem are fragile due to its-narrow distribution and frequent disturbance by human activities, such as farming, fishery and tourism (Tian et al., 2004; An et al., 2007). The Black-necked Crane and Eurasian Crane are two flagship species of the wetland ecosystem on the Yunnan-Guizhou Plateau. Different from their respective breeding siteareas, in winter cranes are distributed in the-human-dominated areas and mainly forage in anthropogenic habitats (Li, 2014). In order to put forward more rational and effective habitat management measurements and promote sustainable development of the plateau wetland system, we studied the habitat use, preference and utilization distribution (UD, or space use pattern) of two wetland flagship species (Black-necked Cranes & Eurasian Cranes) in the Huize National Nature Reserve (HNNR) on the Yunnan-Guizhou Plateau.

Materials & Methods

Study area

This study was conducted between November 2010 and March 2011 in the HNNR, north-eastern Yunnan Province (Fig. 1). The reserve was first established in 1990 as a county level reserve and upgraded to a national reserve in 2006 to protect wintering waterfowl and their habitats (Qiou, 2012). Black-necked Cranes and Eurasian Cranes were are known as the flagship species of this plateau wetland ecosystem. There were are 64 water bird species wintering at HNNR including about 400 Black-necked Cranes and 350 Eurasian Cranes (Yang and Zhang, 2014). The elevation of HNNR, which is located on the Yunnan-Guizhou Plateau, is 2,470–3,092 m above the sea level (Qiou, 2012).

HNNR has two discrete sites about 30 km apart named the Daqiao and Zhehai. Our study was conducted in the Daqiao site, which covers an area of 9076.28 ha (N26°38'00"–26°44'24", E103°12'06"–103°22'02") (Fig. 1). The Daqiao site contains 470.50 ha of reservoir named Yuejin, 149.36 ha of marsh, 3966.53 ha of farmland, 178.19 ha of grassland, 302.11 ha of residential areas, and 4009.58 ha of woodlands (Qiou, 2012). The Yuejin Reservoir supplies shallow water roosting and foraging habitat for wading birds, as well as marsh, farmland and grassland, which serve as foraging habitats for the cranes, and woodland, which is considered unsuitable habitat

Commented [CD6]: Should not start a sentence with an acronym or abbreviation.

for cranes (Kong et al., 2011). As a typical anthropogenic habitat, farmlands have more human activities during the harvest (from October to November) and planting season (from February to March). Food grown by farmers, includeing grains and potatoes, is which are the primary forageily consumed by cranes in winter (Dong et al., 2016). During the course of our study, there were about 340 Eurasian and 80 Black-necked Cranes in the Daqiao site, as well as several thousands of other waterfowl, such as Barheaded Goose Anser indicu, Ruddy Shelduck Tadorna ferruginea, Grey Heron Ardea cinerea, and many other species. Wildlife in HNNR is facing intensive human disturbance due to the 12250 people residing in the study area. The mean annual temperature at Daqiao is 9.6°C, and there are 40 days of snowfall, 50 days with snow on the ground, and 45 days of frozen ice annually (Qiou, 2012).

Commented [CD7]: Seems out of place here and more like results to a point.

