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Horizontal gene transfer has had major impacts on the biology of a wide range of
organisms from antibiotic resistance in bacteria to adaptations to herbivory in arthropods.
A growing body of literature shows that horizontal gene transfer (HGT) between non-
animals and animals is more commonplace than previously thought. In this study, we
present a thorough investigation of HGT in the ctenophore Mnemiopsis leidyi. We applied
tests of phylogenetic incongruence to identify nine genes that were likely transferred
horizontally early in ctenophore evolution from bacteria and non-metazoan eukaryotes. All
but one of these HGTs (an uncharacterized protein) appear to perform enzymatic activities
in M. leidyi, supporting previous observations that enzymes are more likely to be retained
after HGT events. We found that the majority of these nine horizontally transferred genes
were expressed during early development, suggesting that they are active and play a role
in the biology of M. leidyi. This is the first report of HGT in ctenophores, and contributes to
an ever-growing literature on the prevalence of genetic information flowing between non-
animals and animals.
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Abstract

Horizontal gene transfer has had major impacts on the biology of a wide range of organisms from

antibiotic resistance in bacteria to adaptations to herbivory in arthropods. A growing body of 

literature shows that horizontal gene transfer (HGT) between non-animals and animals is more 

commonplace than previously thought. In this study, we present a thorough investigation of HGT 

in the ctenophore Mnemnopsns lendyn. We applied tests of phylogenetic incongruence to identify 

nine genes that were likely transferred horizontally early in ctenophore evolution from bacteria 

and non-metazoan eukaryotes. All but one of these HGTs (an uncharacterized protein) appear to 

perform enzymatic activities in M. lendyn, supporting previous observations that enzymes are 

more likely to be retained after HGT events. We found that the majority of these nine horizontally

transferred genes were expressed during early development, suggesting that they are active and 

play a role in the biology of M. lendyn. This is the first report of HGT in ctenophores, and 

contributes to an ever-growing literature on the prevalence of genetic information flowing 

between non-animals and animals. 
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Introduction

Evolution is commonly thought to occur by descent with modification from a single 

lineage. However, evidence has shown that genomes from bacteria, archaea, and eukaryotes are 

typically chimeric, resulting from horizontal (or lateral) gene transfers (Garcia-Vallvé et al. 2000; 

Katz 2002). As such, horizontal gene transfer (HGT) has likely impacted evolution more than 

originally thought by creating opportunities for rapid genetic diversification and contributing to 

speciation events. Moreover, HGT is a potential catalyst for organisms to acquire novel traits 

(Soucy et al. 2015) and creates opportunities for HGT receivers to exploit new ecological niches 

(Boto 2010). For example, HGTs have played an important role in herbivory in arthropods 

(Wybouw et al. 2016), venom recruitment in parasitoid wasps (Martinson et al. 2016), cellulose 

production in urochordates (Dehal et al. 2002) and plant parasitism in nematodes (Haegeman et 

al. 2011). 

Although HGT is generally accepted as an important evolutionary mechanism in 

prokaryotes (Boto 2014), it remains controversial whether it occurs in animals, despite many 

convincing studies (Madhusoodanan 2015). Much of the skepticism has been fueled by high-

profile reports of HGT (e.g. Lander et al. 2001; Boothby et al. 2015) that were later shown to be 

largely incorrect (Stanhope et al. 2001; Koutsovoulos et al. 2016). In addition, HGT in animals is 

hypothesized to be rare due to the origin of a sequestered germ line, which provides less 

opportunities for germ cells to be exposed to foreign DNA (Doolittle 1999; Andersson et al. 

2001; Jensen et al. 2016). However, the presence and absence of germline sequestration is not 

well described across the animal tree of life, and there are inconsistencies between studies 

regarding which animal groups have sequestered germlines (Buss, 1983; Radzvilavicius et al. 

