- Wolf spider burrows from a modern saline sandflat in central
- Argentina: morphology, taphonomy and clues for recognition
- of fossil examples 3
- Fatima Mendoza-Belmontes¹, Ricardo N. Melchor² and Luis N Piacentini³ 4
- 5 ¹ FONCyT doctoral scholar, UNLPam, Av. Uruguay 151, Santa Rosa, La Pampa, 6300, Argentina
- ² INCITAP (CONICET and Universidad Nacional de La Pampa), Av. Uruguay 151, Santa Rosa, La Pampa, 6
- 6300, Argentina 7

10

- ³ Museo Argentino de Ciencias Naturales 'Bernardino Rivadavia'-CONICET, Av. Ángel Gallardo 470, 8
- 9 C1405DJR, Buenos Aires, Argentina
- 11 Corresponding Author:
- Fatima Mendoza-Belmontes¹ 12
- Av. Uruguay 151, Santa Rosa, La Pampa, 6300, Argentina 13
- Email address: famebel@exactas.unlpam.edu.ar 14

internacional)

Con formato: Español (España,

ABSTRACT

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

Gran Salitral saline lake, in central Argentina, are described. Burrows were studied by capturing the occupant and casting them with dental plaster. The hosting sediments and vegetation were also characterized. Inhabited Pavocosa sp. burrows display distinctive features as open, cylindrical, nearly vertical, silk lined shafts about 120 mm long, subcircular entrances, a gradual downward widening, and a particularly distinctive surface ornamentation in the form of sets of two linear parallel marks at a high angle to the burrow axis. Instead, casts of vacated Pavocosa sp. burrows showed some disturbances caused either by the reoccupation by another organism or by predation of the dweller. Two morphologies are related to reoccupation of burrows: those with a structure in form of an "umbrella" and another with smaller excavations at the bottom of the burrow. Predation by small mammals produces funnel-shaped burrows. Both active and abandoned Pavocosa sp. burrow casts are compared with existing ichnogenera and inorganic sedimentary structures, highlighting its distinction. It is argued that key features like the presence of a neck, a downward widening and the described surface texture will allow recognition of wolf spider burrows in the fossil record. However, the putative spider burrows described in the literature either lack the necessary preservational quality or does not show ornamentation similar to the modern wolf spider burrows. Fossil wolf spiders are recorded since the Paleogene (possibly Late Cretaceous), therefore Cenozoic continental rocks can contain wolf spider burrows awaiting recognition. In addition, the particular distribution of Pavocosa sp. in saline lakes may imply that this type of burrows is linked to saline environments.

Pavocosa sp. (Lycosidae) burrows found in an open sparsely vegetated area on the edge of the

Eliminado: an ornamentation

Eliminado: are

40

41

INTRODUCTION

- 44 Araneae (recorded since the Devonian) is the most diverse order within arachnids with around
- 45 47,000 described extant species (World Spider Catalog, 2017). Due to striking adaptations such
- as silk production and a complex behavior (e.g. construction of hunting webs), Araneae has
- 47 become a highly successful group that is present in almost all environments (Murphy et al., 2006;
- 48 Garrison et al., 2016). Burrow construction in spiders is considered a primary adaptation as a
- 49 retreat from high temperatures and dry air conditions typical of arid environments (e.g.,
- 50 Cloudsley-Thompson, 1983; Punzo, 2000). Important functions as dwelling, nesting, mating,
- 51 breeding, and foraging are also related to burrows (e.g., Marshall, 1996; Aisenberg, Viera &
- 52 Costa, 2007; Hils & Hembree, 2015; Uchman, Vrenozi & Muceku, 2017).
- 53 In general, modern spider burrows consist of vertical or oblique, simple or branched forms,
- 54 sometimes with a terminal chamber, in some cases silk lined, and structures atop as trap doors or
- a turret can be found (e.g., Ratcliffe & Fagerstrom, 1980; Bryson, 1939; Hils & Hembree, 2015;
- 56 Uchman, Vrenozi & Muceku, 2017). Among the burrowing spiders, those of the wolf spiders
- 57 (Lycosidae) tend to produce a nearly vertical burrow with or without a terminal chamber in flat
- 58 terrain, whereas many trapdoor spider burrows (families Nemesiidae, Ctenizidae, Antrodiaetidae)
- are at an oblique angle and located on inclined surfaces (Uchman, Vrenozi & Muceku, 2017).
- This simple morphology can be comparable to the ichnogenenera *Skolithos* Hadelman, 1840 or
- 61 Cylindricum Linck, 1949 (Smith et al., 2008; Hils & Hembree, 2015;), the Y- shaped forms to
- 62 Psilonichnus Fürsich, 1981 (Uchman, Vrenozi & Muceku, 2017), and those with a terminal
- chamber to *Macanopsis* Macsotay, 1967 (Hasiotis, 2006; Mikuś & Uchman, 2012; Hils &
- 64 Hembree, 2015; Uchman, Vrenozi & Muceku, 2017).
- 65 Significant research related to burrow construction in wolf spiders has been made, but mainly
- 66 focused on biological and ecological aspects (e.g. Hancock, 1899; Marshall, 1996; Aisenberg,
- 67 Viera & Costa, 2007; Carrel, 2008; Suter, Stratton & Miller, 2011; De Simone, Aisenberg &

