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Plants and insects are constantly interacting in complex ways through forest communities
since hundreds of millions of years. Those interactions are often related to variations in the
climate. Human activity may have disturbed these relationships in modern ecosystems.
Therefore, observations of plant-insect interactions made in current ecosystems could be
impacted by human influence. Consequently, studies based on past ecosystems, through
fossil leaf assemblages, are essential to complement modern day human influenced
studies in order to better understand changes of plant-insect interactions in environments
throughout time. The goal of this study is to discuss the possible causes of the differences
of plant-insect interactions’ patterns in European paleoforests from the Neogene -
Quaternary transition. This was accomplished through three fossil leaf assemblages:
Willershausen, Berga (both from the late Neogene of Germany) and Bernasso (from the
early Quaternary of France). In Willershausen it has been measured that half of the leaves
presented insect interactions, 35% of the fossil leaves were impacted by insects in
Bernasso and only 25% in Berga. The largest proportion of these interactions in Bernasso
were categorized as specialist (mainly due to galling) while in Willershausen and Berga
those ones were significantly more generalist. Contrary to previous studies, this study did
not support the hypothesis that the mean annual precipitation (MAP) and temperature
(MAT) were the main factors that impacted the different plant-insect interactions’ patterns.
However, for the first time in the fossil record, our results tend to support that the hydric
seasonality and the mean temperature of the coolest months could be potential factors
influencing plant insect interactions.

Peer] reviewing PDF | (2017:11:22042:1:1:REVIEW 9 Apr 2018)


glkrdbb
Comment on Text
You spend three sentences on human activity in your abstract. One would actually suffice as this has little to do with your study. Particularly this sentence follow logically from the previous sentence, so can be removed.  A larger discussion on human activity is justified in the introduction which is already the case. 


Peer]

10
11
12
13
14
15
16
17

Plant-insect interactions patterns in three European paleoforests of the late-

Neogene — early-Quaternary

Benjamin Adroit!?, Vincent Girard?, Lutz Kunzmann?, Jean-Frederic Terral?, Torsten Wappler!-#

ISteinmann Institute for Geology, Mineralogy and Palacontology, Division Palaecontology,
University of Bonn, Nussallee 8, 53115 Bonn, Germany

’Institut des Sciences de 1'Evolution, UMR 5554 Université de Montpellier, CNRS, IRD, EPHE,
Place Eugene Bataillon, 34095 Montpellier, cedex 05, France

3Museum fiir Mineralogie und Geologie, Staatliche Naturhistorische Sammlungen Dresden,
Konigsbriicker Landstrasse 159, 01109 Dresden, Germany

4Hessisches Landesmuseum Darmstadt, 64283 Darmstadt, Germany

Corresponding Author: Benjamin Adroit

Email address: benjamin.adroit@gmail.com

Peer] reviewing PDF | (2017:11:22042:1:1:REVIEW 9 Apr 2018)



Peer]

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

ABSTRACT

Plants and insects are constantly interacting in complex ways through forest communities since
hundreds of millions of years. Those interactions are often related to variations in the climate.
Human activity may have disturbed these relationships in modern ecosystems. Therefore,
observations of plant-insect interactions made in current ecosystems could be impacted by
human influence. Consequently, studies based on past ecosystems, through fossil leaf
assemblages, are essential to complement modern day human influenced studies in order to
better understand changes of plant-insect interactions in environments throughout time. The goal
of this study is to discuss the possible causes of the differences of plant-insect interactions’
patterns in European paleoforests from the Neogene — Quaternary transition. This was
accomplished through three fossil leaf assemblages: Willershausen, Berga (both from the late
Neogene of Germany) and Bernasso (from the early Quaternary of France). In Willershausen it
has been measured that half of the leaves presented insect interactions, 35% of the fossil leaves
were impacted by insects in Bernasso and only 25% in Berga. The largest proportion of these
interactions in Bernasso were categorized as specialist (mainly due to galling) while in
Willershausen and Berga those ones were significantly more generalist. Contrary to previous
studies, this study did not support the hypothesis that the mean annual precipitation (MAP) and
temperature (MAT) were the main factors that impacted the different plant-insect interactions’
patterns. However, for the first time in-thefossilrecord, our results tend to support that the

hydric seasonality and the mean temperature of the coolest months could be potential factors

influencing plantinseet interactions.
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INTRODUCTION