Field surveys

104 105

106

107

108 109

110

111

112

113

114115

116 117

118

119

120

121 122

123

124 125

126

127

128

129

130

131 132

133

134

135

136

137

138

139

140

141

142

143 144

145

146

Wintering cranes are gregarious and share communal roosting sites; they departed for to foraging-forage during in the morning (06:30–08:00) and returned at night (18:00– 20:00) typically (Kong et al., 2008). The line transects survey method was used to record bird distributions and habitat use while they fed on clear days (no rain, snow or fog) during 08:00—18:00. In general, three spatially relatively—separated areas comprising villages of Yangmeishan-Bajiacun-Lijiawan (YBL), Maanshan (MAS) and Daqiao-Dideka (DD) were included along the line transect (Fig.1). The line transects covered 16.6 km and could be fully inspected in two days. Every day of field studies, we started off from the protecting station located in Yangmeishan village. The end point along the line transect of the previous day was used as the start point of the second day. The continuous two days' survey was considered as a whole survey or one independent sampling and we switched direction of travel in the next whole survey. In consideration of relatively constant activity area for of cranes in concentrated area in a short time (Qian et al 2009); little probability existed for recording a flock repeatedly during one sampling period (two days). Therefore we considered the 12 whole surveys conducted during the study period as 12 independent replicate. Crane flocks could be were easily detected along the transect with 10×42 binoculars; nearly 100% of the Black-necked Crane population (mean=78, n=12) and about 80% of the Eurasian Crane population (mean=263, n=12) could be sighted during each whole survey. We defined flocks as being discrete if they were 500m apart. Each flock was considered a sample unit and one GPS point was recorded for every flock due to non-independence of individuals in a flock (Thomas and Taylor 1990). For each crane flock, we recorded detailed information including date, time, habitat type, GPS location, elevation, distance to roost (DTR), flock size and flock composition. DTR was defined as the distance from the location of each flock to the communal roosting site (N26°42'05.6", E103°16'00.6") and was calculated in ArcGIS 10.2 software.

We divided the foraging habitat into three categories of farmland, marsh and grassland. Farmland included plowed and unplowed lands used for crops, including *Solanum tuberosum*, *Rassica campestris*, and *Zea mays*. Marsh was near the reservoir where the ground was covered with shallow water (≤50 cm) throughout the winter. The

Commented [CD8]: This is an awkward sentence, recast and reword.

Commented [CD9]: Completed? Checked? Inspected doesn't fit to me. Just a suggested change.

Commented [CD10]: Suggest recasting...... Each transect was started from the protected station in Yangmeishan village.

Commented [CD11]: Not to be a stickler but this are local area populations not population in the truest sense. Suggest recasting this to capture that fact.

Commented [CD12]: Was the GPS point taken from the road? Did you walk out into the field? It is not clear how the point was taken, expand this a bit so the reader knows how the GPS point was actually recorded. It will also help during

Commented [CD13]: Acronym and start of a sentence.

most dominant vegetation in the marsh was *Ranunculus japonicus*, *Juncus effuses* and

148 Poa annua. Grassland included meadows without water covered during winter, and

149 predominately occupied by Leontopodium andersonii, Prinula malacoides and

150 Trifolium repens. All of these habitats were scattered around the Yuejin Reservoir.

Habitat use and preference

147

151

152

153

154 155

156 157

158

159

160

161

162

163164

165

166

167168

169

170 171

172

173 174

175

176

177

178

179

180

181

182

183 184

185

186

187

Jones (2001) reviewed that habitat use refers to the way in which an individual or species uses habitats to meet its life history needs, while habitat preference that takes into account habitat availability, resulting in the disproportional use of some resources over others (Krausman, 1999). Both habitat use and preference are consequences of habitat selection, which refers to a hierarchical process of behavioral responses that may result in the disproportionate use of habitats (Block and Brennan, 1993).

Habitat use was calculated by the number of crane flocks occurring in each habitat type as the percentage of all crane flocks observed. Compositional analysis was used to determine habitat preference rank of the birds by considering the relative magnitude between utilization and availability of every two habitat categories. Log-transformed ratio value of habitat was used instead of the absolute value for avoiding the unit-sum constraint of available habitat types (only the farmland, marsh and grassland were regarded as available foraging habitat as mentioned above) (Bingham and Brennan, 2004). The equation of $d_{ij} = \ln(\chi_{Ui} / \chi_{Uj}) - \ln(\chi_{Ai} / \chi_{Aj})$ were used to construct a ranking matrix of habitat preference, where i and j means are defined as the ith and jth habitat type and $i \neq j$; χ_U and χ_A are habitat proportion utilized and available, respectively (Aebischer et al., 1993). If $d_{ij} > 0$ habitat i is utilized more than expected relative to habitat j, otherwise habitat i is utilized less than expected.

