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ABSTRACT
The age-based life history of two commercially-important species of snapper

(Lutjanidae) and one emperor (Lethrinidae) were characterized from the nearshore

fishery of Tutuila, American Samoa. Examination of sagittal otoliths across

multiple months and years confirmed the annual deposition of increments and

highlighted marked variation in life-history patterns among the three meso-

predator species. The humpback red snapper Lutjanus gibbus is a medium-bodied

gonochoristic species which exhibits striking sexual dimorphism in length-at-age

and consequent growth trajectories and has a life span estimated to be at least

27 years. The yellow-lined snapper Lutjanus rufolineatus is a small-bodied gonochore

with weak sexual dimorphism, early maturation, and a short life span of at least

12 years. The yellow-lip emperor Lethrinus xanthochilus is a large-bodied species

with a moderate life span (estimated to be at least 19 years in this study), rapid initial

growth, and a more complex sexual ontogeny likely involving pre- or post-

maturational sex change, although this remains unresolved at present. Ratios of

natural to fishing mortality indicate a low level of prevailing exploitation for all three

species, which is supported by low proportions of immature female length classes

captured by the fishery. However, considerable demographic variability among the

three species highlights the value of detailed age-based information as a necessary

component for informing monitoring efforts and future management decisions.

Subjects Aquaculture, Fisheries and Fish Science, Ecology, Marine Biology, Zoology, Natural

Resource Management

Keywords Life history, Otolith, Snapper, Emperorfish, Reproduction, Polynesia, Fishery

INTRODUCTION
Assemblages of snappers (Family Lutjanidae) and emperors (Family Lethrinidae) are

highly valuable components of tropical insular fisheries across the Indo-Pacific region

(Carpenter & Allen, 1989; Dalzell, 1996; Newman, Williams & Russ, 1997). Both families

represent meso-predator assemblages that prey on small fishes and invertebrates and are

targeted by commercial, recreational, and artisanal fishers throughout their range.

The majority of species for both families are commercially valuable and are most often
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harvested by line fishing techniques in depths from shallow reef-associated habitats (<10 m)

to deep slopes extending to 100 s of meters (Dalzell, Adams & Polunin, 1996;Newman et al.,

2016). However, in many insular locations throughout the tropics, snappers and

emperors are also targeted in net and spear fisheries (Dalzell, 1996).

Life-history information underpins fisheries management in many nations. Age-based

information is commonly derived from otolith-based studies, and the resultant age-based

dynamics have been well-studied for both tropical snappers and emperors (Heupel et al.,

2010; Currey et al., 2013). This age-based information represents a basis for guiding

fisheries assessments and harvest strategies in many regions of the Indo-Pacific (Newman

et al., 2016). Specific research topics include growth and mortality (Newman, Williams &

Russ, 1996a; Newman, 2002; Newman, Cappo & Williams, 2000a, 2000b; Heupel et al.,

2010; Currey et al., 2013; Ebisawa & Ozawa, 2009), reproductive biology and spawning

patterns (Bannerot, Fox & Powers, 1987; Davis & West, 1993; Bean et al., 2003; Ebisawa,

2006; Grandcourt et al., 2010a; Heyman et al., 2005; Taylor & Mills, 2013), and the spatial

dynamics of age-based demographic variation (Newman, Williams & Russ, 1996b;

Kritzer, 2002; Williams et al., 2003; Taylor & McIlwain, 2010). Harvested species

representing the families Lutjanidae and Lethrinidae are known to have moderate to

high longevity, ranging from 10 to 60 years, compared with other conspicuous reef fish

taxa in tropical areas. In general, life span is positively related to body size across species

for both families (Heupel et al., 2010; Taylor, Oyafuso & Trianni, 2017) and, therefore,

vulnerability to overexploitation is often linked to body size.

