

Plant-insect interactions patterns in three European paleoforests of the late-Neogene - early-Quaternary

Benjamin Adroit Corresp., 1, 2, Vincent Girard 2, Lutz Kunzmann 3, Jean-Frédéric Terral 2, Torsten Wappler 1, 4

Corresponding Author: Benjamin Adroit Email address: benjamin.adroit@umontpellier.fr

Plants and insects are constantly interacting in complex ways through forest communities since hundreds of millions of years. Those interactions are often related to variations in the climate. Human activity may have disturbed these relationships in modern ecosystems.

Therefore, observations of plant-insect interactions made in current ecosystems could be impacted by human influence. Consequently, studies based on past ecosystems, through fossil leaf assemblages, are essential to complement modern day human influenced studies in order to better understand changes of plant-insect interactions in environments throughout time. The goal of this study is to discuss the possible causes of the differences of plant-insect interactions' patterns in European paleoforests from the Neogene -Quaternary transition. This was accomplished through three fossil leaf assemblages: Willershausen, Berga (both from the late Neogene of Germany) and Bernasso (from the early Quaternary of France). In Willershausen it has been measured that half of the leaves presented insect interactions, 35% of the fossil leaves were impacted by insects in Bernasso and only 25% in Berga. The largest proportion of these interactions in Bernasso were categorized as specialist (mainly due to galling) while in Willershausen and Berga those ones were significantly more generalist. Contrary to previous studies, this study did not support the hypothesis that the mean annual precipitation (MAP) and temperature (MAT) were the main factors that impacted the different plant-insect interactions' patterns. However, for the first time in the fossil record, our results tend to support that the hydric seasonality and the mean temperature of the coolest months could be potential factors influencing plant insect interactions.

¹ Steinmann Institute for Geology, Mineralogy and Palaeontology, Division Palaeontology, Rheinische Friedrich-Wilhelms Universität Bonn, Bonn, Germany

² Institut des Sciences de l'Evolution, UMR 5554, University of Montpellier, Montpellier, France

³ Senckenberg Natural History Collections Dresden, Dresden, Germany

⁴ Hessisches Landesmuseum Darmstadt, Darmstadt, Germany

1	Plant-insect interactions patterns in three European paleoforests of the late-
2	Neogene – early-Quaternary
3	
4	
5	Benjamin Adroit ^{1,2} , Vincent Girard ² , Lutz Kunzmann ³ , Jean-Frederic Terral ² , Torsten Wappler ^{1,4}
6	
7	
8	¹ Steinmann Institute for Geology, Mineralogy and Palaeontology, Division Palaeontology,
9	University of Bonn, Nussallee 8, 53115 Bonn, Germany
10	² Institut des Sciences de l'Evolution, UMR 5554 Université de Montpellier, CNRS, IRD, EPHE,
11	Place Eugène Bataillon, 34095 Montpellier, cedex 05, France
12	³ Museum für Mineralogie und Geologie, Staatliche Naturhistorische Sammlungen Dresden,
13	Königsbrücker Landstrasse 159, 01109 Dresden, Germany
14	⁴ Hessisches Landesmuseum Darmstadt, 64283 Darmstadt, Germany
15	
16	Corresponding Author: Benjamin Adroit
17	Email address: benjamin.adroit@gmail.com

ABSTRACT

19	Plants and insects are constantly interacting in complex ways through forest communities since
20	hundreds of millions of years. Those interactions are often related to variations in the climate.
21	Human activity may have disturbed these relationships in modern ecosystems. Therefore,
22	observations of plant-insect interactions made in current ecosystems could be impacted by
23	human influence. Consequently, studies based on past ecosystems, through fossil leaf
24	assemblages, are essential to complement modern day human influenced studies in order to
25	better understand changes of plant-insect interactions in environments throughout time. The goal
26	of this study is to discuss the possible causes of the differences of plant-insect interactions'
27	patterns in European paleoforests from the Neogene - Quaternary transition. This was
28	accomplished through three fossil leaf assemblages: Willershausen, Berga (both from the late
29	Neogene of Germany) and Bernasso (from the early Quaternary of France). In Willershausen it
30	has been measured that half of the leaves presented insect interactions, 35% of the fossil leaves
31	were impacted by insects in Bernasso and only 25% in Berga. The largest proportion of these
32	interactions in Bernasso were categorized as specialist (mainly due to galling) while in
33	Willershausen and Berga those ones were significantly more generalist. Contrary to previous
34	studies, this study did not support the hypothesis that the mean annual precipitation (MAP) and
35	temperature (MAT) were the main factors that impacted the different plant-insect interactions'
86	patterns. However, for the first time in the fossil record, our results tend to support that the
37	hydric seasonality and the mean temperature of the coolest months could be potential factors
88	influencing plant insect interactions.

INTRODUCTION

- 40 Climate is a major factor affecting the extension, structure, and composition of terrestrial
- 41 ecosystems (Taylor et al., 2012; Frank et al., 2015). Hence, past climatic oscillations are of
- 42 special importance for understanding and interpreting biotic changes in the past (e.g., DeChaine
- 43 & Martin, 2006) and are of interest in terms of forecasting the biotic response to future global
- warming (Meehl et al., 2007). Nowadays, it is clear that Human activities have now reached a
- 45 global impact affecting components of the Earth system as a whole (Turner et al., 1990; Heller &
- 46 Zavaleta, 2009). In terrestrial ecosystems, arthropods are one of the most important components
- 47 in biodiversity (Yang & Gratton, 2014) and their interactions with plants are essential for
- 48 terrestrial food webs (Forister et al., 2015). Many modern ecological studies are focusing on
- 49 these interactions between plants and insects but interpretations may be limited, therefore a
- 50 combination with studies focused on the fossil record is necessary (Wilf, 2008). Studies on fossil
- 51 insect herbivory have provided a variety of ecological and evolutionary information over long
- 52 periods of time, such as climate (e.g., Wappler, 2010; Wappler et al., 2012), the evolutionary
- 53 impact of plant radiations (e.g., Labandeira, 2012; Labandeira & Currano, 2013), food web
- 54 dynamics (e.g., Wappler & Grímsson, 2016), extinction patterns (e.g., Labandeira, 2002;
- Labandeira, Johnson & Wilf, 2002; Donovan et al., 2016), and ecosystem recovery after
- extinction events (e.g., Wappler et al., 2009; Labandeira, Kustatscher & Wappler, 2016). They
- 57 have also shown that biodiversity loss may greatly impede trophic interactions and change the
- 58 overall food web structure of ecological systems (Haddad et al., 2009). Moreover, there is
- 59 increasing concern about the loss of biological diversity from ecosystems (Hooper et al., 2012).
- 60 The large amount of Plio-Pleistocene fossil records offers an exceptional possibility for
- 61 conducting meta-analysis for the estimation of the evolution and dynamics of associations
- 62 between plant species and their dependent insect-herbivore species, as descriptions of Plio-
- 63 Pleistocene floral changes (Tzedakis, Hooghiemstra & Pälike, 2006; Médail & Diadema, 2009;
- 64 Postigo Mijarra et al., 2009; Magri, 2010; Migliore et al., 2012). Although a few isolated records
- of specialized phytophagy categories have been reported from the Pliocene (Straus, 1977;
- 66 Givulescu, 1984; Titchener, 1999), only a single systematic survey of plant–arthropod
- 67 interactions has been carried out on an early Pleistocene flora (Adroit et al., 2016).
- Thus, an ideal setting for the evaluations of relationships among global climate and biodiversity
- 69 under conditions warmer than today, but with a similar paleogeographic configuration (Raymo et

- 70 al. 2011; Rohling et al. 2009) is possible throughout the famous upper Pliocene fossil
- 71 Lagerstätten Willershausen (3.2 2.6 Ma; MN 16/17) (Hilgen, 1991; Mai, 1995) and the
- 72 comparisons with Berga (Germany, late Pliocene) and the French Pleistocene locality of
- 73 Bernasso (Adroit et al., 2016). Willershausen and Berga outcrops are of similar age (Piacenzian)
- and are located in the surroundings of the Harz Mountains, Germany (Figure 1). The
- 75 Willershausen paleoforest was dominated by typical taxa of hilly mesophytic woodland
- 76 (Ferguson & Knobloch, 1998; Knobloch, 1998) such as Acer, Aesculus, Carpinus, Fagus,
- 77 Quercus, Sassafras, Tilia (Mai, 1995; Knobloch, 1998) and other taxa such as Parrotia, Zelkova
- and *Liquidambar* were also characteristic elements of Willershausen (Mai, 1995). All of these
- 79 taxa were also found in Berga (Mai & Walther, 1988). The presence of these taxa indicates
- 80 relatively warmer conditions in Europe than today during the late Pliocene (Uhl et al., 2007;
- 81 Thiel, Klotz & Uhl, 2012). Most plant fossil evidence from Central Europe outcrops (Haywood,
- 82 Sellwood & Valdes, 2000; Uhl et al., 2007; Williams et al., 2009; Thiel, Klotz & Uhl, 2012) and
- data from marine isotopes, geological evidences (Driscoll & Haug, 1998; Haug, Tiedemann &
- 84 Keigwin, 2004) are directing in the same way. Bernasso is younger than the German outcrops,
- estimated around 2.16 Ma 1.96 Ma (Suc, 1978; Leroy & Roiron, 1996). It is located in
- southern France, 5km far away from Lunas in the department of Hérault (Suc, 1978; Leroy &
- 87 Roiron, 1996; Adroit et al., 2016). The Bernasso fossil leaf assemblages is mainly dominated by
- 88 the genera Carpinus, Parrotia, Acer and Sorbus (Leroy & Roiron, 1996; Adroit et al., 2016)
- 89 wherein many plant species are in common with the German fossil leaf assemblages. Detailed
- 90 descriptions are available in Roiron & Leroy (1996) and Adroit et al. (2016). The decreasing
- 91 temperatures, from ca. 18°C to 14°C throughout the Pliocene (Thunell, 1979; Ravelo et al., 2004;
- Hansen et al., 2013) lead to the dominant European vegetation changing gradually from highly
- 93 diverse subtropical and warm-temperate forests to temperate deciduous forests with East Asian
- and partly North American affinities (Mai, 1995).
- 95 Through the comparison of three European forest plant communities of the Plio-Pleistocene, the
- 96 aim of this study was to understand how climatic parameters could have impacted plant-insect
- 97 interactions of fossil leaves. It has been expected that the difference of estimated mean annual
- 98 temperatures between those paleoforests could have a major impact on the quantity of the plant-
- 99 insect interactions (Coley & Aide, 1991; Zvereva & Kozlov, 2006; Currano, Labandeira & Wilf,
- 100 2010). Moreover, the estimated mean annual precipitations of the fossil outcrops should be

- negatively related to the galls proportions observed on the fossil leaves (Fernandes & Martins,
- 102 1985; Fernandes & Price, 1988; Price et al., 1998; Lara, Fernandes & Gonçalves-Alvim, 2002).
- Our results provide the first approach on plant-insect interactions from the Plio-/Pleistocene in
- 104 European paleoecosystems.
- 105 STUDY AREA
- 106 Willershausen, Lower-Saxony, Germany
- Geological studies of Willershausen dated back to the end of the 19th century (e.g., Wegele,
- 108 1914); see details in (Wegele, 1914; Ferguson & Knobloch, 1998; Meischner, 2000). The
- absence of bioturbation gave rise to one of the exceptionally well preserved floras and faunas
- 110 (Briggs et al., 1998). The Willershausen site was a lake which developed in a pond due to the
- dissolution of underlying Permian evaporites and tumbled of the Triassic and Early Jurassic
- sediments (Briggs et al., 1998; Meischner, 2000; Kolibáč et al., 2016). Today, Willershausen is
- an abandoned clay mining operation and it is included in the Geopark Harz, Braunschweiger
- Land, Ostfalen since 2012. This paleolake was ca. 200m in diameter and approximately 10m
- deep with a narrow sand beyond which the sides inclined abruptly towards the bottom of the lake
- (Meischner, 2000). Willershausen geology has been described by (Von Koenen, 1895) and
- detailed compilations can be found in (Vinken, 1967; Ferguson & Knobloch, 1998; Meischner,
- 118 2000).
- 119 The leaves used in this study are stored in different museum collections in Germany. The
- majority (6546 leaves) is located at the Geoscience center of the University of Göttingen
- 121 (GZG.W collection). Additional fossil leaves are stored in the Staatliches Museum für
- 122 Naturkunde Stuttgart (SMNS.W collection, 957 leaves), in the collections of TU Clausthal of
- 123 Clausthal-Zellerfeld (320 leaves), in the Naturkundemuseum im Ottoneum of Kassel (NMOK.W.
- 236 leaves) and in the Senckenberg Natural History Collections Dresden (14 leaves). Some of
- the best well-preserved fossil specimens are presented in Figure 2.A. The flora from
- 126 Willershausen comprised a rich vegetation community including the presence of *Acer*, *Alnus*,
- 127 Betula, Carpinus, Carya, Fagus, Pterocarya, Populus, Quercus, Tilia, Ulmus, Zelkova (Straus,
- 128 1977; Ferguson & Knobloch, 1998; Knobloch, 1998). The vertebrates Anancus (Mastodon)
- 129 arvernensis and Tapirus were found in Willershausen and seems to indicated a Piacenzian age
- (late Pliocene, ca. 3.2 2.4 Ma; MN 16/17; (Mai, 1995), which is corroborated by the presence
- of Parrotia persica and Liquidambar europaeum (Mai, 1995).