Utilization distribution

The utilization distribution (UD) provides a useful global representation of space use pattern of animals by defining the relative frequency of occurrence of animals (Benhamou and Riotte-Lambert, 2012). We calculated utilization distributions using the nonparametric kernel method called the "LoCoH" local convex hull method to assess space use by the cranes (Getz and Wilmers, 2004; Getz et al., 2007). This method is more appropriate than a parametric kernel method for constructing UDs and can capture hard boundaries (e.g., rivers and cliff edges) and process a large sample size (Getz et al., 2007). This-method is also very powerful in processing aggregated and clustered data (Getz and Wilmers, 2004) on population level (Liu et al., 2010). We kernels with r-LoCoH method constructed the (available http://locoh.cnr.berkeley.edu), using data of flock locations within a fixed radius of 500 m, which was sufficient to distinguish two crane flocks. Shapefiles obtained from this implementation was imported to ArcGIS 10.2 to construct the UD map. We considered the 90%, 70% and 50% UD isopleths of cranes in our study in order to determining determine areas with high conservation priority. We considered the 90% isopleths instead of 100% isopleths as the overall distribution range of the cranes by omitting outlying points representing exploratory animal movement rather than those necessary

for survival. And the 90% UD isopleths could reflect actual spatial distribution pattern of animals faithfully (Luca et al., 2006).

Statistical analysis

We used parametric and non-parametric tests, as appropriate after the *Kolmogorov*– *Smirnov* test was conducted for each data set. For comparing mean of flock size,

elevation and distance to the roost of two crane species, the nonparametric test of MannWhitney U was selected as the normality violation of our data. Statistical analysis were

completed with IBM SPSS Statistics 19.0 and the difference between two variables was

considered statistically significant when the two-sided *p*-values of significant

197 probability < 0.05.

199

200

201

202 203

204205

218

220

188

189

190

Results

Habitat use and preference

We observed 287 and 399 flocks for Black-necked Cranes (BNC) and Eurasian Cranes (CC), respectively during the 12 whole surveys. In winter, both of the two crane species showed similar habitat use patterns with the most utilized proportion of farmland (BNC: 90.94%; CC: 93.73%). For the other two habitat types, more Black-necked Cranes utilized marsh and more Eurasian Cranes selected grassland (Table 1).

Mann-Whitney U test indicated that Eurasian Cranes usually selected habitat with higher elevations ($Z_{686} = -12.046$, P = 0.000), further distance to the roost ($Z_{686} = -208$) 14.164, P = 0.000) and aggregated in bigger flock ($Z_{686} = -9.913$, P = 0.000) than Blacknecked Cranes (Table 2, Fig. 2). Eurasian Cranes utilized habitat at higher elevations

than that of Black-necked Cranes at the areas of YBL ($Z_{262} = -5.556$, P = 0.000) and DD ($Z_{262} = -2.141$, P = 0.032). Moreover, Eurasian Cranes distributed further away

from the roost than those of Black-necked Cranes in the area of YBL ($Z_{262} = -4.616$, P

213 = 0.000) and MAS (Z_{201} = -2.008, P = 0.045) (Fig. 2).

214 Compositional analysis indicated that these two species had different habitat

215 preferences. The habitat preference rank of Black-necked Cranes was Marsh >

216 Farmland > Grassland, while Eurasian Cranes preferred Grassland to Farmland and

217 Marsh (Table 3).

Utilization distribution

Nearly all Black-necked Cranes (99.30%) were distributed in the core area close to the

roosting sites encompassing YBL and MAS, whereas Eurasian Cranes scattered in the

221 whole region with over half of flocks (55.39%) in the peripheral area of DD (Fig. 1,

222 Table 2). For Eurasian Cranes, the utilization distribution covered a larger area of

558.73 ha (90% isopleths of the UD, or UD₉₀) than that of Black-necked Cranes (UD₉₀

= 283.84 ha). UD₇₀ of Eurasian Cranes scattered in three discrete areas occupying

380.46 ha, whereas Black-necked Cranes concentrated in the area near the roost

covering 165.58 ha. The UD₅₀ of Black-necked Cranes was rather small (92.89 ha) at

Commented [CD14]: I think this is a good start but this needs to be worked on a bit. It need to be more succinct and everything should be explained.

hard time wrapping my head around this a bit. Bear with me, 93% of the available habitat was farmland and it was show to be used 90% of the time which is very believable. However, what I am struggling with is use based on proportion available. Would a Chi-square test been appropriate here to test whether they are using habitats disproportionately. Later in the results you show how compositional analysis indicates preference which is great. These "use" results to me would be miss leading. So is farmland important to these cranes or are they purely using it because that is what is most abundant on the landscape? Maybe you addressed this in your discussion. Just something to think about.