Despite some basic commonalities between harvested snappers and emperors, the

reproductive biology between these families is strikingly different. Snappers of the family

Lutjanidae are, to date, unequivocally considered gonochoristic (Newman et al., 2016),

whereby individuals are either male or female from earliest development and no sex

change occurs throughout the life span. Ontogenetic reproductive development is much

more variable across the emperors, with the dominant mode historically considered

protogyny (female-to-male sex change after initial maturation as female; Young & Martin,

1982). However, functional gonochorism through juvenile hermaphroditism is now

recognized in several species (Ebisawa, 2006; Marriott et al., 2010; Taylor, Oyafuso &

Trianni, 2017). Both families are generally known to spawn in aggregations that are

spatially predictable and synchronized with seasonal and tidal cues (Johannes, 1978, 1981;

Taylor & Mills, 2013). Characterization of the onset and timing of maturation and

reproductive activity is most accurately achieved through histological examination of

gonad material throughout the calendar year. This information is of prime importance to

fishery managers as an essential input to region-specific stock assessments of exploited

populations.

The U.S. Pacific Island Territory of American Samoa harvests nearly 300 fish species

in their nearshore reef-associated fishery. Snappers and emperors presently comprise

approximately 10% of the total catch by mass (Pacific Islands Fisheries Science Center,

2018). This fact, coupled with their comparatively high market value make them an

important and highly desirable component of the fishery. The prevailing status of many

reef-associated populations is poorly understood. The lack of appropriate catch trends
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and life-history data for most targeted species highlights the need to evaluate the

characteristics influencing a species’ vulnerability to overexploitation. Therefore, the

purpose of this study is to derive age-based life-history information from fishery-

dependent collections of two snappers and one emperor of high commercial value to the

nearshore, reef-associated fishery of Tutuila, American Samoa. The principal objectives

are to estimate growth, life span, mortality, and reproductive parameters based on age

estimates coupled with detailed length-sampling of the commercial fishery.

MATERIALS AND METHODS
Study area and sampling protocol
Commercial reef-associated fisheries were surveyed on the island of Tutuila, American

Samoa (14.3 �S, 170.7 �W), from March 2011 to September 2015, through the NOAA

Commercial Fisheries Biosampling Program (CFBP; Sundberg et al., 2015; IACUC

Permit number 13-1696). Surveys were conducted from 5:30 to 8:00 am at roadside

temporary vendors (typically individual or groups of fishers selling their catch from the

previous night) or at the newly-established centralized fish market in Pago Pago. During

sampling times, all landed fish were measured (nearest 0.1 cm fork length (FL)) and

recorded by species. Subsamples of measured fish were purchased for life-history analysis

for the following species: the yellow-lip emperor Lethrinus xanthochilus, the humpback

red snapper Lutjanus gibbus, and the yellow-lined snapper Lutjanus rufolineatus. These

three species are common commercial and subsistence targets in the American Samoa

fishery, representing the 9th, 12th, and 66th most common species by mass, respectively,

in the nearshore catch out of nearly 300 harvested species (Pacific Islands Fisheries Science

Center, 2018). Purchased fish were selected non-randomly to encompass all length

classes targeted by the fishery. For each purchased specimen, samplers measured length

(nearest 0.1 cm FL) and total body mass (g). Sagittal otoliths and gonad lobes were

surgically extracted from each specimen for age and reproductive assessment. Otoliths

were cleaned with ethanol and stored dry in individually labeled vials. Gonads were

weighed to the nearest 0.001 g and macroscopically designated by sex. Entire gonad lobes

or cross sections (3 mm thick) of gonad material from the mid-sections of gonad lobes

were removed and stored using individually-labeled histological cassettes in a 10%

buffered formalin solution.