Most plant fossil evidence from Willershausen indicates warmer conditions than today (Ferguson 132 & Knobloch, 1998). The mean annual temperature (MAT) in Willershausen was estimated 133 134 between 10.6°C and 15.6°C on the base of the leaf morphology and of diversity of plant species niches (Table S1; Uhl et al., 2007); these different approaches explain the wide range of 135 temperature estimated. The mean temperature of the coldest month (CMMT) is estimated 136 between 0.6°C and 3.2°C and the mean annual precipitation (MAP) between 897 and 1151 mm 137 per year (Table S1; Uhl et al., 2007; Thiel, Klotz & Uhl, 2012). 138 Berga, Thüringen, Germany 139 Berga was a lake in which compressions and impressions (some with the cuticles preserved) of 140 leaves were found in silty sediments (Mai & Walther, 1988). It is 70km far from the 141 Willershausen outcrop. The stratigraphic age of the Berga sediments is estimated on the basis of 142 143 sedimentological correlations referring to the Piacenzian (ca. 3 Ma – 2.6 Ma) (Bachmann et al., 2008). 144 This leaf collection (534 specimens) is housed in the collection of the Senckenberg Natural 145 History Collections Dresden, Germany. It contained many fossils of different origins (Mai & 146 147 Walther, 1988), including 30 angiosperms leaf taxa (Figure 2.B). They represent different environments: a freshwater plant community, a swamp and riparian associations and a zonal 148 149 mixed broadleaved conifer forest (which dominates the taphocoenosis). The temperatures were estimated with the same approach as Willershausen; MAT is estimated between 7.4°C and 150 151 16.6°C, the CMMT is between -4.3°C to +0.6°C and the MAP is between 897 and 1297 mm per year (Table S1; Uhl et al., 2007; Thiel, Klotz & Uhl, 2012). 152 153 154 Bernasso, France 155 Bernasso was a lake developed when a basaltic flows shut off a canyon valley (Leroy & Roiron, 1996). Diatomites were formed and fossil leaves, often with rest of cuticle, were preserved. It is 156 located close to Lunas (Hérault, southern France) (Leroy & Roiron, 1996; Adroit et al., 2016). 157 The fossil deposit is dated from the early Pleistocene on the basis of K/Ar analysis (Ildefonse et 158 159 al., 1972) on a basaltic dyke that crosses the diatomite layers. A complementary analysis on 160 cyclostratigraphy (Suc & Popescu, 2005) and paleomagnetism (Ambert et al., 1990) corroborated these results and estimated an age around 2.16 to 1.96 Ma. 161

PeerJ

The collection included 800 fossil leaves and 535 specimens well-preserved were described in
(Adroit et al., 2016). These same specimens were also used for comparisons in the present study.
The fossil leaves were conserved the Institut des Sciences de l'Evolution de Montpellier in
France. Different preparation of fossil leaves were done by (Leroy & Roiron, 1996) and their
impact on interpretation were discussed in (Adroit et al., 2016). The flora represents a
mesothermic forest, mixing Mediterranean and Caspian elements (Suc, 1978; Leroy & Roiron,
1996). The MAT in Bernasso was estimated about 14-15°C and the MAP is around 1500 mm/y
(Table S1; Leroy & Roiron, 1996). It is important to note that CLAMP results in Bernasso
suggest a possibly lower temperature (Table S1; Girard et al., in review).
DATA ANALYSES
Plant-insect interaction identifications
The plant-insect interactions were identified following the Guide to Insect (and Other)
Damage Types on Compressed Plant Fossils (Labandeira et al., 2007). The damages type (DTs)
are easily recognizable thanks to the black reaction mark surrounding them (Labandeira, 2002;
Labandeira et al., 2007). They are divided in 7 Functional Feeding Groups (FFG): hole feeding,
margin feeding, skeletonization, surface feeding, piercing & sucking, mining and galling. Leaves
without damage were also categorized in an eighth FFG called the undamaged leaves. The leaves
undamaged has been take into account as a proxy of the non-palatability of the leaves, thus can
be considered as another FFG. The leaves were examined under a binocular Leica MZ95 and all
photographed with a Canon EOS 350D camera fitted with a Canon EF-S 60-mm f/2.8 macro
lens. A Nikon Coolpix E4500 was used sometimes for precise pictures through the binocular. All
pictures were developed using Abode Lightroom CC v.2015 especially in order to improve
contrast of the leaf. The insect interactions on leaves were scored according to the richness,
frequency and distribution on the different plant species for each outcrop. For each DT, a host
specificity value has been attributed by Labandeira et al. (2007) that allowed to classify our DTs
into generalist interactions (made by polyphagous organisms) and specialized interactions (made
by monophagous organisms) (Labandeira, 2002). Detailed plates of fossil leaves from
Willershausen are available in Table S2 including the original descriptions of the plant-insect

192	interactions made by (Straus, 1977) and our actual updates with the guide of insect (and other)
193	damage types on compressed plant fossils (Labandeira et al., 2007).
194	The results obtained for Willershausen and Berga were compared to those recently published for
195	the outcrop of Bernasso (Adroit et al., 2016). For some comparisons with Bernasso, new values
196	were calculated based on raw data.
197	
198	Statistical analyses
199	For each outcrop, the statistical analyses were performed on two different databases as described
200	in Knor et al. (2012). The first one is the whole assemblage of plant-insect interactions. The
201	second one considers only the interactions of the species that are significantly represented (more
202	than 20 leaves). The quantitative analyses were done in R version 3.1.2 (R Development Core
203	Team, 2014). The differences among the proportions of occurrences from all FFG were tested
204	with Chi-squared-test. The remaining information needed for this test was obtained by using the
205	generalized linear model of binominal distribution. Sample-based rarefaction curves were done
206	to compare the different damage richness and the different plant richness between the outcrops
207	(Gotelli & Colwell, 2001). At last, in order to observe the distributions of plant species according
208	to the FFG among the different fossil leaf assemblages, principal component analysis (PCA)
209	were performed with the software Past3 (v3.14) (Hammer, Harper & Ryan, 2001) in a biplot.
210	PCA in a biplot has been useful to measure the directions where each plant species had the most
211	variance according to the different FFG. The data matrices used for it considered the frequency
212	of each eight FFGs for each plant species of each outcrop (i.e. for each outcrops a matrix such as
213	FFG frequency x leaf morphotype).
214	
215	RESULTS
216	Comparisons of insect interactions and plant species richness.
217	In Willershausen 50.4% of the leaves are damaged, and only 25.1% in Berga. This percentage
218	was 34.6% in Bernasso (Adroit et al., 2016). These differences are statistically significant
219	(<i>p</i> <0.001) (Figure 3, Table 1).
220	The frequencies of generalist interactions are 42.8% for Willershausen, 17.8% for Berga and
221	19.8% for Bernasso (Adroit et al., 2016). Only Willershausen frequency is significantly different
222	from the others (p <0.001). Willershausen leaves have especially much more hole feedings

- (26.9%) and margin feedings (9.9%) than Berga (respectively 12.7% and 1.9%) and Bernasso
 leaves (respectively 9.8% and 7%) (Figure 3).
- The frequencies of specialized interactions are 11.2% for Willershausen, 8.4% for Berga and
- 226 17.9% for Bernasso (Adroit et al., 2016). Only the Bernasso frequency is significantly different
- from the others (p<0.001). This difference is mainly due to the important quantity of galling in
- Bernasso (12%) which is significantly higher than in Willershausen and Berga, respectively 7%
- 229 and 6% (p < 0.01) (Figure 3).
- 230 Rarefaction tests on plant species richness highlight that Willershausen has more plant species
- 231 (>100) than Berga (33) and Bernasso (20) (Figure 4). However, the DT richness in
- Willershausen (36 DTs) and Berga (25 DTs) are lower than in Bernasso (40 DTs) (Figure 4).

- 234 Structure of the paleoforests with the damage distribution on plant species
- Figure 5 presents the different PCA realized for the 3 outcrops with the data of plant and DT
- 236 diversities. For each outcrop, only the first two axes are presented as for Willershausen they
- represent 77% (Figure 5A), for Berga 93% (Figure 5B) and for Bernasso 91% (Figure 5C) of the
- whole distribution.
- For Willershausen (Figure 5A) the FFGs hole feeding and skeletonization are positively
- 240 correlated with PCA-axis 1 (respectively 0.76 and 0.61) and undamaged is negatively correlated
- with this axis (-0.97) (Data S1). Skeletonization and galling are positively correlated with PCA-
- 242 axis 2 (respectively 0.62 and 0.63) while hole feeding is negatively correlated with this axis (-
- 243 0.73) (Data S1). Concerning the species, three pools of plant species can be distinguished. The
- Tilia (T. saportae, T. cf. saviana), the Ulmus (U. caprinifolia, U. campestris), the Fagus (F.
- 245 grandifolia, F. pliocenica), Acer integerrimum and Quercus roburoides are all along the positive
- part of the PCA-axis 1. The leaves of these species have the highest DT frequency of hole
- 247 feeding and skeletonization. A second set of taxa is composed, for the most evident species, by
- 248 Acer cappadocicum, A. laetum, Carya minor, cf. Magnolia sp1 and 2, Populus willershausensis,
- 249 Quercus praeerucifolia and Zelkova ungeri. They are along the negative part of the PCA-axis 1
- and along the positive part of the PCA-axis 2. They are mainly affected by the FFG galling
- 251 (specialized interaction) or have no damage. At last, the third set of species is composed of
- Fagales (Fagus sylvatica, all the Quercus, Alnus and Betula species) and is in the negative part of