2015; Jensen et al. 2016).
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The major challenges for HGT detection efforts have been taxon sampling and 

contamination. Many early reports of HGT in animals were overturned due to limited 

representation of taxa in public genomic databases (e.g. Salzberg et al. 2001). For example, a 

gene present in bacteria and humans, but absent from nematodes and drosophilids (the most 

highly represented taxa at the time) may have been considered the result of HGT, until 

discovering that the gene is present in many other animal genomes that were not available at the 

time of the initial claim. In these cases, the limited representation of taxa made it difficult to 

distinguish HGTs from differential gene loss (Andersson 2006 et al. 2006; Keeling & Palmer 

2008). More recently, contamination has led to both overestimation and likely underestimation of 

HGT events. In several recent cases, contamination in newly generated datasets has been 

interpreted as HGT but later shown to be cross-contaminants present in genome sequences 

(Bhattacharya et al. 2013; Delmont & Eren 2016; Koutsovoulos et al. 2016). On the other hand, 

the presence of contaminants in public databases (e.g., a bacteria sequence labeled as an animal 

sequence) makes it difficult to identify bona fnde HGTs, as “animal” sequences will appear 

among the top BLAST hits for a particular HGT, leading to false negatives. As such, 

contamination remains a major hurdle to contemporary studies of HGT.

Pairwise BLAST-based similarity scores (e.g. alien index (Gladyshev et al. 2008) and the 

HGT index (Boschetti et al. 2012)) are the most common criteria used to detect HGT in animals. 

However, these measures largely ignore phylogenetic information associated with sequence data. 

While a positive BLAST-based result may be due to HGT, it may also result from gene loss, 

selective evolutionary rates, convergent evolution, sequence contamination, and species 

misassignment (Hall et al. 2005). Previous HGT studies have demonstrated that HGT predictions 

need to be carefully considered and a combination of methods are required to rule out false 
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positives (Schönknecht et al. 2013). Hypothesis tests incorporating phylogenetic incongruence 

are one such method that has been used to test HGT. While some studies in animals have 

incorporated these techniques (e.g. Eliáš et al, 2016), they are more commonly deployed in 

studies involving non-animals (e.g. Bapteste et al. 2003; Richards et al. 2006). 

HGT has yet to be thoroughly explored in Ctenophora. Ctenophores (comb jellies) are 

marine invertebrates that are morphologically characterized by eight rows of cilia used for 

movement. They typically live in the water column, but the group includes benthic species as 

well (Song & Hwang 2010; Alamaru et al. 2015; Glynn et al. 2017). Evidence has suggested that 

ctenophores are the sister group to all other animals (Dunn et al. 2008; Hejnol et al. 2009; Ryan et

al. 2013; Moroz et al. 2014; Borowiec et al. 2015; Chang et al. 2015; Torruella et al. 2015; 

Whelan et al. 2015; Arcila et al. 2017; Shen et al. 2017; Whelan et al. 2017), but the position 

remains controversial (Pisani et al. 2015, Simion et al. 2017). Thus, investigating HGT in 

ctenophores is essential to understanding its implications on early animal evolution.

Here, we apply a rigorous framework to identify and confirm likely HGTs in the 

ctenophore Mnemnopsns lendyn. Our process includes identification of HGT candidates by alien 

index and confirmation by phylogenetic hypothesis testing, providing statistical support in an 

evolutionary framework. Furthermore, we analyze gene expression profiles during early 

development to obtain clues as to the function of these HGTs in M. lendyn. 

MaterialzandzMethods

All command lnnes, parameters, and versnon numbers of programs are nn the supplementary text.
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IdentificationzofzcandidatezHGTszbyzalien_index

As part of this project, we developed the program alien_index and complimentary 

metazoan/non-metazoan sequence databases to automate the generation of alien index 

(Gladyshev et al. 2008) and HGT index scores (Boschetti et al. 2012). We BLASTed a database 

of animal and non-animal sequences (alien_index_db version 0.01) and then calculated alien 

index values as the logarithmic difference between the best BLASTP E-values for animal and 

non-animal hits (as outlined in Gladyshev et al. 2008). This database includes translated gene 

models from curated genomes that include bacteria (5), archaea (2), non-animal eukaryotes (5), 

and animals (11). See Table S1 or http://ryanlab.whitney.ufl.edu/downloads/alien_index/ for the 

entire list of taxa. HGT index values were computed by the difference in the highest non-

metazoan and metazoan bit scores generated from the alien_index database. The alien_index 

program is available at: https://github.com/josephryan/alien_index

ConfirmationzofzlikelyzHGTs

We verified that HGT candidates identified by alien_index were not the result of bacterial 

contaminants by using the M. lendyn genome browser (Moreland et al. 2014) to examine the 

intron/exon structure of each HGT candidate, as well as the origin of their neighboring genes. We

also searched for each HGT candidate (identified from the genome and gene models from an M. 