Age determination and growth
For the three species, one sagittal otolith from each specimen was selected at random

and affixed to a glass slide using thermoplastic glue (Crystalbond 509
�
), such that the

primordium was focused just inside the edge of the slide, and the sulcul ridge was

perpendicular to the slide edge. The otolith was ground to the slide edge using a 600-grit

diamond lapping wheel with continuous water flow along the longitudinal axis until

flush with the edge of the slide. The otolith was then removed with heat (∼200 �C) and
reaffixed with the newly flat surface down and ground to produce a thin (∼250 mm)

transverse section encompassing the core material. Annuli, represented by alternating

translucent and opaque bands, were counted along a consistent axis on the face of the
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sections to derive an estimate of age in years. Using reflected light (L. xanthochilus) and

transmitted light (L. gibbus and L. rufolineatus) on a stereomicroscope, age readings

for all specimens were conducted on three separate occasions by the primary author

and final age (number of annuli as a proxy for age in years) was assigned when

agreement in counts occurred. If three counts differed by one presumed annulus

(e.g., 13, 12, 14), the middle age was assigned (e.g., 13). Daily growth increments were

enumerated for one small (10.1 cm) specimen of L. xanthochilus with preparation

and reading protocols following Taylor & Choat (2014). Daily growth increment

profiles of recently recruited L. xanthochilus were first summarized in Wilson &

McCormick (1999).

The assumption that annuli are deposited on a yearly cycle was tested using edge-type

analysis for each species (Manickchand-Heileman & Phillip, 2000). The outermost otolith

margin was scored as within either an opaque or translucent zone across all specimens,

and proportions of opaque zone deposition were plotted across the calendar year for

each species. Plots were presented alongside annual patterns of sea surface temperature,

using remotely sensed data (one day resolution, Pathfinder data base available through

NOAA Coastwatch, Jan 2006 through May 2011).

Sex-specific patterns of growth were modeled by fitting the von Bertalanffy growth

function (VBGF) to length-at-age data using least squares estimation. The VBGF is

represented by:

Lt ¼ L1 1� e�K t�t0ð Þ
h i

where Lt represents the predicted mean FL (cm) at age t (years), L∞ is the mean asymptotic

FL, K is the coefficient used to describe the curvature of fish growth toward L∞, and t0 is

the hypothetical age at which FL is equal to zero, as described by K. As the sampling

protocol was fisheries-dependent, very few specimens were below the 15–20 cm range.

Hence, to approximate early growth trajectories, VBGF models were constrained to an

established or inferred (from similar taxa) length at settlement (i.e., FL at age 0). For

L. xanthochilus, this was 3.0 cm (Nakamura et al., 2010); for L. gibbus and L. rufolineatus,

this was 3.5 cm (Mori, 1984; Nanami & Yamada, 2009).

Mortality
Total mortality (Z) was estimated using a multinomial catch curve fitted to the age classes

at or above the assumed age at full recruitment to the fishery (trec). trec is defined as one

plus the peak frequency age (Dunn, Francis & Doonan, 2002). For fish at or above trec, the

per recruit survival of fish (St) to integer age (t) was calculated as:

St ¼ e�Z t�trecð Þ

P̂t , the expected proportion of fully-recruited fish at age t was calculated as:

P̂t ¼ St
Ptmax

t¼trec

St
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where tmax refers to the maximum observed age. The catch curve was fitted by maximizing

the multinomial log-likelihood (l) associated with the observed and expected

proportions at age:

� ¼
Xtmax

t¼trec

ft ln P̂t

� �

where ft refers to the observed frequency at age t.

The value for the natural mortality (assumed constant across age) in this analysis was

calculated using the Hoenig (1983) equation: Z ¼ e1:46�1:01�log tmaxð Þ, whereby Z is equal

to M through this derivation if the true maximum age was derived. For empirical

derivations of M in this study, we cautiously assumed this to be true.

Uncertainty in the estimate of total mortality was calculated using a length-stratified

bootstrap procedure. The proportion in each length bin (5 cm bin width) from the full

size distribution from the fishery was calculated and used as weights in the bootstrap

resampling of the length-age samples. For example, if the sample size of the length-age

data was 100 and the proportion of individuals in the first length bin in the full size

distribution was 0.05, five data points from the first length bin in the length-age data were

sampled with replacement. With the exception of a small individual in the L. xanthochilus

dataset (10.1 cm, 0.35 years old (estimated based on daily growth increments)), the length

ranges of the length-age data were similar to those from the full length distribution of the

fishery. Each dataset was bootstrapped 10,000 times. The median of the bootstrap

distribution was reported and the 2.5th and 97.5th percentiles of the bootstrap

distribution of total mortality were reported as the 95% percentile confidence interval.