PeerJ

- 253 the PCA-axis 2. These leaves are mainly undamaged or only impacted by hole feeding
- 254 (generalist interaction).
- 255 For Berga (Figure 5B) the FFGs hole feeding, skeletonization and undamaged are positively
- associated with the PCA-axis 1, respectively with a correlation of 0.56, 0.73 and 0.99 (Data S1).
- 257 Hole feeding and skeletonization are also correlated with the PCA-axis 2, negatively for hole
- 258 feeding (-0.79) and positively for skeletonization (0.66) (Data S1). Concerning the species, we
- 259 can note that Taxodium dubium, Zelkova ungeri, Cercidiphylum crenatum and Acer
- 260 integerrimum are correlated with this undamaged category. Fagus attenuata, Acer tricuspidatum
- and *Quercus* sp. are mainly correlated with hole feeding.
- 262 For Bernasso (Figure 5C; (Adroit et al., 2016), the skeletonization and galling are positively
- 263 correlated with the PCA-axis 1 (0.82 and 0.92) while undamaged is negatively correlated with
- 264 this axis (-0.94) (Data S1). Hole feeding and skeletonization are positively correlated with PCA-
- 265 axis 2 (0.92 and 0.25) while undamaged and galling are negatively correlated with this axis (-
- 266 0.25 and -0.37) (Data S1). Acer monspessulanum and Sorbus domestica are in the positive part of
- 267 the PCA-Axis 1 while the other are in the negative one (to note that *Parrotia persica* is close to
- 268 zero). Concerning the PCA-axis 2, Acer monspessulanum, Carpinus orinetlais and Carya minor
- are in the positive part of the PCA-axis 2 while the others are in the negative part (to note that
- 270 *Zelkova ungeri* is close to zero).
- Furthermore, Zelkova ungeri is a species found in the 3 outcrops (Figure 5) and comparing to its
- position in the different PCAs, we can note that Z. ungeri is mostly associated with the FFG
- 273 undamaged. However, for other common plant species, their relative position on the PCAs could
- be different. Acer integerrimum in Berga (Figure 5B) is mostly associated with the FFG
- 275 undamaged while in Willershausen is opposite to this FFG as it is mainly associated to the FFG
- 276 hole feeding and more weekly with skeletonization, margin and galling (Figure 5A).
- 277 Comparing Willershausen and Bernasso (Figure 5A & 6C), A. monspessulanum is mainly
- associated to skeletonization and galling in Willershausen (Figure 5.A) and in Bernasso it is with
- skeletonization, galling too but also with hole feeding (Figure 5C).
- 280 Sorbus domestica and Carpinus orientalis are both associated to the FFG undamaged in
- 281 Willershausen (Figure 5A). In Bernasso, S. domestica is associated with galling and
- skeletonization and *C. orientalis* is associated with hole feeding and undamaged (Figure 5C).
- 283 Carva minor is associated to skeletonization and galling in Willershausen (Figure 5A) while in

Bernasso it is associated to undamaged and hole feeding (Figure 5C). Parrotia persica is 284 associated to galling and undamaged in Bernasso (Figure 5C) while in Willershausen, it is 285 286 associated with the FFGs skeletonization and galling (Figure 5A). 287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

DISCUSSION

Floristic richness and herbivory representativeness

All genera and at least 22 plant species from Berga leaf assemblage are also present in the Willershausen assemblage (Table S3). It can be explained by the geographical and stratigraphical proximity of the two outcrops. Bernasso had nearly the same composition of plant genera found in Willershausen (except *Ilex* only found in Bernasso) and also the majority of plant species (Table S3) despite its geographical situation and its younger age. There is quite a difference of plant richness between Bernasso and Berga, but the genera are the same (Table S3). This may suggest a difference in specific richness between those paleoforests. Rarefaction data indicated for the Willershausen leaf assemblage a highest plant species richness than the ones of Berga and Bernasso (Figure 4). However, the original sample size is strongly larger in Willershausen and could have led to artificial differences of plant species richness between the outcrops (Table 1). However, a bias due to the sample size is unlikely as Bernasso has the highest DT richness while the plant species and the quantity of leaves are lower than the one of the Willershausen assemblage.

302 303

304

305

306

307

Sampling effort tests indicate that enough specimens were taken into account to have a representative overview of the interactions on plant species found into the different outcrops (Figure 4). The large standard deviation observable on the Willershausen rarefaction curves on Figure 4 is due to this size of the fossil collection that includes around 8.000 specimens while the others are only 534 for Berga and 535 for Bernasso.

308

309

310

311

312

313

314

Relations between herbivory and the different mean annual temperatures estimated

Climatic conditions seem to be in relation with variations in richness and frequency of plant-insect interactions (Currano, Labandeira & Wilf, 2010). If an increase of temperature seems to stimulate insect herbivory (Coley & Aide, 1991; Coley & Barone, 1996; Zvereva & Kozlov, 2006; Currano, Labandeira & Wilf, 2010), it is still difficult to understand the complete role of temperature in the modulation of herbivory (DeLucia et al., 2012).

315	Thiel, Klotz & Uhl (2012) indicated, through leaf morphological analyses, that temperatures
316	estimated for Willershausen were approximately 3°C higher than those for Berga. These
317	paleoforests were geographically very close to each other (less than 70 km) and at a similar
318	latitude (51°N) (Figure 1). Today the nearest meteorological stations of these locations
319	(Willershausen: Göttingen, Lower-Saxony; Berga: Nordhausen, Thüringen) indicates the same
320	mean annual temperature also for the coldest and warmest months over the last years
321	(www.worldweatheronline.com). Such current similarities make the argument for similar
322	paleoclimates of the two fossil localities if they were strictly of the same age. However, between
323	3 Ma and 2.5 Ma, CO ₂ concentration progressively decreased (Kürschner et al., 1996; van de
324	Wal et al., 2011) implicating a continuous decrease of mean annual temperatures (Willeit et al.,
325	2015). Consequently, as Willershausen was warmer than Berga, the paleoforest of Willershausen
326	grew under higher atmospheric CO ₂ concentration than the Berga paleoforest. It seems to
327	corroborate by the higher damage frequency observed in Willershausen that can have been
328	favored by an increase of C/N ratios and an increase of photosynthesis rates (due to the high CO ₂
329	concentration) (Bezemer & Jones, 1998; Stiling & Cornelissen, 2007; DeLucia et al., 2012).
330	However, Willershausen and Berga had different sedimentological contexts and the preservation
331	of the fossil leaves did not follow the same taphonomical constrains in the two outcrops. This
332	could have influenced interpretation of the climate through morphological analyses.
333	For this reason, Thiel, Klotz & Uhl (2012) were in favor of the Coexistence Approach for
334	climate interpretation which estimated similar temperature for Berga and Willershausen. It has
335	been highlighted that the diversity of insects is often correlated to richness of plant species
336	(Siemann, Tilman & Haarstad, 1996; Wright & Samways, 1998; Knops et al., 1999; Mulder et
337	al., 1999) and should be expected to have higher damage richness in the more diverse paleoforest
338	(Price, 1991, 2002). Thus, the higher richness and frequency of damage in Willershausen than in
339	Berga could also be due to a higher insect diversity. Nevertheless, despite its higher plant
340	richness Willershausen had less DT richness than Bernasso (Figures 3, 4). Bernasso had also
341	more damage richness and frequency than Berga (Figures 3, 4). Thus, these observations make
342	this assumption unsustainable for our study. It is also conceivable that the relative abundance of
343	a plant species in those paleoforests could partly explain the herbivory measured; Indeed, more
344	plant species are represented in the forest community, then more individuals have had a chance
345	to be damaged by insect feeding (Feeny, 1976). However, for the fossil record, it is not possible

346	to support this assumption because the leaf quantity of a plant species from an outcrop cannot be
347	correlated to the relative abundance of this plant species in the paleoforest.
348	For Bernasso, the latitudinal position is different from Berga and Willershausen, as it located
349	1,000 km to the South. It has been highlighted that the insect diversity increases getting closer to
350	the tropics (Hutchinson, 1959; Klopfer, 1959; Klopfer & MacArthur, 1960; MacArthur, 1972;
351	Coley & Barone, 1996; Fraser, 2017). The southern position of Bernasso could partly explain the
352	measured damage type richness. Nevertheless, the quantity of damage is not exclusively link to
353	the insect diversity (Currano, Labandeira & Wilf, 2010). Latitudinal differences could led to a
354	difference of thermal seasonality (Saikkonen et al., 2012) which is the key to the latitudinal
355	gradient of insect diversity (Archibald et al., 2010). Leroy & Roiron (1996) indicated that
356	Bernasso paleoforest grew under temperatures of 14–15°C and precipitations around 1500 mm/a.
357	Recently, Girard et al. (in review) re-estimated Bernasso climate with different approaches and
358	some results, based on leaf morphological traits, estimated temperatures in Bernasso to be cooler
359	than estimations of Leroy & Roiron (1996), while the pollen analysis from the same study tend
360	to corroborate previous estimations done by Leroy & Roiron (1996).
361	
361 362	Relations between herbivory rates and temperatures of the coldest months and
	Relations between herbivory rates and temperatures of the coldest months and Berga has a low temperature of the coldest months (from -6.4°C to 2°C) compared to
362	
362 363	Berga has a low temperature of the coldest months (from -6.4°C to 2°C) compared to
362 363 364	Berga has a low temperature of the coldest months (from -6.4°C to 2°C) compared to Willershausen which had the highest temperatures (from -0.5°C to 5.1°C) (Uhl et al., 2007;
362 363 364 365	Berga has a low temperature of the coldest months (from -6.4°C to 2°C) compared to Willershausen which had the highest temperatures (from -0.5°C to 5.1°C) (Uhl et al., 2007; Thiel, Klotz & Uhl, 2012). These lower temperatures during the cold period could explain the
362 363 364 365 366	Berga has a low temperature of the coldest months (from -6.4°C to 2°C) compared to Willershausen which had the highest temperatures (from -0.5°C to 5.1°C) (Uhl et al., 2007; Thiel, Klotz & Uhl, 2012). These lower temperatures during the cold period could explain the lowest damage frequency observed in Berga. Indeed, insects are poikilotherms, meaning that
362 363 364 365 366 367	Berga has a low temperature of the coldest months (from -6.4°C to 2°C) compared to Willershausen which had the highest temperatures (from -0.5°C to 5.1°C) (Uhl et al., 2007; Thiel, Klotz & Uhl, 2012). These lower temperatures during the cold period could explain the lowest damage frequency observed in Berga. Indeed, insects are poikilotherms, meaning that their body temperature is extremely dependent to the environment temperature (Meglitsch,
362 363 364 365 366 367 368	Berga has a low temperature of the coldest months (from -6.4°C to 2°C) compared to Willershausen which had the highest temperatures (from -0.5°C to 5.1°C) (Uhl et al., 2007; Thiel, Klotz & Uhl, 2012). These lower temperatures during the cold period could explain the lowest damage frequency observed in Berga. Indeed, insects are poikilotherms, meaning that their body temperature is extremely dependent to the environment temperature (Meglitsch, 1972). Cooler temperatures decrease the insect metabolism (leading to diapause of insects) and
362 363 364 365 366 367 368 369	Berga has a low temperature of the coldest months (from -6.4°C to 2°C) compared to Willershausen which had the highest temperatures (from -0.5°C to 5.1°C) (Uhl et al., 2007; Thiel, Klotz & Uhl, 2012). These lower temperatures during the cold period could explain the lowest damage frequency observed in Berga. Indeed, insects are poikilotherms, meaning that their body temperature is extremely dependent to the environment temperature (Meglitsch, 1972). Cooler temperatures decrease the insect metabolism (leading to diapause of insects) and the quantity of generations per year (Archibald et al., 2010), consequently it could also reduce
362 363 364 365 366 367 368 369 370	Berga has a low temperature of the coldest months (from -6.4°C to 2°C) compared to Willershausen which had the highest temperatures (from -0.5°C to 5.1°C) (Uhl et al., 2007; Thiel, Klotz & Uhl, 2012). These lower temperatures during the cold period could explain the lowest damage frequency observed in Berga. Indeed, insects are poikilotherms, meaning that their body temperature is extremely dependent to the environment temperature (Meglitsch, 1972). Cooler temperatures decrease the insect metabolism (leading to diapause of insects) and the quantity of generations per year (Archibald et al., 2010), consequently it could also reduce the herbivory rates during the year (Bale & Hayward, 2010). Concerning Bernasso, the different
362 363 364 365 366 367 368 369 370 371	Berga has a low temperature of the coldest months (from -6.4°C to 2°C) compared to Willershausen which had the highest temperatures (from -0.5°C to 5.1°C) (Uhl et al., 2007; Thiel, Klotz & Uhl, 2012). These lower temperatures during the cold period could explain the lowest damage frequency observed in Berga. Indeed, insects are poikilotherms, meaning that their body temperature is extremely dependent to the environment temperature (Meglitsch, 1972). Cooler temperatures decrease the insect metabolism (leading to diapause of insects) and the quantity of generations per year (Archibald et al., 2010), consequently it could also reduce the herbivory rates during the year (Bale & Hayward, 2010). Concerning Bernasso, the different estimations of temperatures, included the CMMT, are lower than those of Willershausen (Uhl et
362 363 364 365 366 367 368 369 370 371 372	Berga has a low temperature of the coldest months (from -6.4°C to 2°C) compared to Willershausen which had the highest temperatures (from -0.5°C to 5.1°C) (Uhl et al., 2007; Thiel, Klotz & Uhl, 2012). These lower temperatures during the cold period could explain the lowest damage frequency observed in Berga. Indeed, insects are poikilotherms, meaning that their body temperature is extremely dependent to the environment temperature (Meglitsch, 1972). Cooler temperatures decrease the insect metabolism (leading to diapause of insects) and the quantity of generations per year (Archibald et al., 2010), consequently it could also reduce the herbivory rates during the year (Bale & Hayward, 2010). Concerning Bernasso, the different estimations of temperatures, included the CMMT, are lower than those of Willershausen (Uhl et al., 2007; Thiel, Klotz & Uhl, 2012), thus the lowest frequency of damage could also be due to a
362 363 364 365 366 367 368 369 370 371 372 373	Berga has a low temperature of the coldest months (from -6.4°C to 2°C) compared to Willershausen which had the highest temperatures (from -0.5°C to 5.1°C) (Uhl et al., 2007; Thiel, Klotz & Uhl, 2012). These lower temperatures during the cold period could explain the lowest damage frequency observed in Berga. Indeed, insects are poikilotherms, meaning that their body temperature is extremely dependent to the environment temperature (Meglitsch, 1972). Cooler temperatures decrease the insect metabolism (leading to diapause of insects) and the quantity of generations per year (Archibald et al., 2010), consequently it could also reduce the herbivory rates during the year (Bale & Hayward, 2010). Concerning Bernasso, the different estimations of temperatures, included the CMMT, are lower than those of Willershausen (Uhl et al., 2007; Thiel, Klotz & Uhl, 2012), thus the lowest frequency of damage could also be due to a lower insect metabolism in Bernasso than in Willershausen. The lowest frequency of damage in