lendyn individual collected in Woodshole, MA) in the transcriptome of an M. lendyn individual 

collected from St. Augustine, Florida, as well as in seven other ctenophore transcriptomes 

reported in Moroz et al. (2014): Bolnnopsns nnfundnbulum, Beroe abyssncola, Dryodora 

glandnformns, Pleurobrachna bachen, Vallncula multnformns, Coeloplana asterncola, Euplokamns 

dunlapae. 
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 Once HGT candidates were filtered for contaminants, we performed maximum-

likelihood analyses on putative HGTs to confirm non-animal origin. HGT candidates were used 

as queries for BLASTP against NCBI’s RefSeq database (O'Leary et al. 2016) using the NCBI 

BLAST interface. We collected the top ten sequences each from bacteria, eukaryotes, fungi, and 

animals with an E-value cutoff of 0.1. We included only the first sequence if there were hits to 

sequences from species in the same genus. We also added sequences from Amphnmedon 

queenslandnca, Trnchoplax adhaerens, Nematostella vectensns, Capntella teleta, Drosophnla 

melanogaster, and Homo sapnens from version 0.01 of the alien_index database that fit the above 

criteria. Sequences were aligned against the corresponding putative HGT using MAFFT (Katoh 

et al. 2002; Katoh & Standley 2013) and trimmed with Gblockswrapper (Castresana 2000). There

were six genes without animal BLASTP hits (E-value ≤ 0.1), which prevented us from 

performing additional phylogenetic analyses. We considered the lack of animal BLASTP hits 

below our cutoff as sufficient evidence that these six were clearly HGTs. ML018031a only had 

two BLASTP hits to animal sequences. Since it was unclear if this resulted from contamination, 

we were unable to test this gene using phylogenetic approaches, so it was removed from 

contention as an HGT. 

We performed maximum-likelihood analyses for each alignment using RAxML version 

8.1.21 (Stamatakis 2014). Since the RefSeq database has many instances of contamination (Pible 

et al. 2014), we allowed a maximum of two non-ctenophore animal sequences to fall outside of 

the main animal clade. To implement this, we pruned putative contaminants if the removal of two

taxa resulted in a monophyletic animal clade (Fig. S1). We discarded any HGT candidates with 

more than two taxa disrupting animal monophyly.
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We explicitly tested topologies in opposition to HGT (i.e. animal monophyly) with the 

SOWH test using SOWHAT (Church et al. 2015) and the AU test using CONSEL (Shimodaira 

and Hasegawa 2001). The SOWH and AU test evaluate statistical support for phylogenetic 

incongruence by comparing the likelihood values between trees to a distribution of trees 

generated by parametric sampling in the SOWH test and non-parametric sampling in the AU test. 

To address any potential problems of selection bias in the AU test (causing the likelihood value to

bias upwards for the maximum likelihood best tree when included in the dataset), we performed 

multiple AU analyses using bootstrap trees as suboptimal trees (similar to Eliáš et al. 2016). We 

generated 100 bootstrap trees using RAxML rapid bootstrap analyses, and verified there were no 

duplicate trees in our 100 bootstrap set using the ape package in R (Paradis et al. 2004). RAxML 

was used to generate per-site log likelihoods for the best maximum likelihood tree, the tree 

constraining the putative HGT to metazoans, and suboptimal trees, for input in CONSEL. To test 

the effectiveness of comparing to bootstrap trees, we manually created a set of suboptimal trees 

for each candidate HGT by shuffling clades of three (Fig. S2) and running the same analyses. We 

evaluated the tree space covered by suboptimal trees in the AU test (i.e. bootstrap and manually 

generated trees) by visualizing the data using violin plots. We calculated likelihood proportions 

for each tree by dividing individual likelihood scores by the average likelihood score of 

suboptimal trees. The trees and scripts used to automate these phylogenetic analyses are available

in the accompanying GitHub site. 