Climate is a major factor affecting the extension, structure, and composition of terrestrial
ecosystems (Taylor et al., 2012; Frank et al., 2015). Hence, past climatic oscillations are of
special importance for understanding and interpreting biotic changes in the past (e.g., DeChaine
& Martin, 2006) and are of interest in terms of forecasting the biotic response to future global
warming (Meehl et al., 2007). Nowadays, it is clear that Human activities have now reached a
global impact affecting components of the Earth system as a whole (Turner et al., 1990; Heller &
Zavaleta, 2009). In terrestrial ecosystems, arthropods are one of the most important components
in biodiversity (Yang & Gratton, 2014) and their interactions with plants are essential for
terrestrial food webs (Forister et al., 2015). Many modern ecological studies are focusing on
these interactions between plants and insects but interpretations may be limited, therefore a
insect herbivory have provided a variety of ecological and evolutionary information over long
periods of time, such as climate (e.g., Wappler, 2010; Wappler et al., 2012), the evolutionary
impact of plant radiations (e.g.,Labandeira, 2012; Labandeira & Currano, 2013), food web
dynamics (e.g., Wappler & Grimsson, 2016), extinction patterns (e.g., Labandeira, 2002;
Labandeira, Johnson & Wilf, 2002; Donovan et al., 2016), and ecosystem recovery after
extinction events (e.g., Wappler et al., 2009; Labandeira, Kustatscher & Wappler, 2016). They
have also shown that biodiversity loss may greatly impede trophic interactions and change the
overall food web structure of ecological systems (Haddad et al., 2009). Moreover, there is
increasing concern about the loss of biological diversity from ecosystems (Hooper et al., 2012).
The large amount of Plio—Pleistocene fossil records offers an exceptional possibility for
conducting meta-analysis for the estimation of the evolution and dynamics of associations
between plant species and their dependent insect-herbivore species, as descriptions of Plio—
Pleistocene floral changes (Tzedakis, Hooghiemstra & Pélike, 2006; Médail & Diadema, 2009;
Postigo Mijarra et al., 2009; Magri, 2010; Migliore et al., 2012). Although a few isolated records
of specialized phytophagy categories have been reported from the Pliocene (Straus, 1977;
Givulescu, 1984; Titchener, 1999), only a single systematic survey of plant—arthropod
interactions has been carried out on an early Pleistocene flora (Adroit et al., 2016).

Thus, an ideal setting for the evaluations of relationships among global climate and biodiversity

under conditions warmer than today, but with a similar paleogeographic configuration (Raymo et
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al. 2011; Rohling ef al. 2009) is possible throughout the famous upper Pliocene fossil
Lagerstitten Willershausen (3.2 — 2.6 Ma; MN 16/17) (Hilgen, 1991; Mai, 1995) and the
comparisons with Berga (Germany, late Pliocene) and the French Pleistocene locality of
Bernasso (Adroit et al., 2016). Willershausen and Berga outcrops are of similar age (Piacenzian)
and are located in the surroundings of the Harz Mountains, Germany (Figure 1). The
Willershausen paleoforest was dominated by typical taxa of hilly mesophytic woodland
(Ferguson & Knobloch, 1998; Knobloch, 1998) such as Acer, Aesculus, Carpinus, Fagus,
Quercus, Sassafras, Tilia (Mai, 1995; Knobloch, 1998) and other taxa such as Parrotia, Zelkova
and Liquidambar were also characteristic elements of Willershausen (Mai, 1995). All of these
taxa were also found in Berga (Mai & Walther, 1988). The presence of these taxa indicates
relatively warmer conditions in Europe than today during the late Pliocene (Uhl et al., 2007;
Thiel, Klotz & Uhl, 2012). Most plant fossil evidence from Central Europe outcrops (Haywood,
Sellwood & Valdes, 2000; Uhl et al., 2007; Williams et al., 2009; Thiel, Klotz & Uhl, 2012) and
data from marine isotopes, geological evidences (Driscoll & Haug, 1998; Haug, Tiedemann &
Keigwin, 2004) are directing in the same way. Bernasso is younger than the German outcrops,
estimated around 2.16 Ma — 1.96 Ma (Suc, 1978; Leroy & Roiron, 1996). It is located in
southern France, Skm far away from Lunas in the department of Hérault (Suc, 1978: Leroy &
the genera Carpinus, Parrotia, Acer and Sorbus (Leroy & Roiron, 1996; Adroit et al., 2016)
wherein many plant species are in common with the German fossil leaf assemblages. Detailed
descriptions are available in Roiron & Leroy (1996) and Adroit et al. (2016). The decreasing
temperatures, from ca. 18°C to 14°C throughout the Pliocene (Thunell, 1979; Ravelo et al., 2004;
Hansen et al., 2013) lead to the dominant European vegetation changing gradually from highly
diverse subtropical and warm-temperate forests to temperate deciduous forests with East Asian
and partly North American affinities (Mai, 1995).

Through the comparison of three European forest plant communities of the Plio-Pleistocene, the
aim of this study was to understand how climatic parameters could have impacted plant-insect
interactions of fossil leaves. It has been expected that the difference of estimated mean annual

temperatures between those paleoforests could have a major impact on the quantity of the plant-
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Our results provide the first approach on plant-insect interactions from the Plio-/Pleistocene in
European paleoecosystems.

STUDY AREA

Willershausen, Lower-Saxony, Germany

Geological studies of Willershausen dated back to the end of the 19 century (e.g., Wegele,
1914); see details in (Wegele, 1914; Ferguson & Knobloch, 1998; Meischner, 2000). The
absence of bioturbation gave rise to one of the exceptionally well preserved floras and faunas
(Briggs et al., 1998). The Willershausen site was a lake which developed in a pond due to the
dissolution of underlying Permian evaporites and tumbled of the Triassic and Early Jurassic
sediments (Briggs et al., 1998; Meischner, 2000; Kolibac et al., 2016). Today, Willershausen is
an abandoned clay mining operation and it is included in the Geopark Harz, Braunschweiger
Land, Ostfalen since 2012. This paleolake was ca. 200m in diameter and approximately 10m
deep with a narrow sand beyond which the sides inclined abruptly towards the bottom of the lake
(Meischner, 2000). Willershausen geology has been described by (Von Koenen, 1895) and
detailed compilations can be found in (Vinken, 1967; Ferguson & Knobloch, 1998; Meischner,
2000).