PeerJ

376	Berga (especially for the coolest temperatures) and therefore complicate any interpretations
377	about the damage frequency between these two fossil leaf assemblages.
378	Moreover, it is important to note that no data about insect richness of these different paleoforests
379	are available. Although it could be assumed that insect richness between Willershausen and
380	Berga could be similar because outcrops are geographically and temporally similar, the insect
381	richness of Bernasso could be quite different. Consequently, in cases of differences in the insect
382	faunas, the previous relation could be disturbed as some insects, such as larvae of Thaumetopoea
383	pityocampa, feed on plants during the winter season (Battisti et al., 2005; Buffo et al., 2007),
384	when others insects have no or lower activity (Hahn & Denlinger, 2007).
385	
386	More precision provided by proportion of generalized/specialized damages
387	The comparison of plant-insect interaction between different locations or through
388	different time periods could still be upset by local disturbances (fires, floodings, etc.) or other
389	constraints (such as different soils) that are not perceptible in fossil record and could impacted
390	damage pattern in general (Currano et al., 2011; García, Castellanos & Pausas, 2016). Moreover,
391	taphonomic biases, especially fossil preservation and different excavation histories, could also
392	interfere with our analyses. For example, the damage frequency observed in fossil record could
393	be partly distorted because the damaged leaves had less chance to be preserved in the fossil
394	record than the complete and undamaged leaves (Ferguson, 2005). For all these reasons, we
395	suggested complementing analyses by comparison of the proportions of generalized and
396	specialized damage patterns.
397	Leckey et al. (2014) indicate that the proportion of generalist and specialist herbivores may
398	change between different forests because the difference of abiotic parameters (such as climate).
399	There are the lowest proportions of specialist interactions (mainly based on galling) in
400	Willershausen and Berga, and conversely the highest proportion is in Bernasso (Figure 3), this
401	may due to climatic factors (e.g., Leckey et al., 2014). Indeed, precipitation in Bernasso was
402	higher than in Willershausen and Berga (Leroy & Roiron, 1996; Uhl et al., 2007) and hydric
403	seasonality was probably more important in Bernasso (Girard et al., in review). This is in
404	agreement with the proposed Mediterranean climate for Bernasso that provided heavy constrain
405	to plants here due to less water availability during the dry season (Bagnouls & Gaussen, 1957;
406	Daget, 1977, 1984). The higher seasonality conditions in Bernasso compared to conditions

107	proposed for Berga and Willershausen could also be supported the idea that regional conditions
804	of Northern Atlantic realm were more marked by higher seasonlity, during Pleistocene than the
109	Pliocene (Williams et al., 2009; Hennissen et al., 2015; Utescher et al., 2017). Water stress
10	should have a positive impact on galling quantity, as many studies already mentioned that galling
11	is an adaptation of stressful environment (Fernandes & Martins, 1985; Fernandes & Price, 1988,
12	1992; Price et al., 1998; Lara, Fernandes & Gonçalves-Alvim, 2002). In addition, Cuevas-Reyes
13	et al. (2003), who studied the development of galling, showed that it exists a negative correlation
14	between gall-forming insect species richness and plant species richness. It could also partly
15	explain the highest proportion of specialized interactions in Bernasso. Additionally, a forest in its
116	late successional stage, as it has been proposed for Bernasso (Leroy & Roiron, 1996; Adroit et
17	al., 2016), tend to favor the richness of gall-inducing insects (that increase the proportion of
18	specialized interaction) (Fernandes, Almada & Carneiro, 2010; Adroit et al., 2016).
19	
120	Inputs of the comparisons between the common plant species from the different outcrops
121	This global comparison of specialized and generalized damages between the fossil leaf
122	assemblage of Bernasso, Willershausen and Berga are also observable precisely on the common
123	plant species statistically represented on each outcrop. However, the FFGs and especially the
124	undamaged feature on some plant taxa are similar or could be slightly different between the
125	fossil leaf assemblage (Figure 5). It tends to confirm that the abiotic parameters are important
126	determinant factors involving significant variation of herbivory between different
127	paleoenvironments (Cuevas-Reyes et al., 2004, 2003; Leckey et al., 2014). Biotic parameters can
128	also be involved in the difference of interaction structures. For example, a decrease in food
129	quality caused by higher concentration of carbon in plants could also have a negative impact on
130	herbivory (Stiling & Cornelissen, 2007), but in general, it is compensated by an increase of
131	insect feeding (Bezemer & Jones, 1998). The impact of biotic factors seems to be further
132	confirmed as in Willershausen we can note that most Fagales (Betulaceae: Alnus, Betulus,
133	Carpinus; Fagaceae: Fagus, Quercus; Juglandaceae: Carya, Juglans) are all associated to hole
134	feeding and to undamaged feature (Figure 5A). This measurement cannot be due to hazard but it
135	probably reflects an effect of some biotic parameters (such as genetic background, plant
136	competition, host specificity, etc.).

438	CONCLUSION
439	Despite their similar plant species and their relative geographical and stratigraphical proximity
440	(at least for Berga and Willershausen), trophic structures of those paleoforests were different.
441	The relationships between the mean annual temperature and precipitation on one hand and the
442	plant-insect interactions on the other hand as defined by previous studies have not been observed
443	in this study. The comparison of the fossil records of Willershausen, Berga and Bernasso allowed
444	discussion about the potential impacts of seasonality of the precipitation on the high proportion
445	of galling. In addition, results suggested also that the herbivory rates could be impacted by the
446	mean temperature of the coldest months of these paleoenvironments. Such observations can be
447	related to the insects' response to climatic variation, whichis very sensitive (Bale & Hayward,
448	2010). Further analyses are needed to improve the possible links between plant-insect
449	interactions and accurate climatic parameters. Concerning European paleoforests, the studies of
450	other late Pliocene outcrops such as the one of Frankfurt-am-Main in Germany (Thiel et al.,
451	2012) or Fossano in Italy (<u>Macaluso et al., 2017</u>) should provide interesting data to answer this
452	question.
453	
454	
455	
456	ACKNOWLEDGEMENTS
457	We wish to thank Tony Jijina (University of Wyoming, Laramie, WY, USA), Gentry Catlett
458	(Miami University, Oxford, OH, USA) and Samantha Moody (Bonn University, Germany) for
459	English improvement in our manuscript. Thank you to Dr. Alexander Gehler from Geoscience
460	Centre of the University of Göttingen for giving us access to Willershausen's fossil collections.
461	Special thanks to Dr. Allowen Evin (ISEM - Montpellier) and Dr. Zdeněk Janovský (Charles
462	University, Prague) for their advices on statistical methods.

+03	REFERENCES
164	Adroit, B., Wappler, T., Terral, JF., Ali, A.A., Girard, V., 2016. Bernasso, a paleoforest from the
165	early Pleistocene: New input from plant-insect interactions (Hérault, France).
166	Palaeogeogr. Palaeoclimatol. Palaeoecol. 446, 78–84.
167	https://doi.org/10.1016/j.palaeo.2016.01.015
168	Ambert, P., Boven, A., Leroy, S.A.G., Løvlie, R., Seret, G., 1990. Révision chronostratigraphique
169	de la séquence paléobotanique de Bernasso (Escandorgue, Midi de la France). CRAS
170	Paris 413–419.
171	Archibald, S.B., Bossert, W.H., Greenwood, D.R., Farrell, B.D., 2010. Seasonality, the latitudinal
172	gradient of diversity, and Eocene insects. Paleobiology 36, 374–398.
173	Bachmann, G.H., Ehling, B.C., Eichner, R., Schwab, M., 2008. Geologie von Sachsen-Anhalt,
174	Schweizerbart. ed.
175	Bagnouls, F., Gaussen, H., 1957. Les climats biologiques et leur classification. Ann. Géographie
176	66, 193-220. https://doi.org/10.3406/geo.1957.18273
177	Bale, J.S., Hayward, S. a. L., 2010. Insect overwintering in a changing climate. J. Exp. Biol. 213,
178	980-994. https://doi.org/10.1242/jeb.037911
179	Battisti, A., Stastny, M., Netherer, S., Robinet, C., Schopf, A., Roques, A., Larsson, S., 2005.
180	Expansion of geographic range in the pine processionary moth caused by increased
181	winter temperatures. Ecol. Appl. 15, 2084–2096.
182	Bezemer, T.M., Jones, T.H., 1998. Plant-Insect Herbivore Interactions in Elevated Atmospheric
183	CO 2 : Quantitative Analyses and Guild Effects. Oikos 82, 212.
184	https://doi.org/10.2307/3546961
185	Briggs, D.E., Stankiewicz, B.A., Meischner, D., Bierstedt, A., Evershed, R.P., 1998. Taphonomy of
186	arthropod cuticles from Pliocene lake sediments, Willershausen, Germany. Palaios 13,
187	386–394.
188	Buffo, E., Battisti, A., Stastny, M., Larsson, S., 2007. Temperature as a predictor of survival of
189	the pine processionary moth in the Italian Alps. Agric. For. Entomol. 9, 65–72.
190	Coley, P.D., Aide, T.M., 1991. Comparisons of herbivory and plant defenses in temperate and
191	tropical broad-leaved forests. Plant-Anim. Interact. Evol. Ecol. Trop. Temp. Reg. 25–49.