HGTzdevelopmentalzexpressionzprofiles

An extensive early developmental transcriptome of Mnemnopsns lendyn was recently 

generated from single-embryo RNA-Seq analyses for developmental stages during the first 20 

hours (Levin et al. 2016). To these expression profiles we added six additional time points (four 
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replicates each) for hours 14-19. These additional data were produced by Itai Yanai and Mark 

Martindale using the methods outlined in Levin et al. (2016). We summed median transcript-per-

million values along the 25 time points for each of our 9 confirmed HGTs. HGTs that had 

summed median read counts of 100 or greater were classified as being expressed sufficiently to 

have roles in early development.  

HGTzoriginszandzfunctions

We determined the origin of likely HGTs by using the NCBI BLAST interface for 

BLASTP of HGTs against NCBI’s RefSeq database. Metazoans were excluded from these 

BLASTP searches and we recorded the origin of the top hits (E-value ≤0.1). To uncover the 

functional roles of HGTs, we used the BLAST interface provided by UniProt and the UniProtKB 

database (Pundir et al. 2017). Annotations of the top hits (E-value ≤0.1) were transferred to HGT 

candidates. We also associated HGTs with Pfam-A domains using the MGP Portal under the 

Mnemnopsns Gene Wiki (Moreland et al. 2014). 

Results

Mnemnopsns lendyn HGTs

We calculated an alien index for every M. lendyn gene model using a database of 11 

animals and 12 non-animals (Table S1). We identified 37 genes with alien indices greater than 45 

and designated these as HGT candidates (cut-off values were established by Gladyshev et al. 

(2008)). We used the M. lendyn genome browser to examine the intron/exon structure of each 

HGT candidate, as well as the origin of their neighboring genes for evidence of bacterial 
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contamination (lack of introns would indicate bacterial contamination). All but one HGT 

candidate, were found on scaffolds with intron-containing genes and 73% of the candidates had 

introns (Table S2). The only exception, ML49231a (itself containing 6 introns) was the only gene

on its scaffold. These data suggest that our HGT candidates are not bacterial contaminants. 

We confirmed each of the HGT candidates in a transcriptome from an M. lendyn individual

collected in St. Augustine, FL (M. lendyn genome and gene models were from individuals 

collected in Woods Hole, MA). We also searched for each HGT candidate in seven ctenophore 

transcriptomes published in Moroz et al. (2014): Bolnnopsns nnfundnbulum, Beroe abyssncola, 

Dryodora glandnformns, Pleurobrachna bachen, Vallncula multnformns, Coeloplana asterncola, 

Euplokamns dunlapae. Each HGT candidate was present in the transcriptome of at least one other 

ctenophore species and in the Florida M. lendyn transcriptome (Fig. 1). Because it is unlikely that 

the same species contaminated each of these datasets, these comparisons provide additional 

evidence against these sequences being the result of contamination.

In addition to the alien_index database, we BLASTed the RefSeq database at NCBI 

restricting hits to bacteria, then to animals, and then to non-animal eukaryotes. All but six HGT 

candidates had BLAST hits to animals with E-values ≤ 0.1. We counted these six (ML012034a, 

ML06718a, ML03277a, ML02232a, ML18354a, ML219316a) as likely HGTs and performed 

additional investigations of the remaining 30 HGT candidates. 

For the remaining 30 candidates, we conducted detailed phylogenetic analyses using the 

top 10 hits of unique non-animal and animal taxa from each of the RefSeq searches along with 

sequences from Amphnmedon queenslandnca, Trnchoplax adhaerens, Nematostella vectensns, 

Capntella teleta, Drosophnla melanogaster, and Homo sapnens that were top hits from our initial 
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BLASTs of the alien_index database. Candidate HGTs that formed a clade with all other animals 

were ruled out as potential HGTs and candidates that disrupted animal monophyly were tested 

further. We discarded candidates with more than two non-ctenophore animal sequences disrupting

animal monophyly; in the case of two or less sequences the disrupting sequences were considered

potential contaminants and pruned (e.g. Fig. S1). We then applied the SOWH and AU tests to the 

remaining candidates to compare the maximum likelihood topology to the alternative hypothesis 

that candidate HGTs were more closely related to animals (Fig. 2). This involved comparing 

likelihood values of optimal trees to those that were constrained to produce a monophyletic 

