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ABSTRACT
The ongoing evolution of tracer mixing models has resulted in a confusing array of

software tools that differ in terms of data inputs, model assumptions, and associated

analytic products. Here we introduce MixSIAR, an inclusive, rich, and flexible

Bayesian tracer (e.g., stable isotope) mixing model framework implemented as an

open-source R package. Using MixSIAR as a foundation, we provide guidance for

the implementation of mixing model analyses. We begin by outlining the practical

differences between mixture data error structure formulations and relate these error

structures to common mixing model study designs in ecology. Because Bayesian

mixing models afford the option to specify informative priors on source proportion

contributions, we outline methods for establishing prior distributions and discuss

the influence of prior specification on model outputs. We also discuss the options

available for source data inputs (raw data versus summary statistics) and provide

guidance for combining sources. We then describe a key advantage of MixSIAR over

previous mixing model software—the ability to include fixed and random effects as

covariates explaining variability in mixture proportions and calculate relative

support for multiple models via information criteria. We present a case study of

Alligator mississippiensis diet partitioning to demonstrate the power of this

approach. Finally, we conclude with a discussion of limitations to mixing model

applications. Through MixSIAR, we have consolidated the disparate array of mixing

model tools into a single platform, diversified the set of available parameterizations,

and provided developers a platform upon which to continue improving mixing

model analyses in the future.

Subjects Conservation Biology, Ecology, Ecosystem Science, Soil Science, Statistics

Keywords Stable isotopes,Mixingmodels, Fatty acids, Trophic ecology, Bayesian statistics,MixSIR, SIAR

INTRODUCTION
Mixing models, or models used to estimate the contribution of different sources to a

mixture, are widely used in the natural sciences. Typically, these models require tracer data
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that characterize the chemical or physical traits of both the sources and mixture—these

traits are assumed to predictably transfer from sources to mixtures through a mixing

process. In ecology, the majority of mixing model applications use stable isotope values as

tracers in efforts to assess the contribution of prey (sources) to a consumer (mixture) diet,

although other applications include animal movement, pollutant sourcing, cross-

ecosystem nutrient transfer, and sediment erosion fingerprinting (Bicknell et al., 2014;

Bartov et al., 2012; Granek, Compton & Phillips, 2009; Blake et al., 2012). In recent years,

researchers have leveraged other tracers, such as fatty acid profile data to assess predator-

prey relationships (Neubauer & Jensen, 2015; Galloway et al., 2015). Regardless of the

tracers or mixing system considered, all mixing model applications are rooted in the same

fundamental mixing equation:

Yj ¼
X
k

pkm
s
jk;

where the mixture tracer value, Yj, for each of j tracers is equal to the sum of the k source

tracer means, mjk
s , multiplied by their proportional contribution to the mixture, pk.

This basic formulation assumes that (1) all sources contributing to the mixture are known

and quantified, (2) tracers are conserved through the mixing process, (3) source mixture

and tracer values are fixed (known and invariant), (4) the pk terms sum to unity, and (5)

source tracer values differ. Given a mixing system with multiple tracers such that the

number of sources is less than or equal to the number of tracers + 1, the pk terms in the set

of Yj equations can be solved for analytically, given the unity constraint (Schwarcz, 1991;

Phillips, 2001). In most natural mixing systems an analytical solution to the set of mixing

equations is not possible without simplifying the mixing system or the data. In other

words, in order to establish a solvable set of equations, researchers have traditionally

reduced the number of sources through aggregation (Ben-David, Flynn & Schell, 1997;

Szepanski, Ben-David & Van Ballenberghe, 1999). Additionally, because the analytic

solution requires that the source and mixture data to be fixed (invariant), researchers used

the source and mixture sample means and ignored uncertainty in these values (Phillips,

2001 and references therein).

More recently, researchers have turned to more sophisticated mixing model

formulations that provide probabilistic solutions to the mixing system that are not limited

by the ratio of sources to tracers (i.e., under-determined systems), and that integrate the

observed variability in source and mixture tracer data. The first of such models, IsoSource

(Phillips & Gregg, 2003), provided distributions of feasible solutions to the mixing

system based on a “tolerance” term; IsoSource iteratively identified unique solutions for

the pk terms that resulted in Yj solutions falling near the true value of the mixture

(typically defined by the mean of mixture data), where “near” was arbitrarily defined by

the model user through the specification of tolerance. Subsequently, Moore & Semmens

(2008) introduced a Bayesian mixing model formulation, MixSIR, that established a

formal likelihood framework for estimating source contributions while accounting for

variability in the source and mixture tracer data. An updated version of this modeling tool

with a slightly different error parameterization, SIAR, continues to be broadly applied in
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the ecological sciences and beyond (Parnell et al., 2010). Since 2008, Bayesian mixing

models have rapidly evolved to account for hierarchical structure (Semmens et al., 2009),

uncertainty in source data mean and variance terms (Ward, Semmens & Schindler, 2010),

covariance in tracer values (Hopkins & Ferguson, 2012) and covariates within the mixing

system (Francis et al., 2011). In short, Bayesian mixing models have developed into a

flexible linear modeling framework, summarized by Parnell et al. (2013).

In light of these analytic innovations, we have created an open-source R software

package, MixSIAR, that unifies the existing set of mixing model parameterizations into a

customizable tool that can meet the needs of most environmental scientists studying

mixing systems. MixSIAR can be run as a graphical user interface or script, depending

on the user’s familiarity with R. Either version can be used to load data files and specify

model options; then MixSIAR writes a custom JAGS (Just Another Gibbs Sampler,

Plummer, 2003) model file, runs the model in JAGS, and produces diagnostics, posterior

plots, and summary statistics. As with any sophisticated modeling tool, researchers

should take care in establishing situation-specific applications of the tool based on the

data in hand and the mixing system targeted for inference. At present, however, guidance

on the parameterization and implementation of Bayesian mixing model analyses is

lacking in the literature. As a consequence, many researchers are unsure of the correct

application and interpretation of existing mixing model tools such as MixSIR (Moore &

Semmens, 2008) and SIAR (Parnell et al., 2010).