The sensitivity of the size of the length bins on the total mortality estimate was evaluated

using length bins of 2, 5, 10, and 20 cm, and also across individual years to examine

potential effects of compounding multi-year data. The total mortality estimate using a

conventional bootstrap was also evaluated as a part of the sensitivity analysis. This length-

stratified bootstrap method was used because our sampling program was not designed to

derive a random sample representative of the fishery, whereas the full market survey was

designed for this purpose. Additionally, all otoliths and gonads that were originally

sampled were not retained for final processing, which further precluded us from

considering the sample to be representative.

Reproduction
Fixed sections of gonadal tissue were histologically processed at the John A. Burns School

of Medicine at the University of Hawaii. Sections were imbedded in paraffin wax,

sectioned transversely at 6 mm, and stained on microscope slides with haematoxylin

and eosin. Slides were viewed under dissecting and compound microscopes with

transmitted light to determine sex and level of reproductive development following

criteria and terminology from Brown-Peterson et al. (2011). The female maturation

schedule by length and age was modeled for each species. Specimens were scored by their

maturity status (immature, 0: representing “Immature” and “Developing” phases from

Brown-Peterson et al. (2011); mature, 1: representing “Spawning capable,” “Regressing,”
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and “Regenerating”), and maturity-at-length/age data were fitted with a two-parameter

logistic curve as follows:

PL ¼ 1þ e�ln 19ð Þ L�L50ð Þ= L95�L50ð Þ
n o�1

where PL (Pt for age at maturity) is the estimated proportion of mature females at a given

length (L), and L50 and L95 (t50 and t95 for age) are the FL at 50 and 95% maturity,

respectively. Corresponding 95% confidence limits (CLs) for the maturity schedules were

derived by bootstrap resampling with replacement through 1,000 iterations.

Although not a primary objective of this study, we further examined aspects of the

reproductive developmental ontogeny of L. xanthochilus based on histological features of

specimens and length- and age-based patterns of sex ratio. Specifically, we searched for

evidence of pre- or post-maturational female-to-male sex change, as has been commonly

identified in species of Lethrinus, following criteria established in Sadovy & Shapiro (1987)

and Sadovy de Mitcheson & Liu (2008).

RESULTS
Age determination and growth
From March 2011 to September 2015, a total of 2,559, 2,788, and 847 commercial

specimens were measured of L. xanthochilus, L. gibbus, and L. rufolineatus, respectively. Of

these, 372 L. xanthochilus, 481 L. gibbus, and 217 L. rufolineatus were dissected for life-

history analysis, but otoliths and/or gonads were retained for only 244, 311, and 149

individuals, respectively. Length-frequency distributions from the commercial harvest are

displayed in Fig. 1. All species showed unimodal distributions with modal FL bins of 38.5,

27.5, and 21.5 cm, respectively. However, L. gibbus displayed a considerable second

“hump” in the size distribution at 36.5 cm. Ages were estimated from sagittal otoliths

from a total of 236 specimens for both L. xanthochilus and L. gibbus and from 134

specimens for L. rufolineatus (Table 1). Although no species were sampled through all

calendar months, annual patterns of edge deposition demonstrated an annual

periodicity in the formation of opaque zones, confirming that increments are indeed

annual (Fig. 2; Supplemental Information). Opaque zones were fully deposited in

August and September during peak low sea surface temperatures in American Samoa.
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All three species deposited clearly defined annuli that were highly characteristic of otolith

patterns previously identified for snappers or emperors (Figs. 3A–3C; Marriott &

Mapstone, 2006; Grandcourt et al., 2010b). Otolith weight was a strong predictor for

age in all species, whereby relationships were best explained using a standard quadratic

equation (Fig. 4). The relationship between otolith weight and age did not differ between

males and females for L. xanthochilus or L. rufolineatus, but it differed substantially

between the sexes for L. gibbus (Fig. 4B). This pattern was retained in the length-at-age
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derived growth profiles, whereby patterns of growth were nearly identical between the

sexes for L. xanthochilus and L. rufolineatus. Growth profiles diverged between males

and females for L. gibbus, with males reaching a much larger asymptote (difference of