Animalia. Our results showed that the AU test was more conservative in confirming HGTs than 

the SOWH test (Table 1). For perspective on how optimal trees compared to constrained trees, we

ran AU tests comparing optimal trees to bootstrap trees (sub-optimal trees covering a wide range 

of tree space) (Fig. 3). The likelihood scores of the constrained trees from our confirmed HGTs in

the AU test tend to fall outside or on the tails of the distribution of likelihood scores of 

suboptimal trees, whereas the likelihood scores of constrained trees for unconfirmed HGTs were 

all closer to the most likely tree than the bootstrap trees (Fig. 3). We confirmed seven HGTs in 

which gene trees significantly differed (p < 0.05) from the metazoan constraint trees in both the 

SOWH and AU analyses (Table 1). This brought our total to 13 likely HGTs.

Although 13 HGTs were verified by BLAST and phylogenetic analyses, we removed 4 of 

these from contention (ML092610a, ML06718a, ML03277a, ML02232a) because the top hits 

from BLAST against RefSeq were either Choanoflegellida or Ichythosporea (groups closely 

related to animals). If ctenophores are the sister group to the rest of animals, vertical inheritance 

remains a possibility for these cases. As such, we confirm a total of nine highly likely HGTs.

HGTszarezexpressedzinzearlyzdevelopmentz
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We summed transcript-per-million values (medians for each set of expression values at 25

time points) from single-embryo RNA-Seq analyses over 20 hours for each of the nine confirmed

HGTs. Six of the nine HGTs had sums greater than 100 (Fig. 4), suggesting that these had some 

role in early development. 

HGTszarezenzymeszoriginatingzfromznon-animalzeukaryoteszandzbacteriaz

We determined the origin of the nine confirmed highly likely HGTs by using BLAST 

against the RefSeq database. Four HGTs appear to have originated from bacteria and five from 

non-animal eukaryotes (Table 2). The five HGT events that originated from non-animal 

eukaryotes appear to be from Stramenopiles, Viriplantae, Rhodophyta or Amoebazoa. To 

characterize gene function, we BLASTed the nine confirmed HGTs against the UniProt database. 

All HGTs except one uncharacterized protein (ML219316a) appear to be an enzyme and/or have 

domains that perform catalytic functions (Table 2).

Discussion

HGTszinzctenophoreszandztheirzimplications

It had been speculated previously that ctenophores had HGTs since initial profiling 

revealed that many ‘bacteria-like’ genes in ctenophores contain introns and should be on 

chromosomes with vertically inherited (i.e. non-HGT) genes (Artamonova et al. 2015). We 

identified 37 HGT candidates by using alien_index. Evidence from our study confirmed that 73%

of HGT candidates had introns and all but one gene (the only gene on this scaffold) were on 
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scaffolds with other intron-containing genes (Table S2). This provided evidence that these 

candidates were unlikely the result of extrinsic contamination. We provided additional evidence 

that candidates did not result from contamination by showing that all HGTs were found in both 

Massachusetts and Florida M. lendyn individuals as well as many other ctenophore species (Fig. 

1). Six HGTs are present in the E. dunlapae transcriptome suggesting that the majority of these 

HGT events occurred very early in ctenophore evolution (Fig. 1). This deep evolutionary history 

suggests that these HGTs may have had important impacts on the biology of ctenophores. 

MechanismszdrivingzHGTzinzctenophores

While we are uncertain about the mechanisms driving HGT, we speculate that some of 

these may have resulted from symbiotic relationships with bacteria and non-animal eukaryotes. 

Gammaproteobacterna and Bacteroidetes have been identified as two of the most abundant 

groups of bacteria associated with ctenophores (Daniels & Breitbart 2012). These groups were 

identified as the likely donors of three HGTs (i.e. ML00955a, ML02771a, ML18354a) in the M. 

lendyn genome and confirmed in almost all other ctenophores transcriptomes. Other possible 

donors could have been gymnamoebae symbionts that have been described living on the surface 

of comb plates and on the ectoderm of ctenophores (Moss et al. 2001). However, studies 

investigating symbiotic relationships with ctenophores are limited. Further studies are needed to 

improve our understanding of the impacts of symbiotic relationships on HGT, as well as to 

potentially understand the mechanisms that drive HGT between organisms. 