492	Coley, P.D., Barone, J.A., 1996. Herbivory and Plant Defenses in Tropical Forests. Annu. Rev.
493	Ecol. Syst. 27, 305–335. https://doi.org/10.1146/annurev.ecolsys.27.1.305
494	Cuevas-Reyes, P., Quesada, M., Hanson, P., Dirzo, R., Oyama, K., 2004. Diversity of gall-inducing
495	insects in a Mexican tropical dry forest: the importance of plant species richness, life-
496	forms, host plant age and plant density. J. Ecol. 92, 707–716.
497	Cuevas-Reyes, P., Siebe, C., Martínez-Ramos, M., Oyama, K., 2003. Species richness of gall-
498	forming insects in a tropical rain forest: correlations with plant diversity and soil fertility.
499	Biodivers. Conserv. 12, 411–422.
500	Currano, E.D., Jacobs, B.F., Pan, A.D., Tabor, N.J., 2011. Inferring ecological disturbance in the
501	fossil record: A case study from the late Oligocene of Ethiopia. Palaeogeogr.
502	Palaeoclimatol. Palaeoecol. 309, 242–252.
503	https://doi.org/10.1016/j.palaeo.2011.06.007
504	Currano, E.D., Labandeira, C.C., Wilf, P., 2010. Fossil insect folivory tracks paleotemperature for
505	six million years. Ecol. Monogr. 80, 547–567.
506	Daget, P., 1984. Introduction à une théorie générale de la méditerranéité. Bull. Société Bot. Fr.
507	Actual. Bot. 131, 31–36. https://doi.org/10.1080/01811789.1984.10826644
508	Daget, P., 1977. Le bioclimat Mediterraneen: analyse des formes climatiques par le systeme
509	d'Emberger. Vegetatio 34, 87–103.
510	DeChaine, E.G., Martin, A.P., 2006. Using coalescent simulations to test the impact of
511	quaternary climate cycles on divergence in an alpine plant-insect association. Evolution
512	60, 1004. https://doi.org/10.1554/05-672.1
513	DeLucia, E.H., Nabity, P.D., Zavala, J.A., Berenbaum, M.R., 2012. Climate Change: Resetting
514	Plant-Insect Interactions. PLANT Physiol. 160, 1677–1685.
515	https://doi.org/10.1104/pp.112.204750
516	Donovan, M.P., Iglesias, A., Wilf, P., Labandeira, C.C., Cúneo, N.R., 2016. Rapid recovery of
517	Patagonian plant-insect associations after the end-Cretaceous extinction. Nat. Ecol.
518	Evol. 1, 0012. https://doi.org/10.1038/s41559-016-0012
519	Driscoll, N.W., Haug, G.H., 1998. A Short Circuit in Thermohaline Circulation: A Cause for
520	Northern Hemisphere Glaciation? Science 282, 436–438.

521	Feeny, P., 1976. Plant apparency and chemical defense. Plenum Press 1–40.
522	Ferguson, D.K., 2005. Plant Taphonomy: Ruminations on the Past, the Present, and the Future.
523	PALAIOS 20, 418–428. https://doi.org/10.2110/palo.2005.P05-25p
524	Ferguson, D.K., Knobloch, E., 1998. A fresh look at the rich assemblage from the Pliocene sink-
525	hole of Willershausen, Germany. Rev. Palaeobot. Palynol. 101, 271–286.
526	Fernandes, G.W., Almada, E.D., Carneiro, M.A.A., 2010. Gall-Inducing Insect Species Richness as
527	Indicators of Forest Age and Health. Environ. Entomol. 39, 1134–1140.
528	https://doi.org/10.1603/EN09199
529	Fernandes, G.W., Martins, R.P., 1985. As galhas: tumores de plantas. Ciênc. Hoje 4, 58–64.
530	Fernandes, G.W., Price, P.W., 1992. The adaptive significance of insect gall distribution:
531	survivorship of species in xeric and mesic habitats. Oecologia 90, 14–20.
532	Fernandes, G.W., Price, P.W., 1988. Biogeographical gradients in galling species richness.
533	Oecologia 76, 161–167.
534	Forister, M.L., Novotny, V., Panorska, A.K., Baje, L., Basset, Y., Butterill, P.T., Cizek, L., Coley,
535	P.D., Dem, F., Diniz, I.R., 2015. The global distribution of diet breadth in insect
536	herbivores. Proc. Natl. Acad. Sci. 112, 442–447.
537	Frank, Dorothea, Reichstein, M., Bahn, M., Thonicke, K., Frank, David, Mahecha, M.D., Smith, P.
538	van der Velde, M., Vicca, S., Babst, F., Beer, C., Buchmann, N., Canadell, J.G., Ciais, P.,
539	Cramer, W., Ibrom, A., Miglietta, F., Poulter, B., Rammig, A., Seneviratne, S.I., Walz, A.,
540	Wattenbach, M., Zavala, M.A., Zscheischler, J., 2015. Effects of climate extremes on the
541	terrestrial carbon cycle: concepts, processes and potential future impacts. Glob. Change
542	Biol. 21, 2861–2880. https://doi.org/10.1111/gcb.12916
543	Fraser, D., 2017. Can latitudinal richness gradients be measured in the terrestrial fossil record?
544	Paleobiology 43, 479–494. https://doi.org/10.1017/pab.2017.2
545	García, Y., Castellanos, M.C., Pausas, J.G., 2016. Fires can benefit plants by disrupting
546	antagonistic interactions. Oecologia 182, 1165–1173. https://doi.org/10.1007/s00442-
547	016-3733-z
548	Girard, V., Fauquette, S., Adroit, B., Ahmed, A., Paya, A., Ali, A.A., Paradis, L., Roiron, P., Leroy,
549	S.A.G., Suc, J-P., in review, Fossil macro- and micro-flora from Bernasso (Early

550	Pleistocene, Southern France): new palaeoclimatic data and comparison of methods.
551	Comptes Rendus Palevol, 1-14.
552	Givulescu, R., 1984. Pathological elements on fossil leaves from Chiuzbaia (galls, mines and
553	other insect traces). Dari Seama Ale Sedintelor Intitutul Geol. Si Geofizica 68, 123–133.
554	Gotelli, N.J., Colwell, R.K., 2001. Quantifying biodiversity: procedures and pitfalls in the
555	measurement and comparison of species richness. Ecol. Lett. 4, 379–391.
556	Haddad, N.M., Crutsinger, G.M., Gross, K., Haarstad, J., Knops, J.M.H., Tilman, D., 2009. Plant
557	species loss decreases arthropod diversity and shifts trophic structure. Ecol. Lett. 12,
558	1029–1039. https://doi.org/10.1111/j.1461-0248.2009.01356.x
559	Hahn, D.A., Denlinger, D.L., 2007. Meeting the energetic demands of insect diapause: Nutrient
560	storage and utilization. J. Insect Physiol., VIII European Congress of Entomology -
561	Physiology and Endocrinology 53, 760–773.
562	https://doi.org/10.1016/j.jinsphys.2007.03.018
563	Hammer, Ø., Harper, D.A.T., Ryan, P.D., 2001. PAST: Paleontological statistics software package
564	for education and data analysis. Palaeontologia Electronica. Palaeontol. Electron. 4, 1–9.
565	Hansen, J., Sato, M., Russell, G., Kharecha, P., 2013. Climate sensitivity, sea level and
566	atmospheric carbon dioxide. Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 371, 20120294–
567	20120294. https://doi.org/10.1098/rsta.2012.0294
568	Haug, G.H., Tiedemann, R., Keigwin, L.D., 2004. How the Isthmus of Panama put ice in the
569	Arctic. Oceanus 42, 94–97.
570	Haywood, A.M., Sellwood, B.W., Valdes, P.J., 2000. Regional warming: Pliocene (3 Ma)
571	paleoclimate of Europe and the Mediterranean. Geology 28, 1063–1066.
572	Heller, N.E., Zavaleta, E.S., 2009. Biodiversity management in the face of climate change: A
573	review of 22 years of recommendations. Biol. Conserv. 142, 14–32.
574	https://doi.org/10.1016/j.biocon.2008.10.006
575	Hennissen, J.A.I., Head, M.J., De Schepper, S., Groeneveld, J., 2015. Increased seasonality during
576	the intensification of Northern Hemisphere glaciation at the Pliocene–Pleistocene
577	boundary ~2.6 Ma. Quat. Sci. Rev. 129, 321–332.
578	https://doi.org/10.1016/j.quascirev.2015.10.010

5/9	Hilgen, F.J., 1991. Astronomical calibration of Gauss to Matuyama sapropels in the
580	Mediterranean and implication for the geomagnetic polarity timescale. Earth Planet Sc
581	Lett 104, 226–244.
582	Hooper, D.U., Adair, E.C., Cardinale, B.J., Byrnes, J.E.K., Hungate, B.A., Matulich, K.L., Gonzalez,
583	A., Duffy, J.E., Gamfeldt, L., O'Connor, M.I., 2012. A global synthesis reveals biodiversity
584	loss as a major driver of ecosystem change. Nature.
585	https://doi.org/10.1038/nature11118
586	Hutchinson, G.E., 1959. Homage to Santa Rosalia or why are there so many kinds of animals?
587	Am. Nat. 93, 145–159.
588	Ildefonse, JP., Bellon, H., Pantaloni, A., Philippet, J.C., 1972. Mise en évidence de la transition
589	paléomagnétique Gauss-Matuyama dans les formations volcaniques de l'Escandorgue,
590	Hérault, France. Earth Planet Sci Lett 14, 249–254.
591	Klopfer, P.H., 1959. Environmenta determinants of faunal diversity. Am. Nat. XCIII, 337–342.
592	Klopfer, P.H., MacArthur, R.H., 1960. Niche size and faunal diversity. Am. Nat. XCIV, 293–300.
593	Knobloch, E., 1998. Der pliozäne laubwald Laubwald von willershausen Willershausen am harz
594	Harz (Mitteleuropa). Doc. Naturae 120, 1–302.
595	Knops, J.M., Tilman, D., Haddad, N.M., Naeem, S., Mitchell, C.E., Haarstad, J., Ritchie, M.E.,
596	Howe, K.M., Reich, P.B., Siemann, E., others, 1999. Effects of plant species richness on
597	invasion dynamics, disease outbreaks, insect abundances and diversity. Ecol. Lett. 2,
598	286–293.
599	Knor, S., Prokop, J., Kvaček, Z., Janovský, Z., Wappler, T., 2012. Plant–arthropod associations
600	from the Early Miocene of the Most Basin in North Bohemia—Palaeoecological and
601	palaeoclimatological implications. Palaeogeogr. Palaeoclimatol. Palaeoecol. 321–322,
602	102–112. https://doi.org/10.1016/j.palaeo.2012.01.023
603	Kolibáč, J., Adroit, B., Gröning, E., Brauckmann, C., Wappler, T., 2016. First record of the family
604	Trogossitidae (Insecta, Coleoptera) in the Late Pliocene deposits of Willershausen
605	(Germany). PalZ. https://doi.org/10.1007/s12542-016-0316-6