∼10 cm; Fig. 5; values in Table 1). Overall VBGF parameter values L∞ and K for the

combined sexes were as follows: L. xanthochilus, L∞ = 40.2 cm, K = 0.64 year-1; L. gibbus,

L∞ = 32.9 cm, K = 0.46 year-1; L. rufolineatus, L∞ = 22.9 cm, K = 0.82 year-1. Sex-

specific VBGF values and associated CLs are presented in Table 1. Sex-specific maximum

observed ages for each species were 12 and 19 years for female and male L. xanthochilus,

respectively, 27 and 19 years for female and male L. gibbus, and eight and 12 years for

female and male L. rufolineatus.

Mortality
Median total mortality estimates were 0.35 (95% percentile CI [0.29–0.41]), 0.22

(95% percentile CI [0.19–0.26]), and 0.54 (95% percentile CI [0.44–0.75]) for

L. xanthochilus, L. gibbus, and L. rufolineatus based on data pooled across surveyed years
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(Fig. 6). The estimate for total mortality and the distribution of total mortality

bootstrapped estimates were sensitive to neither the size of the length bin, nor to the

type of bootstrap procedure or timeframe (annual versus pooled) of survey data

(Supplemental Information). Estimates from individual years were consistent and slightly

higher than for pooled years for L. xanthochilus alone. The distributions of bootstrapped

total mortality estimates were approximately symmetric for the L. xanthochilus and

L. gibbus datasets, while the distribution of bootstrapped total mortality estimates for

L. rufolineatus had a slight positive skew (Fig. 6C). Estimated natural mortality rates were

0.22, 0.15, and 0.35 year-1 for L. xanthochilus, L. gibbus, and L. rufolineatus, suggesting

fishing mortality rates were approximately half the presumed natural mortality across

species.

Reproduction
We confirmed sexual identity and characterized female maturation profiles using

histological sections of gonads from 161 L. xanthochilus (87 females), 157 L. gibbus (93

females), and 100 L. rufolineatus (20 females). Our fisheries-dependent sampling program

covered the length and age ranges over which female maturation occurred for

L. xanthochilus and L. gibbus. Length at maturation (but not age) was modelled for

L. rufolineatus based on only three immature individuals, and therefore, the maturation

profile and L50 estimate should be interpreted cautiously. The median length at female

maturity (L50) was estimated at 30.0 cm (27.3–31.8 cm 95% C.L.) for L. xanthochilus,

24.9 cm (23.8–25.8 cm 95% C.L.) for L. gibbus, and 16.4 cm (14.6–18.1 cm 95% C.L.)

for L. rufolineatus (Figs. 7A–7C). Age at female maturity was only modelled for

L. xanthochilus and L. gibbus. Median age at maturity values were 2.1 years (1.8–2.3 years

95% C.L.) for L. xanthochilus and 3.2 years (2.9–3.9 years 95% C.L.) for L. gibbus

(Figs. 7D–7E).

Further examination of male L. xanthochilus found that testes were consistently

characterized by a well-developed ovarian lumen, and the vast majority of testes (>80%)

contained internal parasites. We found one specimen (39 cm FL) that contained an

atretic vitellogenic oocyte in the presence of proliferating male material, indicating post-

maturational sex change (functional protogyny). This specimen also had large gonad
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Figure 6 Distributions of total mortality (Z, year-1) from a length-stratified bootstrap resampling

procedure followed by multinomial catch curve analysis. Distributions of total mortality (Z, year-1)

from a length-stratified bootstrap resampling procedure followed by multinomial catch curve analysis for

(A) L. xanthochilus, (B) L. gibbus, and (C) L. rufolineatus from the commercial fishery of Tutuila, American