The leaves used in this study are stored in different museum collections in Germany. The
majority (6546 leaves) is located at the Geoscience center of the University of Gottingen
(GZG.W collection). Additional fossil leaves are stored in the Staatliches Museum fiir
Naturkunde Stuttgart (SMNS.W collection, 957 leaves), in the collections of TU Clausthal of
Clausthal-Zellerfeld (320 leaves), in the Naturkundemuseum im Ottoneum of Kassel (NMOK.W,
236 leaves) and in the Senckenberg Natural History Collections Dresden (14 leaves). Some of
the best well-preserved fossil specimens are presented in Figure 2.A. The flora from
Willershausen comprised a rich vegetation community including the presence of Acer, Alnus,
Betula, Carpinus, Carya, Fagus, Pterocarya, Populus, Quercus, Tilia, Ulmus, Zelkova (Straus,
1977; Ferguson & Knobloch, 1998; Knobloch, 1998). The vertebrates Anancus (Mastodon)
arvernensis and Tapirus were found in Willershausen and seems to indicated a Piacenzian age
(late Pliocene, ca. 3.2 — 2.4 Ma; MN 16/17; (Mai, 1995), which is corroborated by the presence

of Parrotia persica and Liquidambar europaeum (Mai, 1995).
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Most plant fossil evidence from Willershausen indicates warmer conditions than today (Ferguson
& Knobloch, 1998). The mean annual temperature (MAT) in Willershausen was estimated
between 10.6°C and 15.6°C on the base of the leaf morphology and of diversity of plant species
niches (Table S1; Uhl et al., 2007); these different approaches explain the wide range of
temperature estimated. The mean temperature of the coldest month (CMMT) is estimated
between 0.6°C and 3.2°C and the mean annual precipitation (MAP) between 8§97 and 1151 mm
per year (Table S1; Uhl et al., 2007; Thiel, Klotz & Uhl, 2012).

Berga, Thiiringen, Germany

Berga was a lake in which compressions and impressions (some with the cuticles preserved) of
leaves were found in silty sediments (Mai & Walther, 1988). It is 70km far from the
Willershausen outcrop. The stratigraphic age of the Berga sediments is estimated on the basis of
sedimentological correlations referring to the Piacenzian (ca. 3 Ma — 2.6 Ma) (Bachmann et al.,
2008).

This leaf collection (534 specimens) is housed in the collection of the Senckenberg Natural
History Collections Dresden, Germany. It contained many fossils of different origins (Mai &
Walther, 1988), including 30 angiosperms leaf taxa (Figure 2.B). They represent different
environments: a freshwater plant community, a swamp and riparian associations and a zonal
mixed broadleaved conifer forest (which dominates the taphocoenosis). The temperatures were
estimated with the same approach as Willershausen; MAT is estimated between 7.4°C and
16.6°C, the CMMT is between -4.3°C to +0.6°C and the MAP is between 897 and 1297 mm per
year (Table S1; Uhl et al., 2007; Thiel, Klotz & Uhl, 2012).

Bernasso, France

Bernasso was a lake developed when a basaltic flows shut off a canyon valley (Leroy & Roiron,
1996). Diatomites were formed and fossil leaves, often with rest of cuticle, were preserved. It is
located close to Lunas (Hérault, southern France) (Leroy & Roiron, 1996; Adroit et al., 2016).
The fossil deposit is dated from the early Pleistocene on the basis of K/Ar analysis (Ildefonse et
al., 1972) on a basaltic dyke that crosses the diatomite layers. A complementary analysis on
cyclostratigraphy (Suc & Popescu, 2005) and paleomagnetism (Ambert et al., 1990) corroborated

these results and estimated an age around 2.16 to 1.96 Ma.
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The collection included 800 fossil leaves and 535 specimens well-preserved were described in
(Adroit et al., 2016). These same specimens were also used for comparisons in the present study.
The fossil leaves were conserved the Institut des Sciences de I'Evolution de Montpellier in
France. Different preparation of fossil leaves were done by (Leroy & Roiron, 1996) and their
impact on interpretation were discussed in (Adroit et al., 2016). The flora represents a
mesothermic forest, mixing Mediterranean and Caspian elements (Suc, 1978; Leroy & Roiron,
1996). The MAT in Bernasso was estimated about 14-15°C and the MAP is around 1500 mm/y
(Table S1; Leroy & Roiron, 1996). It is important to note that CLAMP results in Bernasso

suggest a possibly lower temperature (Table S1; Girard et al., in review).