In this paper we introduce and provide guidance on using MixSIAR for the application

of Bayesian mixing models. Given early debate in the literature regarding appropriate

error parameterizations (Jackson et al., 2009; Semmens, Moore & Ward, 2009), we begin by

clarifying the underlying error structures for MixSIAR and provide recommendations for

the use of specific error formulations based on the methods of data collection. The

integration of prior information is a key advantage of Bayesian approaches to model

fitting. However, sinceMoore & Semmens (2008), few studies have implemented methods

for generating prior distributions in mixing model formulations. We therefore provide a

set of basic approaches to establishing prior distributions for the proportional

contribution terms, and demonstrate how to incorporate informative priors in MixSIAR.

Next, we provide guidance for source assignment in the mixing system (e.g., lumping

or splitting source groupings). Arguably, the primary advantage of MixSIAR over previous

mixing model software is the ability to incorporate covariate data to explain variability

in the mixture proportions via fixed and random effects. As such, we provide guidance

on applying covariate data within mixing models and illustrate this using MixSIAR in a

case study on American alligator (Alligator mississippiensis) diet partitioning. Finally,

we discuss limitations of mixing models and issues with under-determined systems.

The complete set of MixSIAR equations with additional explanation is included as

Article S1, and the MixSIAR code is available at https://github.com/brianstock/MixSIAR.

Understanding MixSIAR error structures for mixture data
In most published results stemming from Bayesian mixing models, little if any detail is

reported regarding the assumed error structure of the mixture data (literature review in
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Stock & Semmens, 2016b). However, assumptions about variability, and the specific

parameterizations used to characterize this variability, in the mixing system have been the

focus of most of the innovations in mixing model tools in recent years (Parnell et al., 2010,

2013; Ward, Semmens & Schindler, 2010; Hopkins & Ferguson, 2012; Stock & Semmens,

2016b). The specific error formulation matters both because it relates to the assumptions

regarding how the process of mixing occurs (e.g., how consumers feed on prey

populations), and because the estimates of proportional source contributions can be

affected (Stock & Semmens, 2016b). In this section, we discuss the suite of error

parameterizations available in MixSIAR that account for variability in the tracer values of

the mixture. Note that this section deals only with “residual” variability in the mixture

tracer data after accounting for variability resulting from fixed or random effects (see Case

study and Article S1 for how these effects interact with the error terms). For simplicity

in the equations below, we ignore discrimination factors, concentration dependence

and tracer covariance in our notation. Note, however, that MixSIAR accounts for each of

these components, should an analyst specify a model appropriate to do so (see Article S1

for complete MixSIAR equations).

Researchers sometimes use “integrated” or “composite” sampling—pooling many

subsamples into one sample that is then analyzed—to characterize the source means while

keeping processing time and costs low, or because individual consumers or prey do not

have enough biomass to analyze (Hershey et al., 1993; Vander Zanden & Rasmussen, 1999;

Grey, Jones & Sleep, 2001). Thus, the most basic formulation for mixing models

implemented in MixSIAR assumes that the k source means for the j tracers, mjk
s , are fixed

and invariant (but might be observed imperfectly; Fig. 1A). Under this assumption the

mixture value for each tracer will also be an invariant weighted (by source proportions, pk)

combination of the source means. Observations of these means, however, are imperfect

and thus the i mixture data for tracer j, Yij, are assumed to follow the distribution,

Yij � N
P
k

pkm
s
jk;s

2
j

� �
; (1)

where sj
2 represents residual error variance, or the variability in observations associated

with the mixture data points for the jth tracer. This error distribution is appropriate

in situations where, for instance, each mixture data point was generated through the

combination of many samples from the source population. For instance, if an analyst

were interested in assessing the relative contributions of dissolved organic carbon and

particulate organic matter to a filter feeder’s diet, this model formulation would be

appropriate since each source tracer datum comes from an integrated sample of the source

tracer values (as opposed to tracer values of individual particles).

In contrast, for many mixing models applied to ecological systems, the tracers of

individual source items (prey, e.g., individual deer) and mixtures (consumers; e.g.,

individual wolves) are analyzed separately, and the variability across source tracers is

assumed to translate into consumer tracer variability—in other words, different wolves

eat different deer, and their tracer values should differ accordingly (Semmens et al., 2009).

Since the introduction of Bayesian stable isotope mixing models, nearly all published
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formulations have assumed that each mixture data point i for tracer j is derived from a

normal distribution with the same mean as in Eq. (1), and, importantly, a variance

similarly generated from a weighted combination of source variances, vjk
s2:

Source Distribu�ons

Mixture Distribu�on

Single
Mixture

Source Distribu�ons

Mixture Distribu�on

Unique
Mixtures

Source Means

Mixture Distribu�on

Mul�ple Observa�ons
Of Single Mixture

A

B

C

Figure 1 Representation of the three different methods MixSIAR uses for modeling variability in

mixture data, assuming a two source (k), 1 tracer (j) scenario. (A) In the “residual error only” for-

mulation, the means of each source (upper black dots; typically estimated within the model based on

source data) are additively combined, after weighting based on estimated proportional source con-

tributions, in order to generate the expected mean value of the mixture signatures (Eq. 1). Actual

mixture measurements deviate from this mean due to residual error, sj
2. (B) Given a single mixture data

point, MixSIAR assumes this mixture value is drawn from a normal distribution defined by the same

mean, with the variance generated by a weighted combination of source variances (Eq. 2). (C) In the

“multiplicative error” formulation (Eq. 3), the model assumes the mixture data are generated from the

process as in (B), but the variance of this distribution is modified by a multiplicative term, xj, that allows
the distribution to shrink (as would be expected if consumers are sampling multiple times from each

source pool) or expand (as would be expected if the model is missing a non-negligible source, or

processes such as isotopic routing introduce significant additional variability into the mixing system).

Full-size DOI: 10.7717/peerj.5096/fig-1
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Yij � N
P
k

pkm
s
jk;
P
k

p2kw
s2
jk

� �
: (2)

In situations where there is covariance in tracers (typical of stable isotope studies),

Eq. 2 can be modified to account for a weighted average of source covariance matrices

(Stock & Semmens, 2016b).

MixSIAR uses this model formulation only in the special case where the analyst

provides a single mixture value for each of the j tracers considered. This formulation

must be used in this special case because it is not possible to estimate a variance term, sj
2,

from a single data point. In diet partitioning applications, the above formulation

assumes that, for a given tracer j, a consumer i takes one independent and identically

distributed (IID) sample from each of k sources and combines these samples in

accordance with the proportional estimates pk. In other words, each wolf eats exactly one

deer, and thus incorporates the tracer value of only that deer. Because the prey-specific

tracer values will be different for each consumer due to sampling error, the weighted

combination of sampled source tracer values will also vary. We refer to this model of

mixture variance as “process error” because it is derived from an assumption about the

mixing process.