Commented [CD15]: This is not a knock but I am having a

YBL area, but the UD_{50} of Eurasian Cranes was situated in YBL and DD with an area of 224.81 ha (Fig. 3).

Discussion

227 228

229

230231

232

233

234

235

236

237

238

239

240 241

242

243

244

245246

247 248

249

250

251

252

253254

255

256

257

258

259

260 261

262 263

264

265

266 267

268

269

As two large wader species of Gruidae, Black-necked Cranes and Eurasian Cranes were recognized as the flagship species of wetlands on the Yunnan-Guizhou Plateau. Due to their close phylogenetic relationship and similar morphologies, the birds have quite a similar wintering ecology. We found wintering crane species exhibited extremely high dependency on the anthropogenic habitat of farmland in winter, which was understandable, considering that farmland was the predominant available habitat (92.37%) in our study area. Wintering Black-necked Cranes usually forage in cultivated lands and marshes not only at two other wintering sites like Dashanbao National Nature Reserve (Kong et al., 2011) and Yongshan County (Lu and Yang, 2014) on the Yunnan-Guizhou Plateau, but also in the Lhasa river valley Tibet on the Qinghai-Tibet Plateau (Tsamchu and Bishop, 2005), possibly due to plenty of food storage in farmland than other habitats. For example, the residue potato Solanum tuberosu and grains like oat Avena sativa, buckwheat Fagopyrum tataricum, and corn Zea mays on the farmland supplied over 80% wintering food for Black-necked Cranes (Li et al 2009; Dong et al 2016). During the whole winter, marsh and farmland rather than grassland were favored by Black-necked Cranes in Huize reserve. Other studies conducted on the Yunnan-Guizhou Plateau also indicated that Black-necked Cranes preferred marsh to other habitats (Li, 1999; Kong et al., 2011). Habitat use is the results of the behavioral response of animals to the local environment (Block and Brennan, 1993; Jones, 2001), while habitat preference reflects the biological characteristics of animals (Hall et al., 1997). In our study area, farmland occupies an extremely high proportion of the available habitat, e.g., about 26 times more than marsh in size. Although Black-necked Cranes prefer marsh, the limited area of marsh cannot support all the birds, which may explain the significant difference between habitat use and preference observed in our

The Eurasian Crane are found in farmland both in our study and other studies from Asia to Europe (Avilés et al., 2003; Zhan et al., 2007). Eurasian Cranes mainly prefer grassland in this study, whereas farmland and marsh are favored habitats for Eurasian Cranes in Yeyahu wetland, Beijing (Zhan et al, 2007) and Spain (Avilés et al., 2003), where Black-necked Cranes are absent. Although habitat preference reflects the biological characteristics determined by a series of innate and learned behavioral decisions (Hall et al., 1997), this is not invariable. When wintering with Black-necked Cranes in a sympatric area in our study, Eurasian Cranes preferred grassland to farmland and marsh. We inferred that this may be caused by the presence of Black-necked Cranes whose larger body size gives them an advantage in competing for resources (Smith and Brown, 1986), and as a result they exclude the smaller Eurasian Cranes from their favored habitats. Thus, the difference in habitat preference between this study and the others may be partly explained by the inter-species competition.

In consideration of the same habitat use pattern of these two cranes, inter-specific

Commented [CD16]: The first sentence has already been stated in the Introduction. I suggest deleting and rewording to capture the wintering ecology portion.

Commented [CD17]: Good

Commented [CD18]: This is awkward but relavant. Please recast this to compare among all these sites.

Commented [CD19]: Delete, this was already defined in the Intro and doesn't need to be defined again.

Commented [CD20]: Good

Commented [CD21]: Excellent point

competition could be expected. However, coexistence has occurred for similar species when niche divergence is present (Schoener, 1974), although we found that the two crane species seem to avoid inter-species competition by moderately segregating of habitat preference as mentioned above. At the same time, we found significant segregating in spatial distribution between these two species. The two crane species seemed to avoid foraging together during the winter by distributing in different areas. Nearly all of black-necked cranes (99.3%) located in the area of YBL and MAS while over half of Eurasian Cranes (55.39%) distributed in the buffer zone of DD. That is why less than 3% of mixed flocks were recorded in our study. Previous empirical observations also indicated that Black-necked and Eurasian Cranes share roosts, although they forage at different sites (Yang et al., 1992) and often compete for foraging sites when wintering in sympatry (Li and Li, 2005).