DATA ANALYSES

Plant-insect interaction identifications

The plant-insect interactions were identified following the Guide to Insect (and Other)

Damage Types on Compressed Plant Fossils (Labandeira et al., 2007). The damages type (DTs)
are easily recognizable thanks to the black reaction mark surrounding them (Labandeira, 2002;
Labandeira et al., 2007). They are divided in 7 Functional Feeding Groups (FFG): hole feeding,
margin feeding, skeletonization, surface feeding, piercing & sucking, mining and galling. Leaves
without damage were also categorized in an eighth FFG called the undamaged leaves. The leaves
undamaged has been take into account as a proxy of the non-palatability of the leaves, thus can
be considered as another FFG. The leaves were examined under a binocular Leica MZ95 and all
photographed with a Canon EOS 350D camera fitted with a Canon EF-S 60-mm f/2.8 macro
lens. A Nikon Coolpix E4500 was used sometimes for precise pictures through the binocular. All
pictures were developed using Abode Lightroom CC v.2015 especially in order to improve
contrast of the leaf. The insect interactions on leaves were scored according to the richness,
frequency and distribution on the different plant species for each outcrop. For each DT, a host
specificity value has been attributed by Labandeira et al. (2007) that allowed to classify our DTs
into generalist interactions (made by polyphagous organisms) and specialized interactions (made
by monophagous organisms) (Labandeira, 2002). Detailed plates of fossil leaves from

Willershausen are available in Table S2 including the original descriptions of the plant-insect
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interactions made by (Straus, 1977) and our actual updates with the guide of insect (and other)
damage types on compressed plant fossils (Labandeira et al., 2007).

The results obtained for Willershausen and Berga were compared to those recently published for
the outcrop of Bernasso (Adroit et al., 2016). For some comparisons with Bernasso, new values

were calculated based on raw data.

Statistical analyses

For each outcrop, the statistical analyses were performed on two different databases as described
in Knor et al. (2012). The first one is the whole assemblage of plant-insect interactions. The
second one considers only the interactions of the species that are significantly represented (more
than 20 leaves). The quantitative analyses were done in R version 3.1.2 (R Development Core
Team, 2014). The differences among the proportions of occurrences from all FFG were tested
with Chi-squared-test. The remaining information needed for this test was obtained by using the
generalized linear model of binominal distribution. Sample-based rarefaction curves were done
to compare the different damage richness and the different plant richness between the outcrops
(Gotelli & Colwell, 2001). At last, in order to observe the distributions of plant species according
to the FFG among the different fossil leaf assemblages, principal component analysis (PCA)
were performed with the software Past3 (v3.14) (Hammer, Harper & Ryan, 2001) in a biplot.
PCA in a biplot has been useful to measure the directions where each plant species had the most
variance according to the different FFG. The data matrices used for it considered the frequency
of each eight FFGs for each plant species of each outcrop (i.e. for each outcrops a matrix such as

FFG frequency x leaf morphotype).

RESULTS

Comparisons of insect interactions and plant species richness.

In Willershausen 50.4% of the leaves are damaged, and only 25.1% in Berga. This percentage
was 34.6% in Bernasso (Adroit et al., 2016). These differences are statistically significant
(»<0.001) (Figure 3, Table 1).

The frequencies of generalist interactions are 42.8% for Willershausen, 17.8% for Berga and
19.8% for Bernasso (Adroit et al., 2016). Only Willershausen frequency is significantly different

from the others (p<0.001). Willershausen leaves have especially much more hole feedings
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(26.9%) and margin feedings (9.9%) than Berga (respectively 12.7% and 1.9%) and Bernasso
leaves (respectively 9.8% and 7%) (Figure 3).

The frequencies of specialized interactions are 11.2% for Willershausen, 8.4% for Berga and
17.9% for Bernasso (Adroit et al., 2016). Only the Bernasso frequency is significantly different
from the others (»<0.001). This difference is mainly due to the important quantity of galling in
Bernasso (12%) which is significantly higher than in Willershausen and Berga, respectively 7%
and 6% (p<0.01) (Figure 3).

Rarefaction tests on plant species richness highlight that Willershausen has more plant species
(>100) than Berga (33) and Bernasso (20) (Figure 4). However, the DT richness in
Willershausen (36 DTs) and Berga (25 DTs) are lower than in Bernasso (40 DTs) (Figure 4).

Structure of the paleoforests with the damage distribution on plant species

Figure 5 presents the different PCA realized for the 3 outcrops with the data of plant and DT
diversities. For each outcrop, only the first two axes are presented as for Willershausen they
represent 77% (Figure 5A), for Berga 93% (Figure 5B) and for Bernasso 91% (Figure 5C) of the
whole distribution.