606	Kurschner, W.M., van der Burgh, J., Visscher, H., Dilcher, D.L., 1996. Oak leaves as biosensors o
607	late Neogene and early Pleistocene paleoatmospheric CO2 concentrations. Mar.
608	Micropaleontol. 27, 299–312.
609	Labandeira, C.C., 2012. Evidence for Outbreaks from the Fossil Record of Insect Herbivory. Oxf
610	Wiley-Blackwell, Oxford: Wiley-Blackwell 267–290.
611	Labandeira, C.C., 2002. The history of associations between plants and animals. Plant–Animal
612	Interact. Evol. Approach 248, 261.
613	Labandeira, C.C., Currano, E.D., 2013. The Fossil Record of Plant-Insect Dynamics. Annu. Rev.
614	Earth Planet. Sci. 41, 287–311. https://doi.org/10.1146/annurev-earth-050212-124139
615	Labandeira, C.C., Johnson, K.R., Wilf, P., 2002. Impact of the terminal Cretaceous event on
616	plant-insect associations. Proc. Natl. Acad. Sci. 99, 2061-2066.
617	Labandeira, C.C., Kustatscher, E., Wappler, T., 2016. Floral Assemblages and Patterns of Insect
618	Herbivory during the Permian to Triassic of Northeastern Italy. PLoS ONE 11, e0165205
619	https://doi.org/10.1371/journal.pone.0165205
620	Labandeira, C.C., Wilf, P., Johnson, K.R., Marsh, F., 2007. Guide to insect (and other) damage
621	types on compressed plant fossils. Smithson. Inst. Natl. Mus. Nat. Hist. Dep.
622	Paleobiology Wash. DC.
623	Lara, A.C.F., Fernandes, G.W., Gonçalves-Alvim, S.J., 2002. Tests of hypotheses on patterns of
624	gall distribution along an altitudinal gradient. Trop. Zool. 15, 219–232.
625	https://doi.org/10.1080/03946975.2002.10531176
626	Leckey, E.H., Smith, D.M., Nufio, C.R., Fornash, K.F., 2014. Oak-insect herbivore interactions
627	along a temperature and precipitation gradient. Acta Oecologica 61, 1–8.
628	https://doi.org/10.1016/j.actao.2014.08.001
629	Leroy, S.A., Roiron, P., 1996. Latest Pliocene pollen and leaf floras from Bernasso palaeolake
630	(Escandorgue Massif, Hérault, France). Rev. Palaeobot. Palynol. 94, 295–328.
631	Macaluso, L., Martinetto, E., Vigna, B., Bertini, A., Cilia, A., Teodoridis, V., Kvaček, Z., 2017.
632	Palaeofloral and stratigraphic context of a new fossil forest from the Pliocene of NW
633	Italy. Rev. Palaeobot. Palynol. https://doi.org/10.1016/j.revpalbo.2017.08.005

034	MacArthur, R.H., 1972. Geographical Ecology: Patterns in the Distribution of Species, Biology /
635	Princeton University Press. Princeton University Press.
636	Magri, D., 2010. Persistence of tree taxa in Europe and Quaternary climate changes. Quat. Int.
637	219, 145–151. https://doi.org/10.1016/j.quaint.2009.10.032
638	Mai, D.H., 1995. Tertiäre Vegetationsgeschichte Europas: Methoden und Ergebnisse. Fischer.
639	Mai, D.H., Walther, H., 1988. Die pliozänen Floren von Thüringen, Deutsche Demokratische
640	Republik. Quartärpaläontologie 7, 55–297.
641	Médail, F., Diadema, K., 2009. Glacial refugia influence plant diversity patterns in the
642	Mediterranean Basin. J. Biogeogr. 36, 1333–1345. https://doi.org/10.1111/j.1365-
643	2699.2008.02051.x
644	Meehl, G.A., Stocker, T.F., Collins, W.D., Friedlingstein, P., Gaye, A.T., Gregory, J.M., Kitoh, A.,
645	Knutti, R., Murphy, J.M., Noda, A., Raper, S.C.B., Watterson, I.G., Weaver, A.J., Zhao, Z
646	C., 2007. Global Climate Projections, in: Climate Change 2007: The Physical Science
647	Basis. Contribution of Working Group I to the Fourth Assessment Report of the
648	Intergovernmental Panel on Climate Change. S. Solomon, D. Qin, M. Manning, Z. Chen,
649	M. Marquis, K.B. Averyt, M. Tignor, H.L. Miller, Cambridge, United Kingdom and New
650	York, NY, USA.
651	Meglitsch, P.A., 1972. Invertebrate Zoology. Oxford University Press, New York.
652	Meischner, D., 2000. Europäische Fossillagerstätten, in: Der Pliozäne Teich von Willershausen
653	Am Harz. Dieter Meischner, New-York, pp. 223–228 and 261.
654	Migliore, J., Baumel, A., Juin, M., Médail, F., 2012. From Mediterranean shores to central
655	Saharan mountains: key phylogeographical insights from the genus Myrtus:
656	Phylogeography of the genus Myrtus. J. Biogeogr. 39, 942–956.
657	https://doi.org/10.1111/j.1365-2699.2011.02646.x
658	Mulder, C.P.H., Koricheva, J., Huss-Danell, K., Högberg, P., Joshi, J., 1999. Insects affect
659	relationships between plant species richness and ecosystem processes. Ecol. Lett. 2,
660	237–246.

661	Postigo Mijarra, J.M., Barrón, E., Gómez Manzaneque, F., Morla, C., 2009. Floristic changes in
662	the Iberian Peninsula and Balearic Islands (south-west Europe) during the Cenozoic. J.
663	Biogeogr. 36, 2025–2043. https://doi.org/10.1111/j.1365-2699.2009.02142.x
664	Price, P.W., 2002. Resource-driven terrestrial interaction webs. Ecol. Res. 17, 241–247.
665	Price, P.W., 1991. The plant vigor hypothesis and herbivore Attack. Oikos 62, 244–251.
666	https://doi.org/10.2307/3545270
667	Price, P.W., Fernandes, G.W., Lara, A.C.F., Braw, J., Barrios, H., Wright, M.G., Ribeiro, S.P.,
668	Rothcliff, N., 1998. Global patterns in local number of insect galling species. J. Biogeogr.
669	25, 581–591.
670	R Development Core Team, 2014. R: a language and environment for statistical computing.
671	Vienna: R Foundation for Statistical Computing.
672	Ravelo, A.C., Andreasen, D.H., Mitchell, L., Lyle, A.O., Wara, M.W., 2004. Regional climate shifts
673	caused by gradual global cooling in the Pliocene epoch. Nature 429, 263.
674	Saikkonen, K., Taulavuori, K., Hyvönen, T., Gundel, P.E., Hamilton, C.E., Vänninen, I., Nissinen,
675	A., Helander, M., 2012. Climate change-driven species' range shifts filtered by
676	photoperiodism. Nat. Clim. Change 2, 239–242. https://doi.org/10.1038/nclimate1430
677	Siemann, E., Tilman, D., Haarstad, J., 1996. Insect species diversity, abundance and body size
678	relationships. Nature 704–706.
679	Stiling, P., Cornelissen, T., 2007. How does elevated carbon dioxide (CO ₂) affect plant–
680	herbivore interactions? A field experiment and meta-analysis of CO $_{\rm 2}$ -mediated changes
681	on plant chemistry and herbivore performance. Glob. Change Biol. 13, 1823–1842.
682	https://doi.org/10.1111/j.1365-2486.2007.01392.x
683	Straus, A., 1977. Gallen, Minen und andere Fraßspuren im Pliozän von Willershausen am Harz.
684	Verhandlungen Bot. Ver. Prov. Brandenbg. 41–80.
685	Suc, J., Popescu, S., 2005. Pollen records and climatic cycles in the North Mediterranean region
686	since 2.7 Ma. Spec. PublGeol. Soc. Lond. 247, 147.
687	Suc, JP., 1978. Analyse pollinique de dépots Plio-Pléistocènes du sud du massif basaltique de
688	l'Escandorgue (Site de Bernasso, Lunas, Hérault, France). Pollen Spores 20, 497–512.

89	Taylor, L.L., Banwart, S.A., Valdes, P.J., Leake, J.R., Beerling, D.J., 2012. Evaluating the effects of
90	terrestrial ecosystems, climate and carbon dioxide on weathering over geological time: a
91	global-scale process-based approach. Philos. Trans. R. Soc. B Biol. Sci. 367, 565–582.
592	https://doi.org/10.1098/rstb.2011.0251
593	Thiel, C., Klotz, S., Uhl, D., 2012. Palaeoclimate estimates for selected leaf floras from the late
594	Pliocene (Reuverian) of Central Europe based on different palaeobotanical techniques.
595	Turk. J. Earth Sci. 21, 263–287.
96	Thunell, R.C., 1979. Pliocene-Pleistocene paleotemperature and paleosalinity history of the
97	Mediterranean Sea: Results from DSDP Sites 125 and 132. Mar. Micropaleontol. 4, 173–
598	187.
599	Titchener, F.R., 1999. Leaf feeding traces from the upper Pliocene fossil Lagerstätte of
700	Willershausen, lower saxony, Germany. Acta Palaeontol. 5, 403–409.
701	Turner, B.L.I., Clark, W., C., Kates, R., W., Richards, J., F., Mathews, J., T., Meyer, W., B., 1990.
702	The Earth was formed by Human Action: Global and Regional Changes in the Past 300
703	Years. Camb. Univ Press Camb.
704	Tzedakis, P.C., Hooghiemstra, H., Pälike, H., 2006. The last 1.35 million years at Tenaghi
705	Philippon: revised chronostratigraphy and long-term vegetation trends. Quat. Sci. Rev.
706	25, 3416–3430. https://doi.org/10.1016/j.quascirev.2006.09.002
707	Uhl, D., Klotz, S., Traiser, C., Thiel, C., Utescher, T., Kowalski, E., Dilcher, D.L., 2007. Cenozoic
708	paleotemperatures and leaf physiognomy — A European perspective. Palaeogeogr.
709	Palaeoclimatol. Palaeoecol. 248, 24–31. https://doi.org/10.1016/j.palaeo.2006.11.005
10	Utescher, T., Dreist, A., Henrot, AJ., Hickler, T., Liu, YS. (Christopher), Mosbrugger, V.,
711	Portmann, F.T., Salzmann, U., 2017. Continental climate gradients in North America and
712	Western Eurasia before and after the closure of the Central American Seaway. Earth
713	Planet. Sci. Lett. 472, 120–130. https://doi.org/10.1016/j.epsl.2017.05.019
714	van de Wal, R.S.W., de Boer, B., Lourens, L.J., Köhler, P., Bintanja, R., 2011. Reconstruction of a
715	continuous high-resolution CO_2 record over the past 20 million years. Clim. Past 7,
16	1459–1469. https://doi.org/10.5194/cp-7-1459-2011

Vinken, R., 1967. Kurzer Überblick über die Geologie der Umgebung von Willershausen. Ber. 717 718 Naturhistorischen Ges. Zu Hann. 115, 5-14. 719 Von Koenen, A., 1895. Blatt Westerhof. Erl. Geol. Specialkt. Preußen und Thüringischen Staaten, 71. Lief. Grababtheilung 55, 18. 720 Wappler, T., 2010. Insect herbivory close to the Oligocene-Miocene transition — A quantitative 721 722 analysis. Palaeogeogr. Palaeoclimatol. Palaeoecol. 292, 540-550. https://doi.org/10.1016/j.palaeo.2010.04.029 723 Wappler, T., Currano, E.D., Wilf, P., Rust, J., Labandeira, C.C., 2009. No post-Cretaceous 724 725 ecosystem depression in European forests? Rich insect-feeding damage on diverse 726 middle Palaeocene plants, Menat, France. Proc. R. Soc. B Biol. Sci. 276, 4271–4277. 727 https://doi.org/10.1098/rspb.2009.1255 Wappler, T., Grímsson, F., 2016. Before the 'Big Chill': Patterns of plant-insect associations from 728 the Neogene of Iceland. Glob. Planet. Change 142, 73-86. 729 730 https://doi.org/10.1016/j.gloplacha.2016.05.003 731 Wappler, T., Labandeira, C.C., Rust, J., Frankenhäuser, H., Wilde, V., 2012. Testing for the Effects 732 and Consequences of Mid Paleogene Climate Change on Insect Herbivory. PLoS ONE 7, 733 e40744. https://doi.org/10.1371/journal.pone.0040744 Wegele, H., 1914. Stratigraphie und tektonik der tertiären ablagerungen. Druck von A. 734 735 Rüttgerodt, Göttingen. Wilf, P., 2008. Fossil angiosperm leaves: Paleobotany's difficult children prove themselves. 736 Paleontol Soc Pap. 14, 319-333. 737 738 Willeit, M., Ganopolski, A., Calov, R., Robinson, A., Maslin, M., 2015. The role of CO2 decline for 739 the onset of Northern Hemisphere glaciation. Quat. Sci. Rev. 119, 22-34. 740 https://doi.org/10.1016/j.quascirev.2015.04.015 741 Williams, M., Haywood, A.M., Harper, E.M., Johnson, A.L., Knowles, T., Leng, M.J., Lunt, D.J., 742 Okamura, B., Taylor, P.D., Zalasiewicz, J., 2009. Pliocene climate and seasonality in North Atlantic shelf seas. Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 367, 85–108. 743 https://doi.org/10.1098/rsta.2008.0224 744