Mnemnopsns lendynzHGTszarezexpressedzduringzearlyzdevelopmentzandzarezdisproportionately

enzymesz
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Many HGTs are likely to be deleterious and lost, but some HGTs will be neutral or 

provide a selective advantage and spread throughout a population (Thomas & Nielsen 2005). 

HGT integration is thought to mainly occur in neutral genes with low levels of expression (Park 

& Zhang 2012). Once integrated, neutral HGTs may become a source of novel genetic variation 

upon which selection can act (Soucy et al. 2015). HGTs may then become more highly expressed 

after recruitment of transcription factors and regulators from the host genome (Lercher & Pál  

2008). Six of the nine HGTs we identified showed high expression during the first 20 hours of 

development, suggesting potentially important developmental roles. ML02771a is highly 

expressed during early development and encodes penicillin acylase or amidase, which catalyzes 

the hydrolysis of benzylpenicillin. This reaction creates key intermediates for penicillin synthesis 

and may be important to defend against microbial infection or colonization. 

Observations of HGT patterns in prokaryotes have also suggested that there is a 

preference to retain operational (metabolic) genes rather than informational genes (Lawrence & 

Roth 1996; Jain et al. 1999; Garcia-Vallvé et al. 2000). Genes involved in DNA replication, 

transcription, and translation are infrequently identified in sets of HGTs (Thomas & Nielsen 

2005). Preference for operational genes is hypothesized to occur because informational genes are 

involved in larger and complex systems (Jain et al. 1999). Recently, this pattern has also been 

observed in animal HGTs (Boto, 2014)  (e.g. Zhu et al. 2011; Boschetti et al. 2012; Sun et al. 

2012; Eyres et al. 2015; Conaco et al. 2016). These reports suggest that operational genes are 

preferentially transferred and/or retained in both prokaryotes and eukaryotes. Our data support 

this idea since all of the characterizable genes in our HGT set are enzymes. 

CommonlyzusedzBLAST-basedzmethodszforzidentifyingzHGTszinzanimalszarezinsufficient
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Identifying HGTs can be challenging due to bacterial associations with hosts 

(Artamonova & Mushegian 2013; Chapman et al. 2010; Fraune & Bosch 2007), DNA extraction 

kits and reagents that have led to contamination (Naccache et al. 2013; Salter et. al 2014), and/or 

laboratory conditions during DNA extraction (Laurence et al. 2014; Strong et al. 2014). These 

challenges associated with sequencing and assembly have led to contamination in public 

databases (Longo et al. 2011; Merchant et al. 2014) and make HGT predictions difficult. 

Moreover, while BLAST-based approaches (i.e., alien index and the HGT index) are useful for 

identification of HGT candidates, they are difficult to implement, lack evolutionary perspective, 

and do not address problems associated with contamination. 

To overcome some of these challenges, we developed alien_index to automate the 

generation of alien index and HGT index scores for rapid identification of HGT candidates. We 

confirmed HGTs by using rigorous phylogenetic approaches to address the problems associated 

with the lack of evolutionary perspective from BLAST methods. Our phylogenetic tests of 

incongruence provided clear metrics from which to judge the level of certainty applied to each 

HGT candidate. Our study showed that many of the predictions based on BLAST did not stand 

up to hypothesis testing, and suggest that the similarity between sequences that cause high alien 

indices do not necessarily provide true phylogenetic signal. Consequently, incorporation of 

phylogenetic likelihood-based methods are necessary when performing HGT analyses in animals.

The importance of HGT as an evolutionary mechanism in prokaryotes and eukaryotes has 

been underestimated. While studies of HGT in animals are gradually becoming more accepted, 

many challenges remain to quantify the extent of HGT and its impacts. To mitigate some of these 

challenges, rigorous approaches that employ both BLAST- and phylogenetic likelihood-based 

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

PeerJ reviewing PDF | (2017:12:22476:0:0:NEW 12 Dec 2017)

Manuscript to be reviewed



methods should be applied to future HGT studies in animals. Here we provided evidence of HGT 

in ctenophores by applying these rigorous methods, and found similar patterns of transfer 

between prokaryotes and eukaryotes with preference for operational genes. However, many more 

studies will be necessary to gain a comprehensive overview of HGT and the mechanisms by 

which HGT occurs in animals.
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species’ transcriptome confirmed by reciprocal best BLAST hits; white boxes indicate the gene is

absent in the species’ transcriptome. Tree was inferred by Moroz et al. (2014).