Recently, Stock & Semmens (2016b) modified the above formulation to include an

additional multiplicative error term for each tracer considered, xj such that

Yij � N
P
k

pkm
s
jk;
P
k

p2kw
s2
jk � xj

� �
: (3)

The intent of the xj term is to both add biological realism in the mixing equation, and to

provide flexibility on the likelihood error structure such that mixing data not conforming

to the mixing process assumed in the previous likelihood formulation can still be fit

appropriately. As before, Eq. 3 can be modified to account for a weighted average of source

covariance matrices (see Article S1). This model formulation is appropriate for most

ecological mixing model applications (e.g., diet partitioning), with the exception of

integrated sampling studies or studies with a single consumer sample, as outlined above.

Stock & Semmens (2016b) showed that, compared to existing models (MixSIR, SIAR),

Eq. 3 had lower error in pk point estimates and narrower 95% CI when the true mixture

variance is low (xj < 1).

When xj is less than 1, the variance in consumer tracer values shrinks, presumably

due to the biological process of sampling each prey source multiple times from a

distribution of tracer values (Fig. 1C). As the number of IID samples a consumer takes

from a source population increases, the tracer value transferred from the source to the

consumer will conform more and more closely to the mean source value. In other words,

each wolf eats more than one deer, and thus each wolf incorporates a sample mean of

deer tracer values, which becomes closer to the deer tracer mean as the number of deer

sampled increases. Thus, xj indicates the amount of food a consumer integrates within a

time frame determined by tissue turn-over; the methods for estimating this consumption

rate are outlined in Stock & Semmens (2016b). As the value of xj approaches zero,
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an analyst can assume that the consumers are essentially “feeding at the mean” of the

source populations.

Estimates of xj much greater than one indicate that the variability in transfer of tracer

values from source to consumer is swamping the reduction in consumer variability

expected when consumers integrate over multiple samples from prey populations. This

could be due to factors such as isotopic routing (Bearhop et al., 2002), or important

consumer population structure being absent from the model (e.g., most variability

in wolf stable isotope values is explained by random effects of region and pack in

Semmens et al., 2009). Alternatively, the mixing model could be missing a source or

underestimating the source variances. In any case, values of xj much greater than one

are an indication that the mixing system is not conforming to one or more of the basic

assumptions of the mixing model, namely that tracers are not being consistently

conserved through the mixing process, all mixtures are not identical (often not the case in

biological systems), all mixtures do not have the same source proportions, or that the

model is missing at least one source pool.

CONSTRUCTING INFORMATIVE BAYESIAN PRIORS
Priors for compositional data
The analysis of compositional data is not unique to mixing models. Examples of statistical

models for compositional data are widespread in ecology (Jackson, 1997), fisheries

(Thorson, 2014), as well as non-biological fields (Aitchison, 1986). The most common

choice of prior on the estimated vector of proportions p is the Dirichlet distribution;

MixSIAR uses this distribution for estimates of source proportions. The Dirichlet is often

referred to as a multivariate extension of the Beta distribution, and it is important to

understand the Beta before transitioning to the Dirichlet. The Beta distribution has a

convenient property that when both its shape parameters are 1, it is equivalent to a

uniform distribution. In other words, if a model tries to estimate the relative contribution

of a 2-component mixture, p1 ~b (1, 1) is equivalent to p1 ~Uniform (0, 1). Because the

vector of proportions is constrained so that
Pn¼2

i¼1 pi ¼ 1, p2 can be treated as the derived

parameter p2 = 1-p1, and therefore does not require a prior. For the parameter of

interest p1, one way to describe the prior distribution is that the b (1, 1) prior is uniform,

and an equivalent description is that all possible combinations of p1 and p2 are equally

likely a priori.

For mixtures with more than 2 components, MixSIAR uses the Dirichlet distribution

to specify a prior on p. The hyperparameter of the Dirichlet distribution is a vector a,

whose length is the same as p. Like the Beta distribution, the only constraint on the

elements of a is that they be positive (they may be discrete or continuous, and the

elements of a don’t have to be equal). A common choice of hyperparameters for a

3-component mixture is a = (1, 1, 1), which we refer to as the “uninformative”/generalist

prior because (1) while every possible set of proportions has equal probability, the

marginal prior likelihood of a given pk differs across values of pk, and (2) its mean is
1
3
; 1
3
; 1
3

� �
, corresponding to the assumption of a generalist diet (McCarthy, 2007). The first

point is illustrated by Fig. 2, which shows that the marginal distributions of the
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Figure 2 Examples of joint and marginal distributions of p1 and p2 for a three-component Dirichlet distribution, across 4 sets of

hyperparameters. (A) a = 1, (B) a = 0.5, (C) a = 10, and (D) a = 100. All simulations were done with the “rdirichlet” function in the “com-

positions” library in R (Van Der Boogaart & Tolosana-Delgado, 2006). Full-size DOI: 10.7717/peerj.5096/fig-2
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proportions are not uniform, instead favoring small values. Part of this confusion can be

resolved by examining the joint pairwise distributions of p (Fig. 2), which illustrates that

using a hyperparameter of a = (1, 1, 1) implies that all combinations of (p1, p2, p3) are

equally likely. Thus, this prior is noninformative on the simplex, but is non-uniform with

respect to individual pk parameters. Other choices of a prior may be Jeffreys’ prior,

a ¼ 1
2
; 1
2
; 1
2

� �
, or the more recently used logit-normal and extensions (Parnell et al., 2013).

By default, MixSIAR uses the “uninformative”/generalist prior, where all ak are set to 1.