For Willershausen (Figure 5A) the FFGs hole feeding and skeletonization are positively
correlated with PCA-axis 1 (respectively 0.76 and 0.61) and undamaged is negatively correlated
with this axis (-0.97) (Data S1). Skeletonization and galling are positively correlated with PCA-
axis 2 (respectively 0.62 and 0.63) while hole feeding is negatively correlated with this axis (-
0.73) (Data S1). Concerning the species, three pools of plant species can be distinguished. The
Tilia (T. saportae, T. cf. saviana), the Ulmus (U. caprinifolia, U. campestris), the Fagus (F.
grandifolia, F. pliocenica), Acer integerrimum and Quercus roburoides are all along the positive
part of the PCA-axis 1. The leaves of these species have the highest DT frequency of hole
feeding and skeletonization. A second set of taxa is composed, for the most evident species, by
Acer cappadocicum, A. laetum, Carya minor, cf. Magnolia spl and 2, Populus willershausensis,
Quercus praeerucifolia and Zelkova ungeri. They are along the negative part of the PCA-axis 1
and along the positive part of the PCA-axis 2. They are mainly affected by the FFG galling
(specialized interaction) or have no damage. At last, the third set of species is composed of

Fagales (Fagus sylvatica, all the Quercus, Alnus and Betula species) and is in the negative part of

Peer] reviewing PDF | (2017:11:22042:1:1:REVIEW 9 Apr 2018)



Peer]

253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283

the PCA-axis 2. These leaves are mainly undamaged or only impacted by hole feeding
(generalist interaction).

For Berga (Figure 5B) the FFGs hole feeding, skeletonization and undamaged are positively
associated with the PCA-axis 1, respectively with a correlation of 0.56, 0.73 and 0.99 (Data S1).
Hole feeding and skeletonization are also correlated with the PCA-axis 2, negatively for hole
feeding (-0.79) and positively for skeletonization (0.66) (Data S1). Concerning the species, we
can note that Taxodium dubium, Zelkova ungeri, Cercidiphylum crenatum and Acer
integerrimum are correlated with this undamaged category. Fagus attenuata, Acer tricuspidatum
and Quercus sp. are mainly correlated with hole feeding.

For Bernasso (Figure 5C; (Adroit et al., 2016), the skeletonization and galling are positively
correlated with the PCA-axis 1 (0.82 and 0.92) while undamaged is negatively correlated with
this axis (-0.94) (Data S1). Hole feeding and skeletonization are positively correlated with PCA-
axis 2 (0.92 and 0.25) while undamaged and galling are negatively correlated with this axis (-
0.25 and -0.37) (Data S1). Acer monspessulanum and Sorbus domestica are in the positive part of
the PCA-Axis 1 while the other are in the negative one (to note that Parrotia persica is close to
zero). Concerning the PCA-axis 2, Acer monspessulanum, Carpinus orinetlais and Carya minor
are in the positive part of the PCA-axis 2 while the others are in the negative part (to note that
Zelkova ungeri is close to zero).

Furthermore, Zelkova ungeri is a species found in the 3 outcrops (Figure 5) and comparing to its
position in the different PCAs, we can note that Z. ungeri is mostly associated with the FFG
undamaged. However, for other common plant species, their relative position on the PCAs could
be different. Acer integerrimum in Berga (Figure 5B) is mostly associated with the FFG
undamaged while in Willershausen is opposite to this FFG as it is mainly associated to the FFG
hole feeding and more weekly with skeletonization, margin and galling (Figure 5A).

Comparing Willershausen and Bernasso (Figure SA & 6C), A. monspessulanum is mainly
associated to skeletonization and galling in Willershausen (Figure 5.A) and in Bernasso it is with
skeletonization, galling too but also with hole feeding (Figure 5C).

Sorbus domestica and Carpinus orientalis are both associated to the FFG undamaged in
Willershausen (Figure SA). In Bernasso, S. domestica is associated with galling and
skeletonization and C. orientalis is associated with hole feeding and undamaged (Figure 5C).

Carya minor is associated to skeletonization and galling in Willershausen (Figure 5A) while in
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Bernasso it is associated to undamaged and hole feeding (Figure 5C). Parrotia persica is
associated to galling and undamaged in Bernasso (Figure 5C) while in Willershausen, it is

associated with the FFGs skeletonization and galling (Figure 5A).

DISCUSSION
Floristic richness and herbivory representativeness

All genera and at least 22 plant species from Berga leaf assemblage are also present in the
Willershausen assemblage (Table S3). It can be explained by the geographical and stratigraphical
proximity of the two outcrops. Bernasso had nearly the same composition of plant genera found
in Willershausen (except //ex only found in Bernasso) and also the majority of plant species
(Table S3) despite its geographical situation and its younger age. There is quite a difference of
plant richness between Bernasso and Berga, but the genera are the same (Table S3). This may
suggest a difference in specific richness between those paleoforests. Rarefaction data indicated
for the Willershausen leaf assemblage a highest plant species richness than the ones of Berga and
Bernasso (Figure 4). However, the original sample size is strongly, larger in Willershausen and
could have led to artificial differences of plant species richness between the outcrops (Table 1).
However, a bias due to the sample size is unlikely as Bernasso has the highest DT richness while
the plant species and the quantity of leaves are lower than the one of the Willershausen
assemblage.

Sampling effort tests indicate that enough specimens were taken into account to have a
representative overview of the interactions on plant species found into the different outcrops
(Figure 4). The large standard deviation observable on the Willershausen rarefaction curves on
Figure 4 is due to this size of the fossil collection that includes around 8.000 specimens while the

others are only 534 for Berga and 535 for Bernasso.