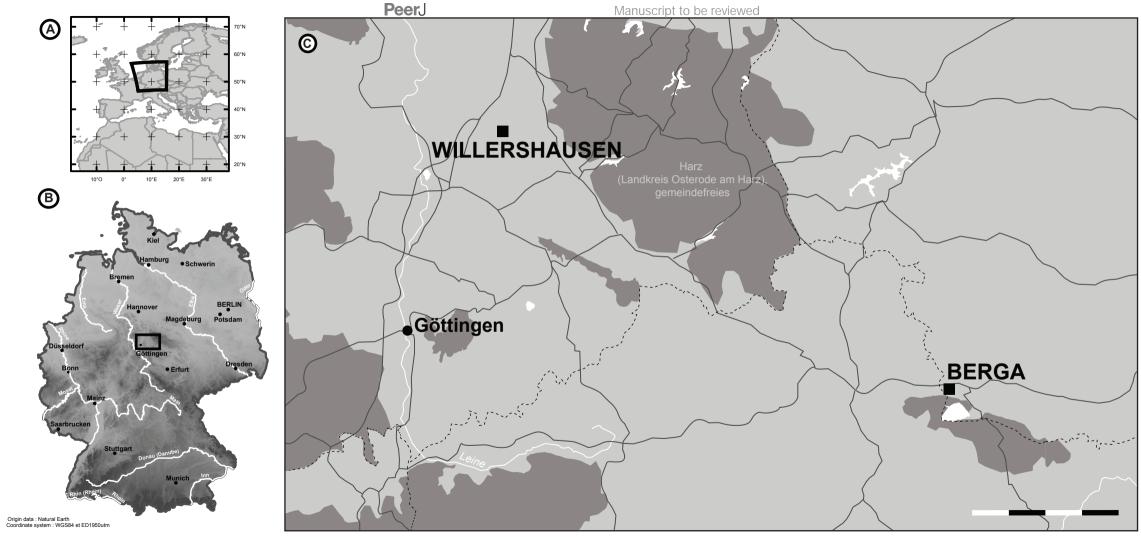
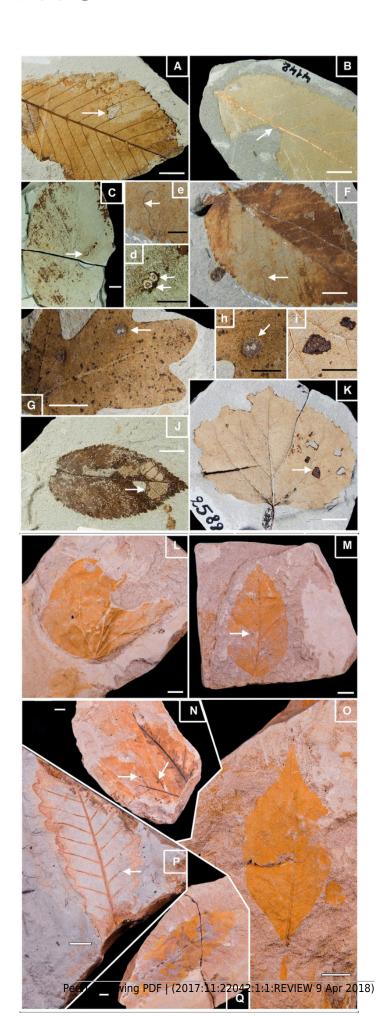

45	Wright, M.G., Samways, M.J., 1998. Insect species richness tracking plant species richness in a
46	diverse flora: gall-insects in the Cape Floristic Region, South Africa. Oecologia 115, 427–
747	433.
748	Yang, L.H., Gratton, C., 2014. Insects as drivers of ecosystem processes. Curr. Opin. Insect Sci. 2,
749	26–32. https://doi.org/10.1016/j.cois.2014.06.004
750	Zvereva, E.L., Kozlov, M.V., 2006. Consequences of simultaneous elevation of carbon dioxide
751	and temperature for plant-herbivore interactions: a metaanalysis. Glob. Change Biol. 12,
752	27-41. https://doi.org/10.1111/j.1365-2486.2005.01086.x
753	

Figure 1(on next page)

The location of Willershausen and Berga outcrops from the late Pliocene.

A- The location of Germany in Europe. B- The locations of both outcrops in Germany. C- Zoom on the area near Göttingen. On the scale, each dash (black or white) represents 5km. The data from the maps A and B come from Natural Earth database (http://www.naturalearthdata.com)


Figure 2

Fossil leaves from the German outcrops

Plate 1. Fossil leaves from Willershausen (Göttingen coll.). A- *Ulmus caprinifolia* with Hole feeding (DT05). B- *Alnus spaethii* with Margin feeding (DT14). C- *Fagus* sp with Piercing & Sucking (DT168). enlarged in 'd'. F- *Ulmus campestris* with Mining (DT109) enlarged in 'e'. G- *Quercus praeerucifolia* with Galling (DT145) enlarged in 'h'. J- *Ulmus caprinifolia* with Skeletonization (DT17). K- *Populus tremula* with Surface feeding (DT30) enlarged in 'i'.

Plate 2. Fossil leaves from Berga (Dresden coll.). L- *Cercidiphyllum crenatum*. M- *Fagus attenuata* with Hole feeding (DT01). N- *Juglans* sp. with Galls (DT34) . O- *Pterocarya paradisiaca*. P- *Quercus pseudocastanea* with Galling (DT116). Q- *Quercus castaneifolia*. White scale bar represents 1cm, black scale bar represents 0.5cm.

Photographs by Benjamin Adroit.

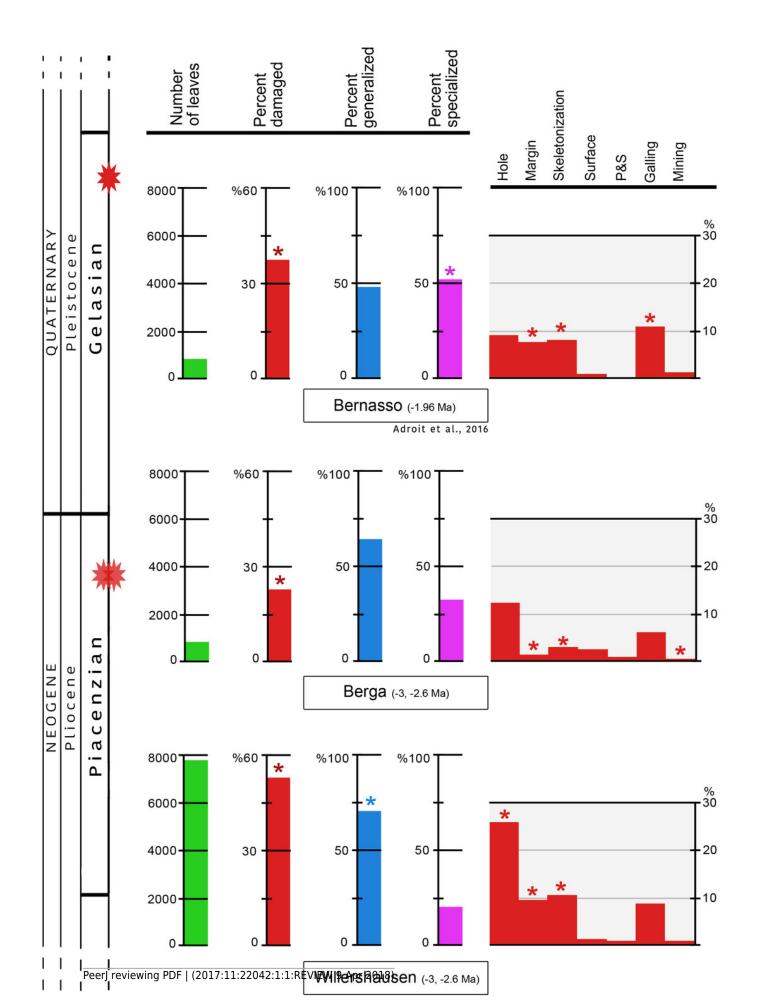


Figure 3

Quantitative distribution of plant-insect interactions from Willershausen, Berga outcrops (late Pliocene) and the fossil deposit of Bernasso (early Pleistocene).

The data of Bernasso come from Adroit et al., (2016). For each damage frequency, significant difference (alpha <0.05) from an outcrop to another one is marked by an asterisk. The percentage of generalized and specialized damages are computed only with the damaged leaves, consequently their sum on each outcrop is 100% in this figure. According to the whole amount of leaves the percentage of generalist interactions are 42.8% for Willershausen, 17.8% for Berga and 19.8% for Bernasso and the percentage of specialist interactions are 11.2% for Willershausen, 8.4% for Berga and 17.9% for Bernasso.