Constructing an informative prior
One of the benefits to conducting mixture models in a Bayesian framework is that

information from other data sources can be included via informative prior distributions

(Moore & Semmens, 2008). Once an informative prior for the proportional contribution

of sources is established, MixSIAR can accept the prior as an input during the model

specification process (for details and examples, see Stock & Semmens, 2016a). For diet

studies, these other information sources are often fecal or stomach contents (Moore &

Semmens, 2008; Franco-Trecu et al., 2013; Hertz et al., 2017), but can also include prey

abundance or expert knowledge (deVries et al., 2016). As a simplified example fromMoore

& Semmens (2008), suppose we wish to construct an informative prior for a 3-source

mixing model of 10 rainbow trout diet using sampled stomach contents (30 eggs, 8 fish,

25 invertebrates). The sum of the Dirichlet hyperparameters roughly correspond to

prior sample size, so one approach would be to construct a prior with a = (30, 8, 25),

where each ak corresponds to the source k sample size from the stomach contents. A

downside of this prior is that a sample size of 63 represents a very informative prior, with

much of the parameter space given very little weight (Fig. 3). Keeping the relative

contributions the same, the ak can be rescaled to have the same mean, but different

variance. One starting point is to scale the prior to have a total weight equal to the number

of sources, K, which is the same weight as the “uninformative”/generalist prior:

ak ¼ knkP
nk

(4)

The prior constructed from Eq. 4 is shown in Fig. 3. Though this rescaling process of

Dirichlet hyperparameters may seem arbitrary, it provides a powerful tool for

incorporating additional information. Whether using this rescaled prior or not, we

recommend that MixSIAR users always plot their chosen prior using the provided

“plot_prior” function (Fig. 4).

Importantly, choosing a prior—including the “uninformative”/generalist prior—

requires explicit consideration of how much weight the prior should have in any analysis.

An additional consideration is the turnover time for different types of data. In our

example of rainbow trout diet, stomach contents might represent a daily snapshot of

prey consumption, whereas stable isotope and fatty acid values likely change on a much

longer time scale (e.g., weeks to months). In such cases, we would want to downweight the

prior’s significance, since a prior constructed from daily information should only be

loosely informative on the mixture proportions averaged over weeks to months.
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Exactly how much to downweight is unclear. However, this challenge lies within the

broader issue of how to weight multiple data types, and we follow Francis’ (2011)

recommendation that users conduct a sensitivity analysis—fit the model using different

informative priors (as well as the “uninformative”/generalist prior) and determine how

sensitive the primary result is to the choice of prior (as in deVries et al., 2016).

Priors for other model parameters
In addition to specifying prior distributions on proportional contributions, MixSIAR

requires priors on variance parameters (Parnell et al., 2013). Because mixing models

ultimately are a class of linear models, MixSIAR uses the same weakly informative prior

distributions for variances that are widely used in other fields (Gelman et al., 2014). For

specific prior formulations associated with residual error, multiplicative error, and

variance associated with random effects, we refer the reader to the full set of MixSIAR

equations (Article S1). Note, however, that because MixSIAR generates a model file in

the JAGS language (Just Another Gibbs Sampler, Plummer, 2003) during each model

run, the analyst can access the complete set of prior specifications associated with the

model run. Moreover, the model file can be modified and used in a separate model run

(1, 1, 1)   (30, 8, 25)   (1.4, 0.4, 1.2)   

Eggs
Fish

Invertebrates

A B C

Figure 3 Illustration of alternative priors for a mixing model of rainbow trout (consumers/mixture)

diet comprised of three sources: eggs, fish, and invertebrates. (A) The “uninformative”/generalist

Dirichlet prior MixSIAR uses by default, a = (1, 1, 1). (B) A strongly informative prior with a = (30, 8,

25), where each ak corresponds to the sample size of source k from stomach contents. (C) A moderately

informative prior with the same mean, but each ak rescaled such that Sak = 3, the number of sources.

Note that both informative priors have the same mean but differ in their “informativeness.”

Full-size DOI: 10.7717/peerj.5096/fig-3
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outside of MixSIAR, should the analyst care to evaluate the sensitivity of model outputs to

changes in prior specification.

In some cases, an analyst may wish to incorporate discrete or continuous covariates to

explain differences between individual tracer values (Francis et al., 2011; Ogle, Tucker &

Cable, 2014; “Incorporating covariates via fixed and random effects” section to follow).

Ecological examples of these types of covariates may include environmental variables
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Figure 4 Effect of aggregating sources a posteriori on priors in mixing models, produced by the “combine_sources” function in MixSIAR as a

warning to the user. (A) the original, unaggregated prior on six sources from the mantis shrimp example (dark blue); (B) the “uninformative”/

generalist prior on six sources (grey); (C) the prior resulting from aggregating the six-source prior in dark blue into two sources (hard-shelled =

clam + crab + snail, soft-bodied = alphworm + brittlestar + fish, red); and (D) the prior resulting from aggregating the six-source “uninformative”/

generalist prior into the same two sources (grey). Full-size DOI: 10.7717/peerj.5096/fig-4
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(habitat, temperature) or variables specific to individuals (sex, age, size). Like simple

linear regression, including covariates introduces new parameters to be estimated

(intercept, slope), but because MixSIAR includes these covariates in transformed

compositional space (isometric log ratio, ILR; Aitchison, 1986), their prior specification is

not straightforward. MixSIAR uses diffuse normal priors in transform space, which are

sufficient to establish priors that yield parameter estimates that are essentially informed

only by the data (Gelman et al., 2014; McElreath, 2016). Analysts who wish to create

informative priors in transform space should proceed with caution, because they can

have counterintuitive effects when transformed back to proportion space. A future

improvement to MixSIAR would be to allow users to run models without data to

understand what the joint prior entails for the marginal proportions.

INCORPORATING SOURCE DATA INTO MIXING MODELS
Early versions of Bayesian mixing models treated the estimates of source-specific tracer

means and variance as fixed (user specified), and thus only used raw mixture data in

calculating the likelihood of source proportions (Moore & Semmens, 2008; Parnell et al.,

2010). In so doing, the uncertainty in the estimates of source means and variances,

typically derived from source isotope data, was ignored. However, Ward, Semmens &

Schindler (2010) introduced what they termed a “fully Bayesian” model that accounts for

estimation uncertainty in source-specific tracer means and variances, and thus treats both

the mixture and source information as data within the model framework. More recently

Hopkins & Ferguson (2012) incorporated multivariate normality into estimates of source-

specific covariance matrices. This multivariate normality accounts for the fact that tracer

values often co-vary, particularly for stable isotope studies.