Figurez2.zMaximum-likelihoodzbestztreezandzmetazoan-constraintztreezcomparedzinzthez

SOWHzandzAUztests.zGene IDs (in black) denote the putative HGTs. (A), (C), and (F) are 

examples of RAxML best trees for HGTs confirmed by phylogenetic analyses and hypothesis 

testing. (B), (D), and (F) are examples of trees where putative HGTs have been constrained to 

produce monophyletic Animalia and have been optimized in RAxML. Taxa that are prefixed 

“META_” are from our alien_index database version 0.01 (i.e., META_NVEC (Nematostella 

vectensns), META_TADH (Trnchoplax adhaerens), META_HSAP (Homo sapnens), META_CTEL

(Capntella teleta), META_DMEL (Drosophnla melanogaster), META_AQUE (Amphnmedon 

queenslandnca). MET=Metazoa; BAC=Bacteria; EUK=Eukaryota; FUN=Fungi; More details for 

each taxon are specified in Table S3.

Tablez1.zHypothesisztestingzonzHGTzcandidateszthatzwerezconfirmedzbyzphylogeneticz

analyses. P-values indicate the level of support for HGTs in comparison to the metazoan 

constraint tree for the SOWH test and suboptimal trees (bootstrap and manually generated) in the 

AU test. Candidates in blue have significant values in all three tests (p ≤ 0.05) and are likely 

HGTs. 

Figurez3.zAzcomparisonzofzlikelihoodzproportionszbetweenzthezbestztree,zmetazoan-

constrainedztree,zandzbootstrapztreeszforzHGTzcandidateszwithzBLASTzhitsztozMetazoa. 

Likelihood proportions are individual likelihood values divided by the average likelihood value 
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for suboptimal trees (i.e. bootstrap trees). Red points indicate likelihood proportions of the best 

tree (i.e., tree indicating HGT). Blue points indicate likelihood proportions of the metazoan 

constrained tree (i.e., tree contradicting HGT). The violin plot shows the distribution of 

likelihood proportions of 100 bootstrap trees for each HGT candidate. Confirmed HGTs were 

validated by phylogenetic analyses and hypothesis testing.

Figurez4.zExpressionzprofileszofz6zlikelyzHGTs.zSingle-embryo RNA-Seq analyses were 

performed over 20 hours. Confirmed HGTs with transcript-per-million values (medians for each 

set of time-point replicates) greater than or equal to 100 over 20 hours (25 time points) are 

shown. 

Tablez2.zHGTzoriginszandzfunctions.zHGT functions were determined by BLAST against the 

UniProt database and associated Pfam-A domains were searched on the Mnemnopsns Genome 

Portal. The origin column shows the domains of life from which these genes are predicted to have

been transferred (Bac = Bacteria; Euk = Eukaryota). The RefSeq column shows a more detailed 

classification for the origin of HGTs. All rows highlighted in orange indicate genes that show 

early developmental expression. 
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Figure 1(on next page)

Comparisons of confirmed HGTs identified in the M. leidyi genome to other ctenophore
species’ transcriptomes.

Purple boxes indicate the specified HGT is present in the species’ transcriptome confirmed by

reciprocal best BLAST hits; white boxes indicate the gene is absent in the species’

transcriptome. Tree was inferred by Moroz et al. (2014).
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Figure 2(on next page)

Maximum-likelihood best tree and metazoan-constraint tree compared in the SOWH and

AU tests.