Our result showed that Black-necked Cranes concentrated for foraging in the central area near the common roost, while Eurasian Cranes scattered throughout the region on a wider scale. This could explain that larger populations of Eurasian Cranes occupy more expansive areas. We found that Eurasian Cranes usually selected habitats 2.55 km farther away from the roost and 55 m higher along the elevation gradient than the Blacknecked Cranes. Earlier studies pointed out that foraging near the roost is a strategy of reducing energy expenditures for the cranes (Alonso et al., 1992; Kong et al., 2011), and undoubtedly only the dominate species could occupy the optimal habitat, e.g. close to the roost or with plenty of food. Although we occasionally detected the larger Blacknecked Cranes repelling smaller Eurasian Cranes from their foraging farmland habitat, we do not have strong evidence demonstrating that it is the inter-species competition resulting in spatial separation of these two crane species in our study, in spite of a similar distribution pattern documented by Yang et al. (1992). An observation carried out in the Caohai National Nature Reserve of Guizhou Province on the Yunnan-Guizhou Plateau, reported that Black-necked Cranes mostly forage in places near their roosting site, whereas smaller Eurasian Cranes forage in peripheral areas 10-20 km away on the hill (Yang et al., 1992).

Taking into consideration our and earlier habitat studies, we inferred that cranes use different habitats in different ways (Kong et al., 2011; Dong et al 2016). Marsh could be recognized as the optimal foraging habitat for cranes because of the highest amount of food resources (including underground tubers and insect larvae), the softest ground surface for cranes to dig the food and the difficult access for humans (Li et al. 2009; Kong et al., 2011). Farmland is considered as the suboptimal habitat with the largest amounts of underground tubers and medium amounts of insects, but with higher human disturbance (Li et al., 2009). On the other hand, farmland is utilized the most by cranes (especially for Black-necked Cranes) across the Yunnan-Guizhou Plateau to Qianghai-Tibet Plateau (Tsamchu and Bishop, 2005; Kong et al., 2011; Lu and Yang, 2014), and could be regarded as the—vital foraging habitat for wintering cranes. Grassland with scarcest food resources and hardest ground surface represent the worst habitat quality (Li et al., 2009).

Although this case study was carried out in one reserve, our study could also shed light on the mountain area on the Yunnnan-Guizhou Plateau and suggest habitat

Commented [CD22]: Agriculture on the North American landscape plays a role in where Sandhill Cranes and even Whooping Cranes use and Select. Could you find a citation and help with this inference.

Commented [CD23]: Expand this a bit

conservation and management lessons for the other protected areas. Our results indicated that effective and sustainable conservation measures, such as maintaining plenty of farmland, restoring wetlands, and prohibiting humans and livestock entering the core area inhabited by cranes, could benefit the wintering crane species. We believe the conservation of flagship crane species could also enhance conservation efforts of other waterbirds in the wetland system.

Conclusions

As two close related species, Black-necked and Eurasian Cranes showed high similarity in habitat use patterns. However, they were inclined to utilize habitats in different areas, and Black-necked Cranes kept to the core area while Eurasian Cranes inhabited larger areas. We argue that spatial separation could mitigate interspecies competition and facilitate coexistence. We recommended protection of the farmlands utilized the most

327 328

329

314

315

316 317

318

319

320

321

Acknowledgements

by cranes, and restore more wetlands.

We appreciate filed assistance from all the staff of Huize National Nature Reserve. We are grateful to Beverly Pfister, Elena Smirenski and Fengshan Li for their invaluable editing on the manuscript and comments.