MixSIAR provides the analyst with each of these three options for including source

data, because each can be appropriate in different circumstances (Article S1). In order of

preference—but also model complexity—analysts can provide: (1) raw tracer data for

each source, or (2) source tracer value summary statistics (mean, variance and sample

size). In both cases, MixSIAR fits a fully Bayesian model by estimating the “true” source

means and variances for each tracer (Ward, Semmens & Schindler, 2010; Parnell et al.,

2013). However, in the case where summary statistics are provided, the tracers are

assumed to be independent, since it is not possible to generate estimates of tracer

covariance from the summary statistics. Where raw source data are provided, MixSIAR

assumes multivariate normality and estimates the variance covariance matrix associated

with the tracers for each source (Hopkins & Ferguson, 2012). This normality assumption

does not hold for compositional tracer (e.g., fatty acid profile) data, and therefore we

advise users with such data to use the second option above (see Article S1 and S2).

Alternatively, analysts can use other software packages specifically designed to

accommodate fatty acid data (QFASA, Iverson et al., 2004; fastinR, Neubauer & Jensen,

2015). The third, and final, option is to specify fixed (known) source means and variances,

which approximates MixSIR (Moore & Semmens, 2008) and SIAR (Parnell et al., 2010).

Analysts can accomplish this in MixSIAR by providing summary statistics (mean and
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variance) with an arbitrarily large sample size (~10,000). This approach essentially fixes

the estimated source means and variances at the values provided.

Combining sources
No amount of increased sophistication in mixing model methods can overcome the

problem of poorly specified mixing systems. If, for instance, an analyst specifies a mixing

model with >7 sources contributing to a mixture based on two tracers (e.g., d13C, d15N),

it is unlikely the model products will be precise or interpretable. The source data

(number of sources and their sample sizes, means, and variances relative to mixture data)

have a large influence on the estimated proportions. As such, including several largely

extraneous sources with few mixture data points will divert pk from the truly important

sources (as
P

pk ¼ 1). We note, however, that there are ways to constrain the pk such that

models converge—two methods discussed in other sections are informative priors and

including covariates on the pk as fixed or random effects. Nonetheless, MixSIAR can

estimate posterior distributions of source proportions regardless of how under-

determined the mixing system is (e.g., many more sources than tracers). This under-

determination, together with the variability in source and mixture isotopic values,

often results in quite diffuse probability distributions for many of the proportional

contribution estimates, limiting the interpretability of the results (Phillips et al., 2014).

Reducing the number of sources by combining several of them together may improve

model inference. Either a priori or a posteriori aggregation (Phillips, Newsome & Gregg,

2005) may be used with MixSIAR (see “combine_sources” function for a posteriori

aggregation).

The a priori approach typically involves pre-processing the input data by conducting

frequentist tests for equality of means of sources and subsequently combining sources

without significant differences before running a mixing model (Ben-David, Flynn &

Schell, 1997). If tracer data are approximately normally distributed, a Hotelling’s T2 test

can be used to evaluate whether sources are not different from each other, given

multivariate data (multiple tracers; Welch & Parsons, 1993). If tracers are not normally

distributed, a K nearest-neighbor randomization test can be used to assess differences in

sources (Rosing, Ben-David & Barry, 1998). Note that in both cases, a Bonferroni-type

correction is typically used when multiple source comparisons are made. Regardless of

the test used, if sources appear similar, their data can be aggregated. In general, mixing

model outputs will be more interpretable if the sources combined have a logical

connection (e.g., same trophic guild, taxon, etc.) so that the aggregated source has some

biological meaning, rather than a disparate set of unrelated sources that happen to have

similar isotopic values, although this is not an absolute requirement.

Using a frequentist approach (e.g., Hotelling’s T2 test) to decide on whether sources

should be combined a priori often presents problems. The amount of data available

for each source directly influences the equality of the means tests; the power to reject

a null hypothesis of no mean difference between tracer values of sources is thus

related to the amount of tracer data, and is not exclusively a function of the mixing

system. Furthermore, in situations when many tracers are available (e.g., fatty acids
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as tracers; Galloway et al., 2015) there is a high probability that at least some equality of

mean tests will fail (reject the null hypothesis) even if the sources are, in reality, identical.

Finally, when only the mean, variance and sample size of each source is available (rather

than raw data), there is no easy test for equality of the means and methods for aggregating

sources are not apparent.

Using the a posteriori procedure, the analyst uses the full set of sources to generate posterior

distributions of proportional source contributions, and then post-processes the results to

combine several sources together. For each posterior draw, the new combined source

proportion is simply the sum of the proportions of the original sources. Thus, we obtain a

posterior distribution for the new combined source proportion that accounts for correlation

between the original source proportions. This new posterior distribution may then be

analyzed as before. Importantly, this approach does not require that the tracer values of the

combined sources are similar; thus, an analyst is free to combine sources based on functional

similarities in the mixing system, regardless of tracer similarity.

Like the a priori approach, combining posteriors from multiple sources as a means of

source aggregation is not without issues. One caveat is that each additional source

included in the mixing model increases the number of parameters to be estimated,

particularly when the model includes random effects. We could easily imagine that a

mixing model with 20 sources and random effects may take days to run successfully, and

may not converge at all. In models with many more sources than tracers, the source

proportions are more likely to be confounded, and therefore highly negatively correlated.

In such cases, it is less likely the model will converge. Another potential issue with the

a posteriori approach is that the combination of multiple diet proportions estimated

with an “uninformative”/generalist Dirichlet prior (each source given equal prior weight)

also combines the prior weight for these sources. For instance, given an “uninformative”/

generalist Dirichlet prior, the act of aggregating two source posteriors results in a

combined source posterior that reflect an aggregated prior with twice the weight of the

remaining non-aggregated source priors. As such, the more sources that are combined

into an aggregate source group a posteriori, the more strongly the prior will be weighted

towards increased proportional contributions of this aggregate source to the consumer

diet. MixSIAR alerts users to this issue by plotting the aggregated prior when combining

sources using the “combine_sources” function (Fig. 4). This is not an issue, however,

when the same number of sources are combined into new groupings (e.g., deVries et al.,

2016, where six sources were combined into two groups of three). In general, combining

sources a posteriori can lead to lower variance in diet proportion estimates, particularly

when the posteriors for the combined sources show strong negative correlation (Semmens

et al., 2013). For most situations, we prefer the a posteriori approach to source aggregation,

provided the analyst is aware of the cautions mentioned above.

These a priori and a posteriori approaches to combining sources may be accomplished

by simple pre-processing of MixSIAR input data sets and post-processing of MixSIAR

output using the “combine_sources” function, respectively. Ward et al. (2011) outlined

a Bayesian approach that probabilistically identifies source groupings and generates

weighted posterior probabilities associated with various combinations of sources.
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However, their method requires specialized Markov chain Monte Carlo (MCMC)

sampling, and is computationally impractical for complicated mixing systems. We expect

that future refinements to the modeling approach they outlined will yield more robust

techniques for treating source combinations as parameters to be estimated, rather than

fixed a priori or a posteriori.