Relations between herbivory and the different mean annual temperatures estimated

Climatic conditions seem to be in relation with variations in richness and frequency of

seems to stimulate insect herbivory (Coley & Aide, 1991; Coley & Barone, 1996; Zvereva &
Kozlov, 2006; Currano, Labandeira & Wilf, 2010), it is still difficult to understand the complete

role of temperature in the modulation of herbivory (DeLucia et al., 2012).
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Thiel, Klotz & Uhl (2012) indicated, through leaf morphological analyses, that temperatures
estimated for Willershausen were approximately 3°C higher than those for Berga. These
paleoforests were geographically very close to each other (less than 70 km) and at a similar
latitude (51°N) (Figure 1). Today the nearest meteorological stations of these locations
(Willershausen: Géttingen, Lower-Saxony; Berga: Nordhausen, Thiiringen) indicates the same
mean annual temperature also for the coldest and warmest months over the last years
(www.worldweatheronline.com). Such current similarities make the argument for similar
paleoclimates of the two fossil localities if they were strictly of the same age. However, between
3 Ma and 2.5 Ma, CO, concentration progressively decreased (Kiirschner et al., 1996; van de
Wal et al., 2011) implicating a continuous decrease of mean annual temperatures (Willeit et al.,
2015). Consequently, as Willershausen was warmer than Berga, the paleoforest of Willershausen
grew under higher atmospheric CO, concentration than the Berga paleoforest. It seems to
corroborate by the higher damage frequency observed in Willershausen that can have been
favored by an increase of C/N ratios and an increase of photosynthesis rates (due to the high CO,
concentration) (Bezemer & Jones, 1998; Stiling & Cornelissen, 2007; DeLucia et al., 2012).
However, Willershausen and Berga had different sedimentological contexts and the preservation
of the fossil leaves did not follow the same taphonomical constrains in the two outcrops. This
could have influenced interpretation of the climate through morphological analyses.

For this reason, Thiel, Klotz & Uhl (2012) were in favor of the Coexistence Approach for
climate interpretation which estimated similar temperature for Berga and Willershausen. It has
been highlighted that the diversity of insects is often correlated to richness of plant species
(Siemann, Tilman & Haarstad, 1996; Wright & Samways, 1998; Knops et al., 1999; Mulder et
al., 1999) and should be expected to have higher damage richness in the more diverse paleoforest
(Price, 1991, 2002). Thus, the higher richness and frequency of damage in Willershausen than in
Berga could also be due to a higher insect diversity. Nevertheless, despite its higher plant
richness Willershausen had less DT richness than Bernasso (Figures 3, 4). Bernasso had also
more damage richness and frequency than Berga (Figures 3, 4). Thus, these observations make
this assumption unsustainable for our study. It is also conceivable that the relative abundance of
a plant species in those paleoforests could partly explain the herbivory measured; Indeed, more
plant species are represented in the forest community, then more individuals have had a chance

to be damaged by insect feeding (Feeny, 1976). However, for the fossil record, it is not possible
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to support this assumption because the leaf quantity of a plant species from an outcrop cannot be
correlated to the relative abundance of this plant species in the paleoforest.

For Bernasso, the latitudinal position is different from Berga and Willershausen, as it located
1,000 km to the South. It has been highlighted that the insect diversity increases getting closer to
the tropics (Hutchinson, 1959; Klopfer, 1959; Klopfer & MacArthur, 1960; MacArthur, 1972;
Coley & Barone, 1996; Fraser, 2017). The southern position of Bernasso could partly explain the
measured damage type richness. Nevertheless, the quantity of damage is not exclusively Lnk to
the insect diversity (Currano, Labandeira & Wilf, 2010). Latitudinal differences could led to a
difference of thermal seasonality (Saikkonen et al., 2012) which is the key to the latitudinal
gradient of insect diversity (Archibald et al., 2010). Leroy & Roiron (1996) indicated that
Bernasso paleoforest grew under temperatures of 14—15°C and precipitations around 1500 mm/a.
Recently, Girard et al. (in review) re-estimated Bernasso climate with different approaches and
some results, based on leaf morphological traits, estimated temperatures in Bernasso to be cooler
than estimations of Leroy & Roiron (1996), while the pollen analysis from the same study tend

to corroborate previous estimations done by Leroy & Roiron (1996).

Relations between herbivory rates and temperatures of the coldest months and

Berga has a low temperature of the coldest months (from -6.4°C to 2°C) compared to
Willershausen which had the highest temperatures (from -0.5°C to 5.1°C) (Uhl et al., 2007;
Thiel, Klotz & Uhl, 2012). These lower temperatures during the cold period could explain the
lowest damage frequency observed in Berga. Indeed, insects are poikilotherms, meaning that
their body temperature is extremely dependent to the environment temperature (Meglitsch,
1972). Cooler temperatures decrease the insect metabolism (leading to diapause of insects) and
the quantity of generations per year (Archibald et al., 2010), consequently it could also reduce
the herbivory rates during the year (Bale & Hayward, 2010). Concerning Bernasso, the different
estimations of temperatures, included the CMMT, are lower than those of Willershausen (Uhl et
al., 2007; Thiel, Klotz & Uhl, 2012), thus the lowest frequency of damage could also be due to a
lower insect metabolism in Bernasso than in Willershausen. The lowest frequency of damage in
Berga than in Bernasso could also be due to insect diapause in the case of coolest temperatures

being lower in Berga. However, the estimated temperatures of Bernasso overlap with the ones of
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Berga (especially for the coolest temperatures) and therefore complicate any interpretations
about the damage frequency between these two fossil leaf assemblages.