333

334

References

- Aebischer NJ, Robertson PA, Kenward RE. (1993) Compositional analysis of habitat use from animal radio-tracking data. *Ecology*, 74: 1313-1325.
- Alonso JC., Alonso JA., Alonso JC. (1992) Daily activity and intake rate patterns of wintering
 Eurasian CraneEurasian Cranes (*Grus grus*). Ardea, 80, 343–351.
- An SQ, Li HB, Guan BH, Zhou CF, Wang ZS, Deng ZF, Zhi YB, Liu YH, Xu C, Fang SB, Jiang
 JH, Li HL. (2007) China's natural wetlands: past problems, current status, and futre challenges.
 AMBIO: A Journal of the Human Environment 36(4): 335-342.
- Avilés JM. (2003) Time budget and habitat use of the Eurasian Crane wintering in dehesas of
 southwestern Spain. Canadian Journal of Zoology 81: 1233-1238.
- Benhamou S, Riotte-Lambert L. (2012) Beyond the utilization distribution: identifying home range areas that are intensively exploited or repeatedly visited. *Ecological Modelling* 227: 112-116.
- Bingham R., Brennan L.A. (2004) Comparison of type I error rates for statistical analyses of resource selection. *Journal of Wildlife Management* 68: 206-212.
- Blcok WM, Brennan LA. (1993) The habitat concept in ornithology: Theory and applications.
 Current Ornithology, 11:35–91.
- 350 BLI [BirdLife International]. (2016) IUCN Red List for birds.
- Chandan P, Khan A, Takpa J, Hussain SA, Medi K, Jamwal PS, Rattan R, Khatoon N, Rigzin T,
 Ababd A, Dutta PK, Ahmad T, Ghose PS, Shrestha P, Theengh LT. (2014) Status and

Commented [CD24]: I am not sure this has been captured sufficiently in the results and earlier discussion. I suggest add this into an earlier section of the discussion. You talk about how the two species distribute themselves across the landscape in and around the village clusters but not how those village clusters may be influencing use etc.

Commented [CD25]: This is a good start but needs to be expanded a bit more.

- distribution of black-necked Crane (*Grus nigricollis*) in India. *Zoological Research* 52(S1):567-576.
- 355 Chen KL. (1998) Wetlands and waterbirds of China. Bulletin of Biology, 33:2–4.
- Dong HY, Lu GY, Zhong XY, Yang XJ. (2016) Winter diet and food selection of the Black-necked
 Crane *Grus nigricollis* in Dashanbao, Yunnan, China. *PeerJ* 4:e1968; DOI 10.7717/peerj.1968.
- Fujioka M., Lee SD, Kurechi M, Yoshida H. (2010) Bird use of rice fields in Korea and Japan. Waterbirds 33(sp1): 8-29.
- Getz WM, Fortmann-Roe S, Cross PC, Lyons AJ, Ryan SJ, Wilmers CC. (2007) LoCoH:
 Nonparametric kernel methods for constructing home ranges and utilization distributions.
 PLoS ONE 2(2): e207. doi:10.1371/journal.pone.0000207
- Getz WM, Wilmers CC. (2004) A local nearest-neighbor convex-hull construction of home ranges
 and utilization distributions. *Ecography* 27: 489-505.
- Hall LS, Krausman PR, Morrison ML. (1997) The habitat concept and a plea for standard
 terminology. Wildlife Society Bulletin 25(1): 173-182.
- Johnsgard PA. (1983). Cranes of the world. Bloomington: Indiana University Press.
- Jones J. (2001). Habitat selection studies in avian ecology: a critical review. *The Auk* 118(2): 557-369 562.
- Kong DJ, Yang XJ, Liu Q, Zhong XY, Yang JX. (2008) Diurnal time budget and behavior rhythm
 of wintering black-necked crane at Dashanbao in Yunnan. *Zoological Research*, 29, 195–202.
- Kong DJ, Yang XJ, Liu Q, Zhong XY, Yang JX. (2011) Winter habitat selection by the vulnerable
 black-necked crane *Grus nigricollis* in Yunnan, China: implications for determining effective
 conservation actions. *Oryx* 45(02): 258-264.
- Krausman PR. (1999) Some basic principles of habitat use. In: Launchbaugh KL, Sander KD,
 Mosley JC. Grazing behavior of livestock and wildlife. University of Idaho, Moscow. pp85 90.
- Li DL, Chen SH, Lloyd H, Zhu SY, Shan K, Zhang ZW. (2013) The importance of artificial habitats
 to migratory waterbirds within a natural/artificial wetland mosaic, Yellow River Delta, China.
 Bird Conservation International 23(2): 184-198.
- Li FS. (1999) Foraging habitat selection of the wintering black-necked cranes in Caohai, Guizhou, China [in Chinese with English abstract]. *Chinese Biodiversity* 7: 257-262.
- Li FS. (2014) IUCN Black-necked Crane (*Grus nigricollis*) conservation plan [in Chinese with
 English abstract]. *Zoological Research*, 35(S1): 3-9.
- Li WJ, Zhang KX, Wu ZL, Jiang P. (2009) A study on the available food for the wintering Black necked Crane (*Grus nigricollis*) in Huize Nature Reserve, Yunnan [in Chinese with English
 abstract]. *Journal of Yunnan University*, 31(6): 644-648.
- Li ZM, Li FS. (2005) Black-Necked Crane Study. Shanghai Technological and Educational Press,
 Shanghai, People's Republic of China.
- Liu Q, Yang JX, Yang XJ, Zhao JL, Yu HZ. (2010) Foraging habitats and utilization distributions
 of Black-necked Cranes at the Napahai Wetland, China. *Journal of Field Ornithology*,
 81(1):21-30.
- Lu GY, Yang XJ. (2014) Black-necked cranes wintering in Yongshan County, Yunnan and their
 conservation [in Chinese with English abstract]. *Zoological Research* 35(S1): 143-150.