INCORPORATING COVARIATES VIA FIXED AND RANDOM
EFFECTS
In many cases, covariate data (also called explanatory or independent variables) are

available for incorporation into a Bayesian mixing model to answer important questions

about the mixture (Francis et al., 2011; Ogle, Tucker & Cable, 2014). Neglecting to include

covariates that are relevant to the mixture proportions can lead to pseudoreplication,

since the model assumes all mixtures are IID (Hurlbert, 1984). Some examples from diet

partitioning applications include:

1. Consumers (mixtures) are of different sexes and an analyst has interest in whether the

dietary proportions differ between sexes (fixed categorical effect).

2. An analyst has additional numerical measures on the consumers such as weight, length,

etc., and would like to see whether the dietary proportions are affected by this value

(fixed continuous effect).

3. An analyst has samples of consumers or sources in different regions. It is likely that the

consumers’ dietary proportions are similar between regions so it makes sense that

the estimates should ‘borrow strength’ between the groups (random effect).

In each case it is possible to run a traditional mixing model separately for each sex, region,

time point, etc. However, this process can be time-consuming and will often lead to

inefficient inference with greater uncertainties in the dietary proportions for three main

reasons. First, there will be no direct estimate of the effect size between groups. Second,

additional residual error terms will be fit (a residual error term for each level of the fixed/

random effect, instead of one error term shared across levels). Third, there is no way to

“borrow strength” between groups, since each set of dietary proportions must

be estimated independently. The solution lies in adding the extra information as

covariates through the dietary proportions in the mixing model directly. To illustrate the

application of fixed and random effects using MixSIAR software we describe a case study

on Alligator mississippiensis diet partitioning, which executes multiple model formulations

and evaluates their relative support using information criteria (Nifong, Layman &

Silliman, 2015; for data and R code see Data S1).

A common question is how to choose whether to use fixed or random effects. We

recognize that the terms “fixed” and “random” effects are unclear (Gelman, 2005), and in

Gelman’s “constant” versus “varying” terminology, both fixed and random effects in

MixSIAR are varying (different for each factor level). Nonetheless, Gelman (2005)

recommends using random effects (as defined in MixSIAR, Article S1) when possible, since

borrowing strength between groups is a desirable property, and always allows for the model
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to choose large random effect standard deviations that will yield nearly equivalent estimates

to those resulting from fixed effects structure when the analyst has reasonably informative

isotopic data. The random effects model draws offsets from a shared distribution, which is

appropriate if the factor levels are related, as they often are in biological systems. The

random effects model also allows inference on the relative importance of multiple factors

through variance partitioning. For example, Semmens et al. (2009) showed that for British

Columbia wolves, g2Region > g2Pack > g2Indivual, which means that Region explained most

variance in wolf diet, followed by Pack and Individual. However, when the number of

groups is small (<5) there can be difficulties in estimating the random effect standard

deviations, and fixed effects should always be used when a factor has only two groups.

Technical details
For covariates to be included, the model must allow for dietary proportions to be specified

per individual, e.g., the mixture likelihood must be of a form similar to:

Yij � N
X
k

pikm
s
jk;
X
k

p2ikw
2
jk � xj

 !
:

Where pik is now the dietary proportion for source k on individual i.

Regardless of which fixed or random effects are used, MixSIAR establishes a base set of

diet proportions p using a Dirichlet prior that can be modified with prior information.

Once specified, these proportions are isometric log-ratio (ILR) transformed into ILR-

space parameters, b0 (Parnell et al., 2013). This transformation maps a composition in

the k-part Aitchison-simplex isometrically to a k-1 dimensional Euclidean vector. Each

of the b0 transformed components are normally distributed and independent of each

other and can thus be broached by standard multivariate analysis methods.

Once transformed, these b0 terms can be modified through the incorporation of

covariates, and then subsequently back-transformed into individual-specific vectors of

diet proportions pi. For instance, for a simple fixed effects structure like that described in

example 1 above, we have:

pi ¼ inverse:ILR b0 þ b1Sexið Þ:
The parameters in the vector b1 cumulatively represent the change in dietary proportions

for the difference between female and male. In this instance, the categorical fixed effect

Sexi is coded so that male = 1 and female = 0 (or vice versa).

If the covariate is continuous, as in example 2, the structure changes only very slightly:

pi ¼ inverse:ILR b0 þ b1Weightið Þ:
Now the parameters in the vector b1 represent the change in dietary proportions

according to a unit increase in the weight of the consumer.

Covariates are included as random effects in a similar manner. For example 3 given

above, we might have:

pi ¼ inverse:ILR b0 þ bRegion ið Þ
� �
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where each of the k-1 random effect terms in the vector bRegion(i), have an extra

constraint: bRegion ið Þ;k � N 0; g2Region

� �
. This constraint allows the model to borrow

strength between groups. If gRegion
2 is small, then the groups are similar and the dietary

proportions will not change much between regions. If gRegion
2 is large however, the regions

will be very different and this will be reflected in the dietary proportions. If multiple

random effects are included in the model, the differences between g2 terms for each

covariate illustrate their relative importance to the consumer diet (as in Semmens et al.,

2009, where g2Region > g2Pack > g2Individual, indicating that Region explained more of the diet

variability than Pack or Individual).

Since there is no one-to-one relation between the original parts and the transformed

variables (i.e., each bk acts on all pk terms simultaneously), interpretation of model

findings after back-transforming is prudent. MixSIAR therefore provides summary

output statistics and preserves posterior draws on the back-transformed proportions

for fixed categorical and random effects. In the case of continuous fixed effects (see

below), MixSIAR generates a plot of the fitted line in the untransformed proportion space

that spans the range of the provided covariate data. For the full set of MixSIAR equations

and additional explanation, see Article S1.

Case study: Alligator mississippiensis diet partitioning
This case study highlights the main advantage of MixSIAR over previous mixing model

software—the ability to include fixed and random effects as covariates explaining

variability in mixture proportions and calculate relative support for multiple models

via information criteria. Nifong, Layman & Silliman (2015) analyzed stomach contents

and stable isotopes to investigate cross-ecosystem (freshwater vs. marine) resource use by

the American alligator (Alligator mississippiensis), and how this varied with ontogeny

(total length), sex, and between individuals. They used 2-source (marine, freshwater),

2-tracer (d13C, d15N) mixing models and posed three questions:

Q1. What is pmarine vs. pfreshwater?