Gene IDs (in black) denote the putative HGTs. (A), (C), and (F) are examples of RAxML best

trees for HGTs confirmed by phylogenetic analyses and hypothesis testing. (B), (D), and (F)

are examples of trees where putative HGTs have been constrained to produce monophyletic

Animalia and have been optimized in RAxML. Taxa that are prefixed “META_” are from our

alien_index database version 0.01 (i.e., META_NVEC (Nematostella vectensis), META_TADH

(Trichoplax adhaerens), META_HSAP (Homo sapiens), META_CTEL (Capitella teleta),

META_DMEL (Drosophila melanogaster), META_AQUE (Amphimedon queenslandica).

MET=Metazoa; BAC=Bacteria; EUK=Eukaryota; FUN=Fungi; More details for each taxon are

specified in Table S3.
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Table 1(on next page)

Hypothesis testing on HGT candidates that were confirmed by phylogenetic analyses.

P-values indicate the level of support for HGTs in comparison to the metazoan constraint tree

for the SOWH test and suboptimal trees (bootstrap and manually generated) in the AU test.

Candidates in blue have significant values in all three tests (p 0.05) and are likely HGTs.
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Genes SOWH p-value AU Bootstrap p-value AU Manual p-value

MLMM555a <M.MM1 4.MME-45 7.MME-M6

ML49231a <M.MM1 2.MME-44 7.MME-1M3

MLM9261Ma <M.MM1 2.MME-31 4.MME-68

MLMM5129a <M.MM1 1.MME-M4 6.MME-M6

MLMM955a <M.MM1 M.M21 M.MM2

MLM2771a <M.MM1 M.M23 M.M29

ML42441a <M.MM1 M.M47 M.M22

ML177319a <M.MM1 M.226 M.M42

ML12M721a <M.MM1 M.48 M.245

MLM49M14a M.985 M.862 M.6M4

MLM7M218a M.262 M.849 M.361

ML1M291Ma M.229 M.719 M.255
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Figure 3(on next page)

A comparison of likelihood proportions between the best tree, metazoan-constrained
tree, and bootstrap trees for HGT candidates with BLAST hits to Metazoa.

Likelihood proportions are individual likelihood values divided by the average likelihood value

for suboptimal trees (i.e. bootstrap trees). Red points indicate likelihood proportions of the

best tree (i.e., tree indicating HGT). Blue points indicate likelihood proportions of the

metazoan constrained tree (i.e., tree contradicting HGT). The violin plot shows the

distribution of likelihood proportions of 100 bootstrap trees for each HGT candidate.

Confirmed HGTs were validated by phylogenetic analyses and hypothesis testing.
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Figure 4(on next page)

Expression profiles of 6 likely HGTs.

Single-embryo RNA-Seq analyses were performed over 20 hours. Confirmed HGTs with

transcript-per-million values (medians for each set of time-point replicates) greater than or

equal to 100 over 20 hours (25 time points) are shown.
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Table 2(on next page)

HGT origins and functions.

HGT functions were determined by BLAST against the UniProt database and associated Pfam-

A domains were searched on the Mnemiopsis Genome Portal. The origin column shows the

domains of life from which these genes are predicted to have been transferred (Bac =

Bacteria; Euk = Eukaryota). The RefSeq column shows a more detailed classification for the

origin of HGTs. All rows highlighted in orange indicate genes that show early developmental

expression.
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Genes Function Domains Origin RefSeq

MLMM955a Putative metalloendopeptidase Peptidase family M13 Bac Proteobacteria

MLMM5129a

2-oxoglutarate (2OG) and Fe(II)-

dependent oxygenase superfamily 

protein 

2OG-Fe(II) oxygenase superfamily Euk Stramenopiles

MLM2771a Penicillin acylase Penicillin amidase Bac Proteobacteria

MLM12M34a Uncharacterized protein 2OG-Fe(II) oxygenase superfamily Euk Stramenopiles

ML18354a
Putative chalcone and stilbene 

synthase

Chalcone and stilbene synthases, 3-

Oxoacyl- synthase III, FAE1BType III 

polyketide synthase

Bac Bacteroidetes

ML219316a Uncharacterized protein Bac Planctomycetes

MLMM555a Phospholipase D alpha 1 C2, Phospholipase D Euk Viridiplantae

ML49231a Phospholipase D gamma 1 Phospholipase D Euk Rhodophyta

ML42441a NADH dehydrogenase, putative
Pyridine nucleotide-disulphide 

oxidoreductase
Euk Amoebozoa
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