Moreover, it is important to note that no data about insect richness of these different paleoforests
are available. Although it could be assumed that insect richness between Willershausen and
Berga could be similar because outcrops are geographically and temporally similar, the insect
richness of Bernasso could be quite different. Consequently, in cases of differences in the insect
faunas, the previous relation could be disturbed as some insects, such as larvae of Thaumetopoea
pityocampa, feed on plants during the winter season (Battisti et al., 2005; Buffo et al., 2007),

when others insects have no or lower activity (Hahn & Denlinger, 2007).

More precision provided by proportion of generalized/specialized damages

The comparison of plant-insect interaction between different locations or through
different time periods could still be upset by local disturbances (fires, floodings, etc.) or other
constraints (such as different soils) that are not perceptible in fossil record and could impacted
damage pattern in general (Currano et al., 2011; Garcia, Castellanos & Pausas, 2016). Moreover,
taphonomic biases, especially fossil preservation and different excavation histories, could also
interfere with our analyses. For example, the damage frequency observed in fossil record could
be partly distorted because the damaged leaves had less chance to be preserved in the fossil
record than the complete and undamaged leaves (Ferguson, 2005). For all these reasons, we
suggested complementing analyses by comparison of the proportions of generalized and
specialized damage patterns.
Leckey et al. (2014) indicate that the proportion of generalist and specialist herbivores may
change between different forests because the difference of abiotic parameters (such as climate).
There are the lowest proportions of specialist interactions (mainly based on galling) in
Willershausen and Berga, and conversely the highest proportion is in Bernasso (Figure 3), this
may due to climatic factors (e.g., Leckey et al., 2014). Indeed, precipitation in Bernasso was
higher than in Willershausen and Berga (Leroy & Roiron, 1996; Uhl et al., 2007) and hydric
seasonality was probably more important in Bernasso (Girard et al., in review). This is in
agreement with the proposed Mediterranean climate for Bernasso that provided heavy constrain
to plants here due to less water availability during the dry season (Bagnouls & Gaussen, 1957;

Daget, 1977, 1984). The higher seasonality conditions in Bernasso compared to conditions
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proposed for Berga and Willershausen could also be supported the idea that regional conditions
of Northern Atlantic realm were more marked by higher seasenlity, during Pleistocene than the
Pliocene (Williams et al., 2009; Hennissen et al., 2015; Utescher et al., 2017). Water stress
should have a positive impact on galling quantity, as many studies already mentioned that galling
is an adaptation of stressful environment (Fernandes & Martins, 1985; Fernandes & Price, 1988,
1992; Price et al., 1998; Lara, Fernandes & Gongalves-Alvim, 2002). In addition, Cuevas-Reyes
et al. (2003), who studied the development of galling, showed that it exists a negative correlation
between gall-forming insect species richness and plant species richness. It could also partly
explain the highest proportion of specialized interactions in Bernasso. Additionally, a forest in its
late successional stage, as it has been proposed for Bernasso (Leroy & Roiron, 1996; Adroit et
al., 2016), tend to favor the richness of gall-inducing insects (that increase the proportion of

specialized interaction) (Fernandes, Almada & Carneiro, 2010; Adroit et al., 2016).

Inputs of the comparisons between the common plant species from the different outcrops

This global comparison of specialized and generalized damages between the fossil leaf
assemblage of Bernasso, Willershausen and Berga are also observable precisely on the common
plant species statistically represented en each outcrop. However, the FFGs and especially the
undamaged feature on some plant taxa are similar or could be slightly different between the
fossil leaf assemblage (Figure 5). It tends to confirm that the abiotic parameters are important
determinant factors involving significant variation of herbivory between different
paleoenvironments (Cuevas-Reyes et al., 2004, 2003; Leckey et al., 2014). Biotic parameters can
also be involved in the difference of interaction structures. For example, a decrease in food
quality caused by higher concentration of carbon in plants could also have a negative impact on
herbivory (Stiling & Cornelissen, 2007), but in general, it is compensated by an increase of
insect feeding (Bezemer & Jones, 1998). The impact of biotic factors seems to be further
confirmed as in Willershausen we can note that most Fagales (Betulaceae: Alnus, Betulus,
Carpinus; Fagaceae: Fagus, Quercus; Juglandaceae: Carya, Juglans) are all associated to hole
feeding and to undamaged feature (Figure SA). This measurement cannot be due to hazard but it
probably reflects an effect of some biotic parameters (such as genetic background, plant

competition, host specificity, etc.).
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CONCLUSION