Q2. How does pmarine vary with the covariates Length, Sex, and Individual?

Q3. How variable are individuals’ diets relative to group-level variability?

Nifong, Layman & Silliman (2015) grouped the consumers into eight subpopulations

(all combinations of Sex: Size Class, where Sex ∈ {male, female} and Size Class ∈ {small

juvenile, large juvenile, subadult, adult}) and ran separate mixing models for each

using SIAR (Parnell et al., 2010). To calculate pmarine estimates for the overall population,

they also ran a mixing model with all consumers. In addition to inadequately addressing

Q3 on individual diet variability, this approach is likely inefficient, as it fits nine residual

error terms for each tracer and does not capitalize on the fact that diets of different-sex

and different-sized alligators are probably related. We propose that a more natural,

statistically efficient approach is to fit several models with fixed and random effects as

covariates, and then evaluate the relative support for each model using information

criteria (see “compare_models” function in MixSIAR).
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We used MixSIAR to fit eight mixing models with different covariate structures

(Table 1; Data S1). Since each model is fit to the same data (d13C and d15N values for each

of 181 alligators), we can compare the models using information criteria. Deviance

information criterion (DIC) is a commonly-used generalization of Akaike information

criterion (AIC) for Bayesian model selection which estimates out-of-sample predictive

accuracy using within-sample fits. DIC, however, has several undesirable qualities (e.g.,

can produce negative estimates of the effective number of parameters, is not defined for

singular models, and is not invariant to model parameterization; Vehtari, Gelman &

Gabry, 2017). Therefore, MixSIAR implements the widely applicable information

criterion (WAIC) and approximate leave-one-out cross-validation (LOO), both of which

are more robust to the concerns associated with DIC (Vehtari, Gelman & Gabry, 2017).

For a set of candidate models fit to the same mixture data, we can calculate the relative

support for each model using LOO and Akaike weights, which are estimates of the

probability that each model will make the best predictions on new data (Burnham &

Anderson, 2002; McElreath, 2016).

We found that the models with Length as a continuous fixed effect are heavily preferred

over the models that break length into four size classes (combined weight of “Length”

and ‘Length + Sex’ = 99%, Table 1). There is little evidence for including sex in addition to

length or size class, although it cannot be ruled out (adding sex increases LOO in both

cases, but “Length + Sex” still receives 20% weight, Table 1). While the original analysis by

Nifong, Layman & Silliman (2015) predicts pmarine as a function of subpopulation

membership, the “Length” model predicts pmarine as a function of length (Fig. 5).

Under the “Size class:Sex” model of Nifong, Layman & Silliman (2015), the pmarine

estimate for adult males is 0.76 (median, 95% CI [0.68–0.84]), while the “Length” model

estimate of pmarine for the largest individual, a 315.5 cm adult male, is 0.96 (median,

95% CI [0.91–0.99]). Although Nifong, Layman & Silliman (2015) clearly document an

ontogenetic shift in alligator resource use, the data support the conclusion that this shift

likely occurs as a continuous function of body size, instead of in discrete stages.

Table 1 Comparison of mixing models fit using MixSIAR on the alligator diet partitioning data

from Nifong, Layman & Silliman (2015).

Model LOOic SE (LOOic) dLOOic SE (dLOOic) Weight xC xN
Length 820.8 31.4 0 – 0.789 5.3 1.0

Length + Sex 823.6 31.4 2.8 2.1 0.195 5.2 1.0

Size class 829.5 31.6 8.7 11.7 0.010 5.4 1.1

Size class + Sex 831.4 31.5 10.6 12.1 0.004 5.3 1.1

Size class: Sex 832.9 29.8 12.1 13.6 0.002 4.9 1.1

Habitat 890.7 28.7 69.9 43.4 0 6.4 1.5

Sex 973.8 17.7 153.0 30.1 0 8.4 2.2

– 977.0 16.7 156.2 31.5 0 8.4 2.2

Notes:
dLOOic is the difference in LOOic between each model and the model with lowest LOOic. The “Length” model had the
lowest LOOic and received 79% of the Akaike weight, indicating a 79% probability it is the best model. The “Length +
Sex” model cannot be ruled out (20% weight). Note that as variability in the mixture data is better explained by
covariates, the estimates of xj decrease.
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This case study also highlights the interaction between covariates and the multiplicative

error term, xj. As covariates are included that increasingly explain the observed variability

in alligator isotope values, the estimates of xj shrink (xC decreases from 8.4 to 5.2, xN
decreases from 2.2 to 1.0; Table 1). The xN estimate from the “Length” model (1.0) is

about what we expect given the assumptions about how predators sample prey. The xC
estimate (5.2) is very high, however, indicating that there remains an important process

that is unaccounted for in the model. There are several possible explanations (see section

on “Understanding MixSIAR error structures for mixture data”), with one being that

individuals’ diets likely differ based on other processes than sex or length—all models

in Table 1 assume that individuals of the same sex, length, or size class share the same

diet proportions. We can, however, relax this assumption by including Individual as a

random effect in addition to Length (or other covariates). Then the diet proportion for

the ith individual becomes:

pi ¼ inverse:ILR b0 þ b1Lengthi þ bindð Þ;

b1 � N 0; 1000ð Þ;

bind � N 0;s2
ind

� �
;

s2
ind � U 0; 20ð Þ:

This “Length + Individual” model allows pmarine for individual alligators to vary around

the expectation based on Length (Fig. 6).

Figure 5 Posterior distributions for alligator diet proportions as a function of length from the best

performing model, “Length.” Small/young alligators depend upon freshwater prey and shift to a

marine-based diet as they increase in size. Lines depict posterior medians, and shading displays the 90%

credible intervals. The “Length” model estimate of pmarine (blue curve) for the largest individual, a 315.5

cm adult male, is 0.96 (median, 95% CI [0.91–0.99]). Estimates of pmarine for the smallest (37.7 cm) and

median-sized (116.9 cm) alligators are 0.09 (0.04–0.15) and 0.32 (0.24–0.39), respectively.