- Luca B, Novella F, Giampiero DM, Alberto G, Fiora M, Andrea M, Sandro L, Tim C. (2006) Effects 395
- 396 of sampling regime on the mean and variance of home range size estimates. Journal of Animal
- 397 Ecology 75: 1393-1405.
- 398 Meine CD, Archibald GW. (1996) The cranes: status survey and conservation action plan. Gland,
- 399 Switzerland: IUCN.
- 400 Morris DW. (2003) How can we apply theories of habitat selection to wildlife conservation and 401 management? Wildlife Research 30(4): 303-319.
- 402 Nina K, Fernández N, Kramer-Schadt S, Herrmann M, Trinzen M, Büttner I, Niemitz C. 2008.
- 403 Habitat selection models for European wildcat conservation. Biological Conservation 141(1):
- 404
- Qian FW, Wu HQ, Gao LB, Zhang HG, Li FS, Zhong XY, Yang XJ, Zheng GM. (2009) Migration 405
- 406 routes and stopover sites of black-necked cranes determined by satellite tracking. Journal of
- 407 field ornithology 80(1): 19-26.
- 408 Qiou GX. (2012) General introduction. In: Qiou GX, Yang XJ, editors. Yunnan Huize National
- 409 Nature reserve of black-necked crane. Yunnan Science and Technological Press House:
- 410 Kunming. pp1-5.
- 411 Schoener TW. (1974) Resource partitioning in ecological communities. Science, 185(4145): 27.
- 412 Smith JM, Brown RLW. (1986) Competition and body size. Theoretical population biology 30(2):
- 413
- 414 Tian K, Mo JF, Lu M, Chang FL, Yang YX. (2004) Human disturbances on the ecological
- 415 environment degradation of Napahai wetland in the upstream of Yangtze River. Resources and
- Environment in the Yangtze Basin 13:292-295. 416
- 417 Tsamchu D, Bishop MA. (2005) Population and habitat use by Black-necked Cranes wintering in
- Tibet. In: Wang QS, Li FS(Chief Editors). Crane Research in China [in Chinese with English 418
- abstract]. Kunming: Yunnan Educational Publishing House, 44-48. 419
- 420 Wang SM, Dou HS. (1998) Chinese lakes of China. Science Press, Beijing.
- 421 Wang YH, Wang H. (2004) Advance in study of Eurasian Crane and its present status in China [in
- 422 Chinese]. Guizhou Science 22 (3): 65-71.
- Yang F, Zhang YP. (2014) Quantities and distribution of the Black-necked cranes and other large 423
 - waterfowl on the Yunnan and Guizhou Plateau. Zoological Research 35(S1): 80-84.
- Yang TL, Huang HX, and Guan YH. (1992) Ecological behavior of black-necked Crane and 425
- Eurasian Crane wintering at Caohai [in Chinese with English abstract]. Environmental 426
- Protection and Technology 2: 44-49. 427
- 428 Zhan YJ, Chen W, Hu D, Wu XS, Zhang JG. (2007) Food selection of wintering Eurasian Crane
- 429 Grus grus in the wetland of Beijing [in Chinese with English abstract]. Wetland Science 5(1):
- 430 46-50.

424