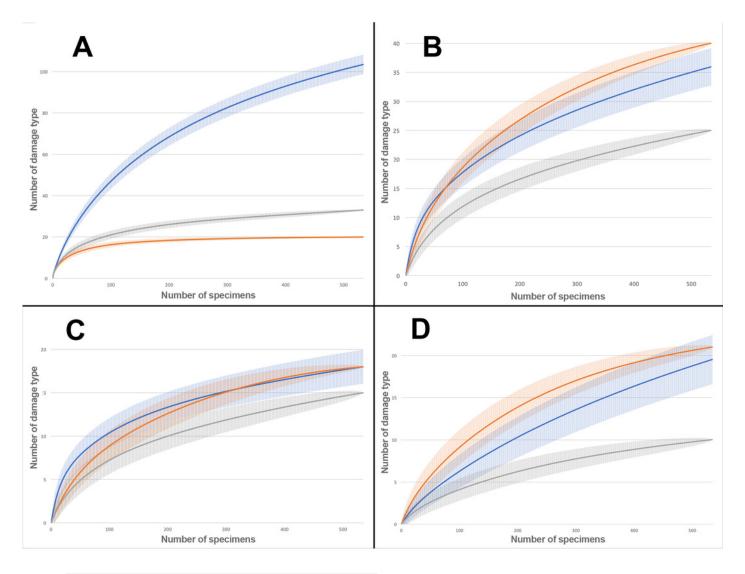
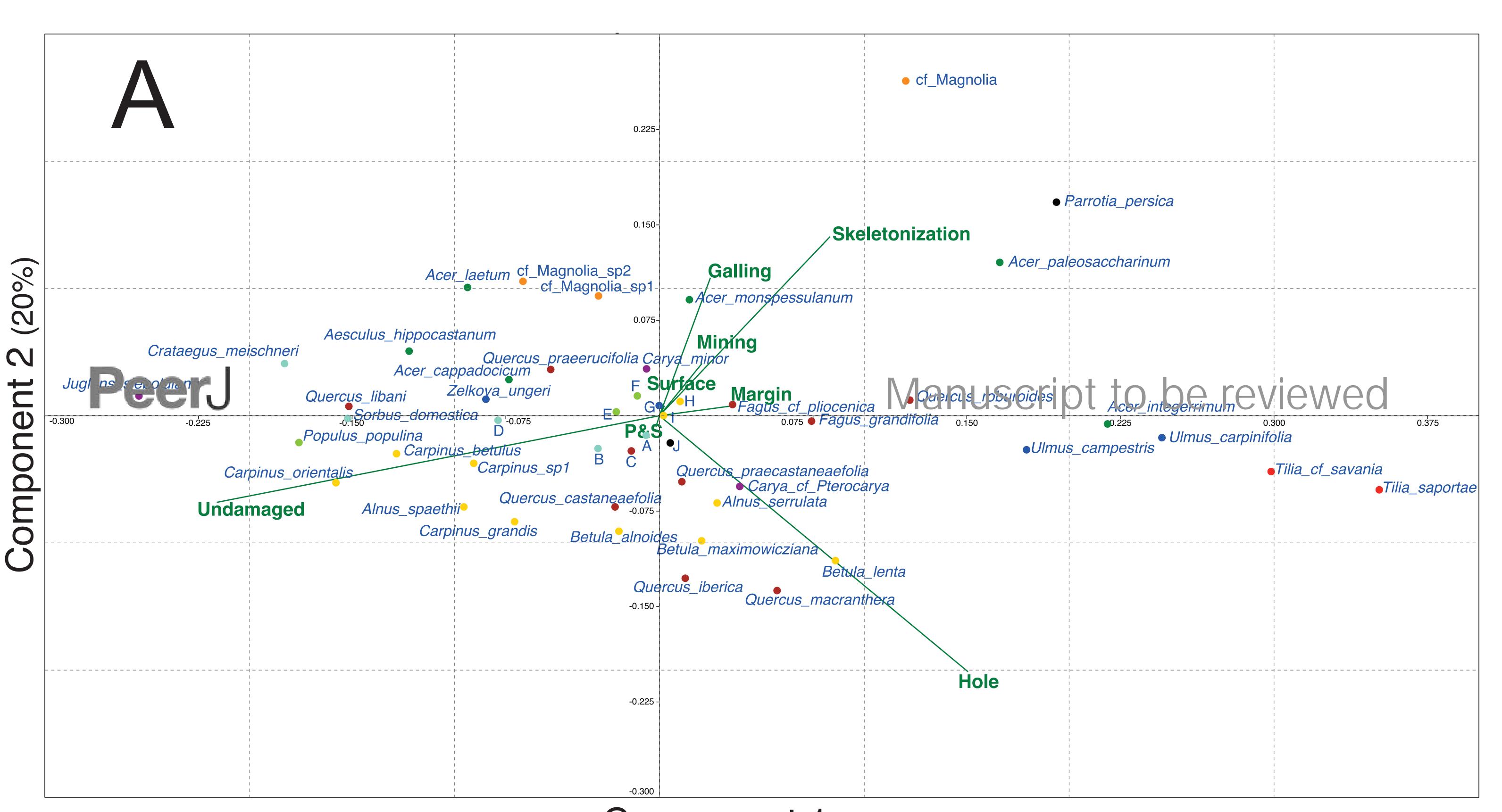
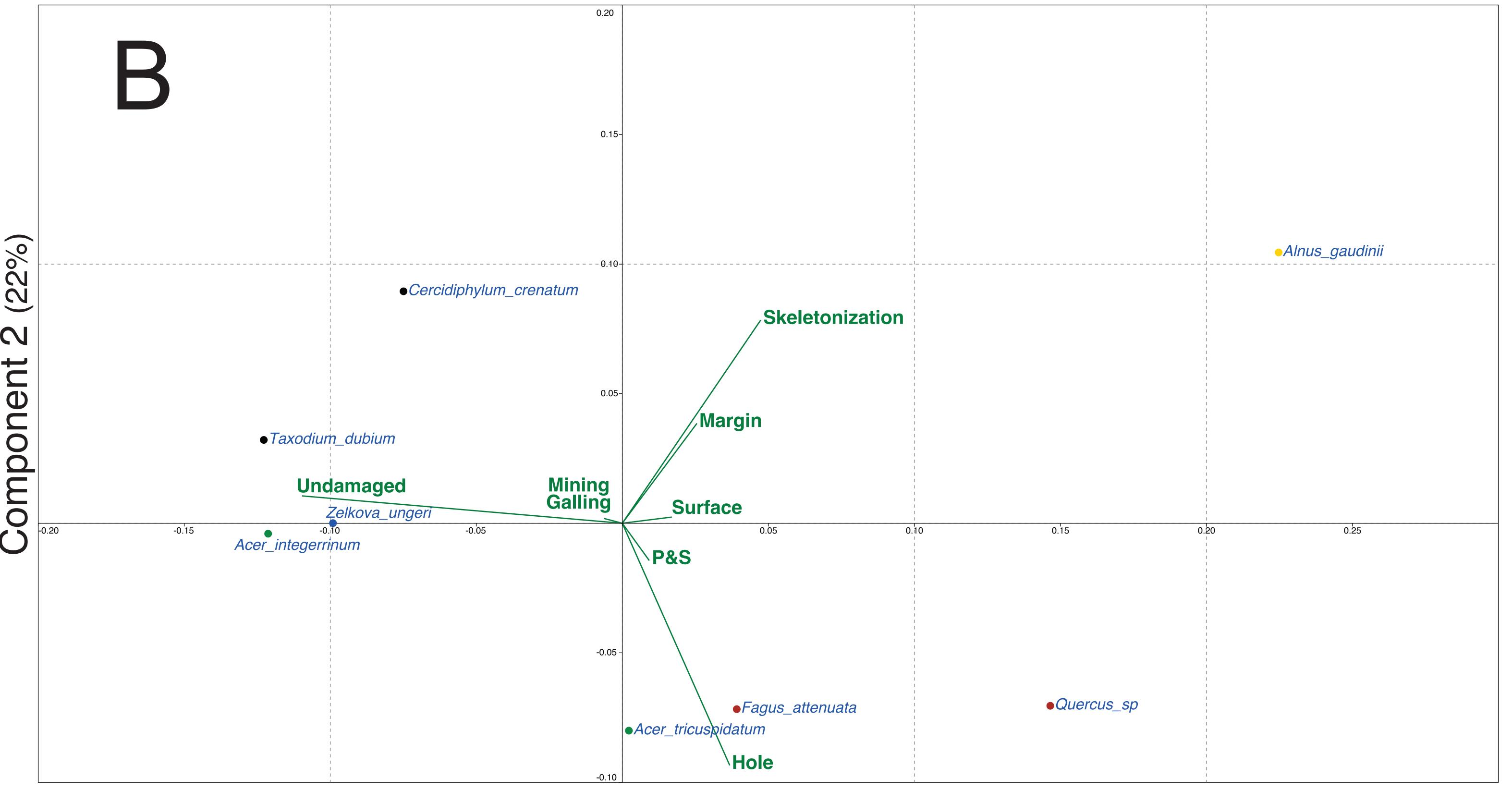


Figure 4

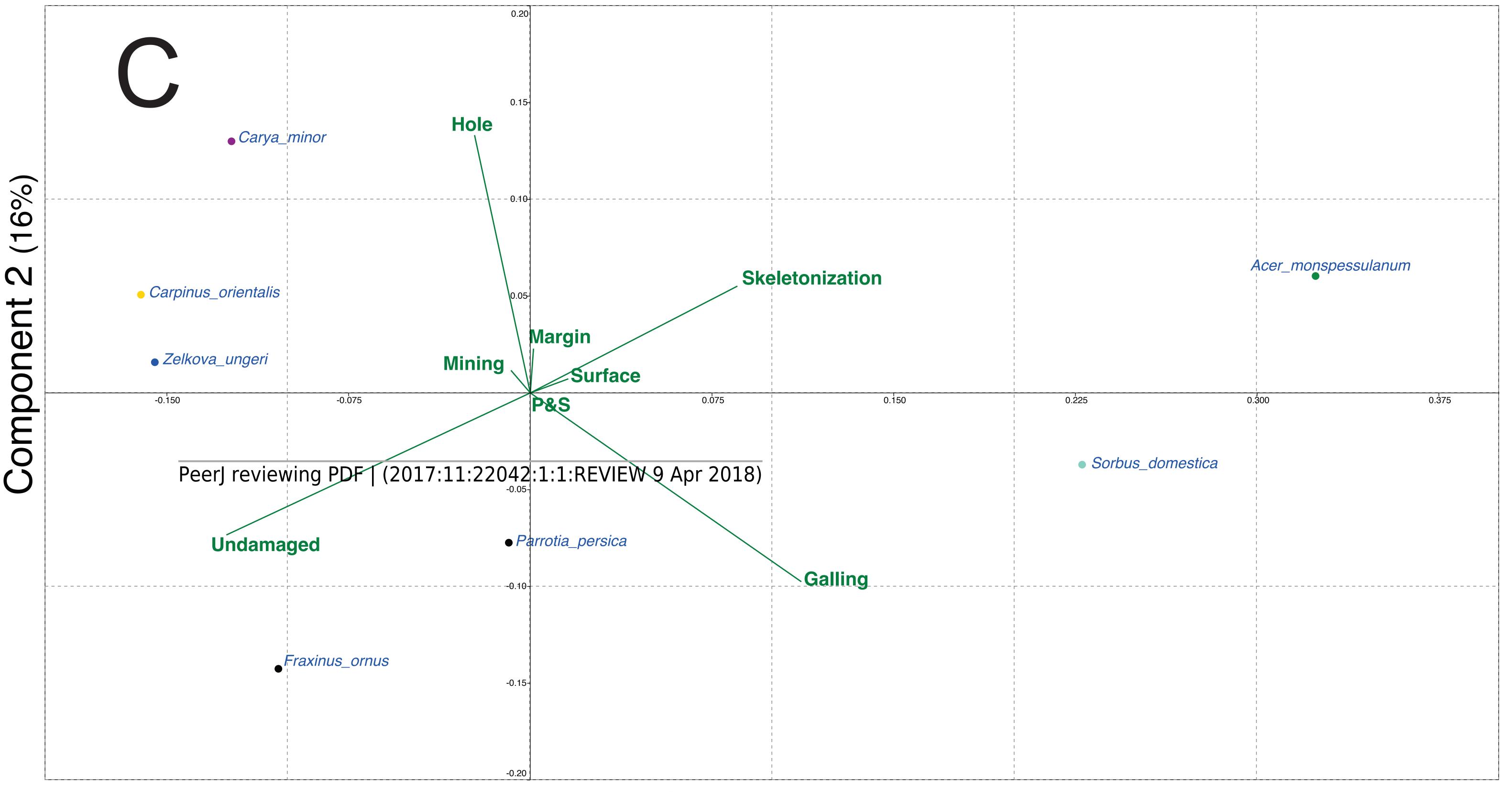
Rarefaction curves on the leaves from Willershausen, Berga and Bernasso (Adroit et al. 2016).

The grey curves represent Berga (Germany), the blue curves represent Willershausen (Germany) outcrop and the orange curves represent Bernasso (France). The shaded area represents the standard deviation below and above the average of the resamples, with the method from Heck et al. (1975). Rarefaction curves represent the number of specimens by: A- Richness of plant species; B- Richness of damage type (DT); C- Richness of generalized damage; D- Richness of specialized damage




Figure 5(on next page)

Principal components analysis (PCA) based on the proportion (in percentage) of the FFG on each plant species.


A- Willershausen (Germany, late Pliocene), B- Berga (Germany, late Pliocene), C- Bernasso (France, early Pleistocene). Due to large amount of plant species names on A- Willershausen, the species names near the axes intersection were replace by alphabetic letter for visibility concerns: a- Malus pulcherrima, b- Prunus mahaleb, c- Fagus sylvatica, d- Sorbus gabbrensis, e- Populus tremula, f- Populus willershausensis, g- Zelkova caprinifolia, h- Betula pubescens, i- Betula_sp1, j- cf_Toona.

Component 1 (57%)

Component 1 (71%)

Component 1 (75%)

Table 1(on next page)

Frequency of the leaves damaged per FFG based on the whole flora.

It happens that there is more than one FFG on a leaf damaged, consequently the sum of the percent of galling, mining, margin feeding, hole feeding, skeletonization, surface feeding and piercing & sucking exceed the value of the damaged leaves. The Data for Bernasso originate from Adroit et al. (2016). Detailed of damaged leaves per species are presented in Table S3.

Outcrops	#leaves	Damaged	Generalist	Specialist	External_ Specialized	Galling	Mining	MarginF	HoleF	Skeletonization	SurfaceF	P&S
WILLERSHAUSEN	7932	50.43	42.80	10.16	1.11	7.01	1.59	9.86	26.94	11.01	1.64	1.10
BERGA	534	25.09	17.79	7.12	1.31	6.18	0.19	1.87	12.73	2.62	2.06	0.94
BERNASSO	535	34.58	19.81	15.70	2.24	11.78	1.68	7.10	9.72	7.66	0.93	0.00