Full-size DOI: 10.7717/peerj.5096/fig-5
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Like many ecologists, Nifong, Layman & Silliman (2015) were interested in how

variable individuals’ diets are, relative to group-level variability (Q3). They calculated

the specialization index (e) of Newsome et al. (2012) for their overall population model,

0.26 ± 0.05, concluded that alligators are mostly generalists, and “the diet of the majority

of individuals is expected to be comprised of similar proportions of freshwater and

marine prey.” The proper interpretation, however, is clearer with the best performing

model (“Length”)—the specialization index of an alligator of average length is low, but

small and large alligators are highly specialized (Fig. 7). Additionally, since the “Length +

Individual” model estimates individuals’ diet proportions, we can plot the distribution of

eind and see directly that most alligators are specialists (e > 0.8, Fig. 8). Nifong, Layman &

Silliman (2015) performed a well-designed study, and their main conclusions are

robust—we only reanalyze their data here to highlight advantages of MixSIAR over

other mixing model software.

LIMITATIONS OF BAYESIAN MIXING MODELS
Like any statistical model, inference from mixing models is only as good as the data

being used. In some situations, data may not be informative—these situations may arise

when models are misspecified or data are limited (i.e., there is a mismatch between the

model structure and data structure). Such situations may be difficult to diagnose, and

we encourage mixing model users to reach out to other users and contributors

(https://github.com/brianstock/MixSIAR/issues). Some misspecifications are simple to

fix, while other times they require a detailed examination of the likelihood or posterior

Figure 6 Posterior distributions for the marine proportion, pmarine, of alligator diet as a function of

length from the “Length + Individual” model. Whereas the “Length” model estimates one diet for all

alligators of a given length, the “Length + Individual” model allows pmarine for individual alligators to

vary around the expectation based on Length. For most alligators around 100 cm total length, the pmarine

is very low, but for some it is above 80%. Likewise, the model estimates that most large (>200 cm)

alligators’ diets are dominated (>95%) by marine prey, but pmarine for three large individuals is less than

10%. Dark blue line and points indicate posterior medians, light lines and shading show 90% credible

intervals. Full-size DOI: 10.7717/peerj.5096/fig-6
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distributions (which may appear flat with respect to the parameter of interest). Similar

situations arise in all statistical models—for example fitting a regression model to a

constant response Y = (3,3,3, : : : ) returns an estimate that is a perfect fit to the data,

but does not produce standard errors or test-statistics (the response is assumed to be

normally distributed, but the variance of Y = 0). Several recent papers have illustrated

some of these same points with respect to mixing models, and we detail those here.

Figure 7 Posterior distribution of the specialization index (e) as a function of length from the

“Length” model. Small and large alligators are highly specialized (on freshwater and marine prey,

respectively), whereas average-length alligators have low specialization index (i.e., are consuming both

freshwater and marine prey). Specialization index is calculated using Eq. 5 in Newsome et al. (2012) from

individual MCMC draws of pfreshwater and pmarine as a function of length. The line depicts the posterior

median and shading displays the 95% credible interval. Full-size DOI: 10.7717/peerj.5096/fig-7

Figure 8 Distribution of the specialization index calculated for each individual (eind, n = 181) from

the “Length + Individual” model estimates of individuals’ diet proportions (posterior median of

pind). The model estimates that most alligators sampled by Nifong, Layman & Silliman (2015) are

specialists (e > 0.8). Full-size DOI: 10.7717/peerj.5096/fig-8
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As a first limitation, Bond & Diamond (2011) illustrated that recently developed mixing

models are sensitive to the choice of discrimination factors (systematic changes in the

tracer values through the mixing process). This issue arises because the discrimination

factors and estimated source contributions are not completely identifiable. In other

words, these parameters are difficult to estimate simultaneously, and one or the other

is generally fixed (in food web studies, the discrimination factor is typically specified as

fixed a priori). At present, MixSIAR does not provide the option to estimate

discrimination from user-provided data, although such functionality could easily be

added; we anticipate adding this functionality into a future software release.

A second limitation of mixing models is that systems may be underdetermined

(as discussed in Introduction). Phillips & Gregg (2003) demonstrated several examples

of this problem for the 2-tracer scenario, but the issue of underdetermined problems

generally arises when the number of sources exceeds the number of tracers plus one. In

such instances, posterior estimates of source contributions can be broad and multi-modal,

owing to the fact that multiple, often disparate, solutions to the underlying mixing

equations exist. Fry (2013) proposed a graphical approach to separate data-supported

aspects of solutions from any assumed aspects of solutions method. Essentially,

this approach is a post hoc means of evaluating model performance, and can easily

be applied to the products of any mixing model (including the products of a MixSIAR

model run).

The influence of the Dirichlet prior on the source proportions is a separate, but related,

issue—the prior becomes more influential with more sources. Contrary to how this

discussion has been framed previously (Brett, 2014; Galloway et al., 2014, 2015), the

influence of the prior is not simply a matter of underdetermined-ness of the system, and

therefore is not entirely avoided by increasing the number of tracers above the number of

sources plus one (so that the system is not underdetermined; i.e., a model with 15 fatty

acids and 12 sources is not underdetermined but still has this problem, Fig. 9). The

influence of the Dirichlet prior also increases with fewer data points, greater source data

variance, and less separation between sources. Brett (2014) described the interaction

between these three factors (which determine the shape of the mixing polygon) and the

prior as a bias of mixing models. This phenomenon may be better described as weakly

informative data, but we agree that approaches like Brett (2014)’s surface area metric may

be useful in recognizing a priori when these situations may arise. As such, we have

incorporated Brett’s surface area metric as a diagnostic output in MixSIAR (“calc_area”

function). However, work still needs to be done to generalize this metric to situations with

any number of tracers and sources.

CONCLUSION
Analysts applying modern mixing model software typically must navigate a challenging

array of model choices, from source groupings to covariate data, to error

parameterization. In the past, those analysts not capable of developing their own

models have been faced with the choice between different software packages, each with

differing statistical model structures and assumptions. Through the creation of MixSIAR,
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we have incorporated the disparate suite of mixing model advances into a single tool

with the flexibility to meet most analysts’ needs. Because MixSIAR is open source and

collaborative, we anticipate that new developments in mixing model methods, from

parameterizations to model performance diagnostics, will continue to be incorporated

into the functionality of MixSIAR. As such, the software provides a single tool that

can meet the diverse needs of the rapidly increasing pool of stable isotope analysts, and

affords developers a platform upon which to continue improving and diversifying mixing

model analyses.
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