Samoa. Full-size DOI: 10.7717/peerj.5069/fig-6
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walls and displayed tight rounded folds of the epithelium (Fig. 8). Testes of other

specimens were found to be in similar condition—presumed to be in a transitional

mode—but did not contain identifiable atretic oocytes. Further, we found at least two

potentially bisexual individuals (both aged two years) under or near the size at first

female maturation (24.0 and 29.4 cm FL; Fig. 9), indicating primary development into

males. In both cases, primary oocytes were sparse (compared with other immature

females), and stromal tissue proliferated with tenuous evidence of sperm crypt

development. Length-based and age-based relative proportions of females and males

across length and age classes provided further evidence of both pre- and

post-maturational sex change (Supplemental Information). It is clear that sex ratios

change considerably across size and age classes and that some females are retained in the

largest length classes, but more robust investigations are required to determine

developmental ontogeny for this species.

DISCUSSION
Compared with other harvested families in tropical fisheries globally, lutjanids, and

lethrinids are among the most studied on coral reefs with regard to life-history

information as a necessary input for fisheries management. The information presented in

this study provides detailed demographic profiles for three commercially-important

meso-predators that differ markedly in terms of their trait values and life-history patterns.
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Figure 8 Photomicrographs of a 39 cm fork length (six years old) L. xanthochilus with preliminary

evidence of post-maturational female-to-male sex change. (A) and (B) are from the same individual.

Study sites: AVO, atretic vitellogenic oocyte; GW, gonad wall; EP, rounded folds of the epithelium; SM,

spermatogenic material. Full-size DOI: 10.7717/peerj.5069/fig-8

Figure 9 Photomicrographs of a potentially bisexual L. xanthochilus (24 cm fork length, two years

old). (A) shows whole structure of gonad cross-section, while (B) and (C) provide greater resolution

of characteristic features. GW, gonad wall; PO, primary oocyte; OL, ovarian lumen; ST, stromal tissue;

SC, potential sperm crypt development. Full-size DOI: 10.7717/peerj.5069/fig-9
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L. gibbus is a comparatively medium-bodied gonochoristic species that has clear sexual

dimorphism, and a long life span. L. rufolineatus is a small-bodied gonochore that has

weak sexual dimorphism and a short life span. L. xanthochilus is a large-bodied species

with a moderate life span and has a more complex sexual ontogeny likely involving pre-

and post-maturational sex change. Hence, it is prudent to assume that responses to

selective fishery harvest will differ among the three species. For instance, larger body

size and longer life span are commonly associated with greater vulnerability to

overexploitation (Abesamis et al., 2014). The influence of differing reproductive strategies

on species’ vulnerability is less clear.

This preliminary investigation found all three species to have low fishing mortality rates

relative to the rate of natural mortality in American Samoa, with the vast majority of

harvested fishery specimens greater than the median length at female maturation for each

species. Estimated total mortality was derived using a length-stratified bootstrapping

procedure which was robust to potential sampling bias for age-based data because it

resampled age-at-length data to match the larger and unbiased market survey length

distributions. The uncertainty surrounding estimates of total mortality decreased with

increasing life span (i.e., number of data points yielding mortality curves) across species,

but we caution the use of this method with L. gibbus, the longest lived species. This species

demonstrated pronounced sexually dimorphic growth with males reaching a much larger

length-at-age than females. Hence, the structure of length-frequency distributions is

highly sex-specific, potentially yielding more variable age-frequency distributions when

derived from age-length relationships based on pooled sexes. The data herein should be

used in comprehensive stock assessments to fully explore the relative sustainability of

extant fisheries. However, further simulation testing should first be conducted to

understand the robustness of mortality estimates under different sampling designs and

life-history traits using the length-stratified bootstrapping procedure.

To date, little age-based or reproductive information is available for the three species

examined here. The most comprehensive description is for L. gibbus from Okinawa

(Nanami et al., 2010), which documented life span, growth, and reproductive seasonality

for the region based on fishery-dependent sampling. Sex-specific maximum ages and

growth profiles from Okinawa were similar to those observed from American Samoa.