Despite their similar plant species and their relative geographical and stratigraphical proximity
(at least for Berga and Willershausen), trophic structures of those paleoforests were different.
The relationships between the mean annual temperature and precipitation on one hand and the
plant-insect interactions on the other hand as defined by previous studies have not been observed
in this study. The comparison of the fossil records of Willershausen, Berga and Bernasso allowed
discussion about the potential impacts of seasonality of the precipitation on the high proportion
of galling. In addition, results suggested also that the herbivory rates could be impacted by the
mean temperature of the coldest months of these paleoenvironments. Such observations can be
related to the insects’ response to climatic variation, whichis very sensitive (Bale & Hayward,
2010). Further analyses are needed to improve the possible links between plant-insect
interactions and accurate climatic parameters. Concerning European paleoforests, the studies of
other late Pliocene outcrops such as the one of Frankfurt-am-Main in Germany (Thiel et al.,

question.
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Figure 1(on next page)

The location of Willershausen and Berga outcrops from the late Pliocene.
A- The location of Germany in Europe. B- The locations of both outcrops in Germany. C- Zoom
on the area near Gottingen. On the scale, each dash (black or white) represents 5km. The

data from the maps A and B come from Natural Earth database

(http://www.naturalearthdata.com)
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Figure 2

Fossil leaves from the German outcrops

Plate 1. Fossil leaves from Willershausen (Gottingen coll.). A- Ulmus caprinifolia with Hole feeding (DT05). B-
Alnus spaethii with Margin feeding (DT14). C- Fagus sp with Piercing & Sucking (DT168). enlarged in ‘d’. F-
Ulmus campestris with Mining (DT109) enlarged in ‘e’. G- Quercus praeerucifolia with Galling (DT145)
enlarged in ‘h’. J- Uimus caprinifolia with Skeletonization (DT17). K- Populus tremula with Surface feeding

(DT30) enlarged in ‘i".

Plate 2. Fossil leaves from Berga (Dresden coll.). L- Cercidiphyllum crenatum. M- Fagus attenuata with Hole
feeding (DTO1). N- Juglans sp. with Galls (DT34) . O- Pterocarya paradisiaca. P- Quercus pseudocastanea
with Galling (DT116). Q- Quercus castaneifolia. White scale bar represents 1cm, black scale bar represents

0.5cm.

Photographs by Benjamin Adroit.
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Figure 3

Quantitative distribution of plant-insect interactions from Willershausen, Berga outcrops
(late Pliocene) and the fossil deposit of Bernasso (early Pleistocene).

The data of Bernasso come from Adroit et al., (2016). For each damage frequency, significant
difference (alpha <0.05) from an outcrop to another one is marked by an asterisk. The
percentage of generalized and specialized damages are computed only with the damaged
leaves, consequently their sum on each outcrop is 100% in this figure. According to the
whole amount of leaves the percentage of generalist interactions are 42.8% for
Willershausen, 17.8% for Berga and 19.8% for Bernasso and the percentage of specialist

interactions are 11.2% for Willershausen, 8.4% for Berga and 17.9% for Bernasso.
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Figure 4

Rarefaction curves on the leaves from Willershausen, Berga and Bernasso (Adroit et al.
2016).

The grey curves represent Berga (Germany), the blue curves represent Willershausen
(Germany) outcrop and the orange curves represent Bernasso (France). The shaded area
represents the standard deviation below and above the average of the resamples, with the
method from Heck et al. (1975). Rarefaction curves represent the number of specimens by:
A- Richness of plant species; B- Richness of damage type (DT); C- Richness of generalized

damage; D- Richness of specialized damage

A

Number of damage type
Number of damage type

Number of damage type
Number of damage type

Number of specimens Number of specimens
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Figure 5(on next page)

Principal components analysis (PCA) based on the proportion (in percentage) of the FFG
on each plant species.

A- Willershausen (Germany, late Pliocene), B- Berga (Germany, late Pliocene), C- Bernasso
(France, early Pleistocene). Due to large amount of plant species names on A- Willershausen,
the species names near the axes intersection were replace by alphabetic letter for visibility
concerns: a- Malus pulcherrima, b- Prunus mahaleb, c- Fagus sylvatica, d- Sorbus gabbrensis,
e- Populus tremula, f- Populus willershausensis, g- Zelkova caprinifolia, h- Betula pubescens,

i- Betula spl, j- cf Toona.
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Table 1(on next page)
Frequency of the leaves damaged per FFG based on the whole flora.

It happens that there is more than one FFG on a leaf damaged, consequently the sum of the
percent of galling, mining, margin feeding, hole feeding, skeletonization, surface feeding and
piercing & sucking exceed the value of the damaged leaves. The Data for Bernasso originate

from Adroit et al. (2016). Detailed of damaged leaves per species are presented in Table S3.
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External_

Outcrops #leaves | Damaged | Generalist | Specialist Specialized Galling | Mining | MarginF | HoleF |Skeletonization| SurfaceF | P&S
WILLERSHAUSEN | 7932 50.43 42.80 10.16 1.11 7.01 1.59 9.86 26.94 11.01 1.64 1.10
BERGA 534 25.09 17.79 7.12 1.31 6.18 0.19 1.87 12.73 2.62 2.06 0.94
BERNASSO 535 34.58 19.81 15.70 2.24 11.78 1.68 7.10 9.72 7.66 0.93 0.00
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