Nanami et al. (2010) found that L. gibbus had a long (∼6 month) spawning period which

occurred during the warmer part of the year, whereby subsequent settlement of recruiting

juveniles was synchronized with lunar cycles. Johannes (1981) documented from the

accounts of fishers in Palau that L. gibbus spawns around full moon throughout the year.

Considerable differences in the growth profile and maximum age of L. gibbus were

identified from the Great Barrier Reef (GBR) (Heupel et al., 2010), although this study

reported concerns regarding undersampling of both the smallest and largest (and

presumably oldest) size classes. Loubens (1980) reported a maximum age estimate of only

18 years for L. gibbus in the waters of New Caledonia based on counts of annuli in

sectioned otoliths, much less than the maximum age estimate derived from this study. For

L. rufolineatus,Mizenko (1984) documented evidence for seasonal reproductive activity in

Samoa during autumn and winter with spawning taking place around full moon. Similar
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to our study,Mizenko (1984) found very few fish with immature ovaries above 17 cm, thus

confirming our small estimate of length at maturity despite low sample sizes in the

smallest length classes. We found no existing age-based or reproductive information for

L. xanthochilus in the primary literature. Sample sizes of females across the annual and

lunar calendar in the present study were not sufficient to determine reproductive

periodicity. However, distinct post-ovulatory follicles were present for all species at

various times during the year in mature females, suggesting that each species has an

extended reproductive period.

Our results suggest a diandric protogynous life-history mode for L. xanthochilus.

However, based on our relatively small sample size and limited evidence, we do not

consider our results to be definitive regarding the reproductive ontogeny of this species in

American Samoa. Most lethrinids are recognized as either functional protogynous

hermaphrodites or juvenile hermaphrodites (Ebisawa, 2006). We recognized two potential

pathways for male recruitment, pre-maturational and through sex transition from

functionally mature females. Post-maturational male development was supported by

length- and age-based schedules of sex ratio. The length-based schedule suggests that

females occur into the largest length classes, and appears confounded by potential primary

males (i.e., individuals that develop first as males). However, length-based schedules of

sex change can be confounded by sexually-dimorphic growth, which was limited in

L. xanthochilus. The age-based schedule demonstrates much clearer evidence of sexual

transition from female to male as a cohort ages. Ultimately, length-based schedules of

sex change are rarely clear cut for lethrinid species (Ebisawa, 2006) compared with

prominent protogynes, such as labrids, that have dichromatism and seemingly much

more complex social-reproductive systems centered on size-based defense of territories

(Taylor & Choat, 2014).

Pronounced sexual dimorphism does not appear to be prevalent among the snappers,

but considerable differences in asymptotic lengths between males and females have

been observed for several species (Newman, Cappo & Williams, 2000a; Newman, 2002;

Shimose & Tachihara, 2005). Here, differences in size-at-age between male and female

L. gibbus matched observations previously documented from Japan for the species

(Nanami et al., 2010) and represent the largest disparity in male versus female size in any

snapper species to date. The ecological context of sexual dimorphism is hinged on

assumptions that female size reflects a trade-off between growth and fecundity, and male

size is influenced by reproductive competition (Parker, 1992). Based on the ubiquity of

absent or weak sexual dimorphism in the snappers, we must presume that L. gibbus

populations have an unusually different reproductive ecology compared with other

lutjanids to yield such stark differences. Further, this level of dimorphism can complicate

assessments of population status, especially when the primary data source is abundance

and length-frequencies from fishery-dependent or independent surveys. We note that

the frequency distribution presented in Fig. 1 for L. gibbus was bimodal, with primary and

secondary peaks closely corresponding with asymptotic lengths of females and males. This

highlights the importance of understanding how sex-specific growth trajectories influence

sex ratios across length classes at the population level.
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CONCLUSION
Snapper and emperor species have historically been a highly-valued component of coral

reef-associated fishes. Our results provide key population-level trait values that are of

significant utility to stock assessment and fishery management. In doing so, we

highlight differences in the biology and associated recovery potential of three

phylogenetically-related species commonly harvested by the same methods during

the same fishing trips.
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