Peretti, 2015; Foelix et al., 2016, 2017; Framenau & Hudson, 2017). In addition to the pioneer 68 Eliminado: pionner 69 contributions by Bryson (1939), Ahlbrandt et al. (1978), and Ratcliffe & Fagerstrom (1980), 70 recent neoichnological studies has paid attention to the morphology of spider burrows (Hils & Hembree, 2015; Hembree, 2017; Uchman, Vrenozi & Muceku, 2017). These studies rely 71 72 essentially on the overall morphology as a clue for recognition of spider burrows in general, 73 including those of Lycosidae. 74 Similarly, probable spider burrows in the fossil record are scarce and its identification was always based on general morphology. The oldest record is controversial and based on poorly preserved 75 76 simple vertical hollows from the Eocene of northern France, first considered worm burrows 77 (Polychaeta) and later assigned to trapdoor spiders, in both cases named using biological names for a trace fossil (see details in Dunlop & Braddy, 2011). The same material was later incorrectly 78 Eliminado: t referred to Oichnus Bromley, 1981 by Dunlop & Braddy (2011), an ichnogenus reserved for 79 bioerosion structures on calcareous skeletons (Wisshak et al., 2015). Skolithos isp. 1 from the 80 Mio-Pliocene fluvial sediments of Brazil was compared with Lycosidae burrows due to its 81 82 overall morphology (Fernandes, Borghi & Carvalho, 1992). Pleistocene and Holocene carbonate eolianites from Bahamas and Yucatán contains Skolithos linearis Haldeman, 1840 that were 83 tentatively assigned to arachnids and/or insects (White & Curran, 1988; Curran & White, 1991, 84 2001). Finally, a burrow in Pleistocene clastic sediments of the Simpson Desert in Australia 85 86 (Hasiotis, 2007), was attributed to wolf spiders. The purposes of this work are 1) the identification of ichnological signatures of the burrows 87 produced by Pavocosa sp. (Lycosidae) that may facilitate identification of wolf spider burrows in 88 the fossil record, and 2) to discuss its environmental distribution. 89 90 91 Previous descriptions of modern wolf spider burrows

The first work unequivocally related to burrows of wolf spiders was "The castle – building spider" from Illinois (USA) published by Hancock (1899). This paper describes in detail the burrows produced by Geolycosa domifex Hancock, 1899 (= Lycosa domifex), explaining important aspects as materials and the methods of construction. Geolycosa domifex burrows are described as vertical shafts, unless obstacles cause some deviation (Fig. 1A). Ratcliffe & Fagerstrom (1980), in his widely cited work on traces found in Holocene floodplains, described spider burrows in general (assigned to Ctenizidae, Antrodiaetidae, Theraphosidae and Lycosidae) as simple or branched tunnels, sometimes with side chambers that are separated of the main tunnel by hinged doors (Fig. 1B). Burrows of Geolycosa xera archboldi McCrone, 1963 and G. hubbelli Wallace 1942 from Florida, USA, are illustrated as vertical shafts showing a gradual transition between the shaft and the terminal chamber (Fig. 1C-D) (Carrel, 2008). Geolycosa missouriensis Banks, 1895 burrows from Mississippi, USA, are described as vertical forms, narrower at the surface and broader near the bottom, sometimes with a conspicuously enlarged chamber at the bottom (Fig. 1E) (Suter, Stratton & Miller, 2011). Geolycosa sp. burrows from India, exhibited a contrasting morphology in comparison with previous records of wolf spiders. These burrows were complex with a U-shaped form, two chambers (located one at the entrance and the other at the end of the burrow), and shallow hollows described as drainages or prey traps (Fig. 1F) (Chikhale et al., 2013). Albín, Simó & Aisenberg (2015), reported different burrow morphologies produced by Allocosa brasiliensis Petrunkevitch 1910 from Uruguay, linking these variations in the morphology to the development stage and sex of the spider that produce them. These authors described burrows with a simple vertical shaft and a terminal chamber produced by adults, shallow capsules by virgin females, and Y-shaped burrows by male juveniles (Fig. 1G). Hils & Hembree (2015), through experimental neoichnological studies, recorded four burrow morphologies produced by Hogna lenta Hentz, 1844 (Lycosidae): vertical shafts, vertical shafts

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118 with a terminal chamber, sub-vertical shafts, and Y-shaped burrows (Fig. 1H). Geolycosa 119 vultuosa Koch, 1838 burrows from Albania are characterized as vertical to subvertical, slightly 120 curved or straight shafts with a basal chamber, showing either a gradual transition between the 121 shaft and the basal chamber or a well delineated chamber (Vrenozi & Uchman, 2015). In a 122 taxonomic revision of the halotolerant wolf spider genus Tetralycosa Roewer, 1960 (Framenau & 123 Hudson, 2017); the burrows of three species (T. alteripa McKay 1976, T. williamsi Framenau & 124 Hudson 2017, and T. eyrei Hickman 1944) were described. Tetralycosa burrows are vertical 125 shafts with an offset (a curvature) at mid-depth, which are later modified by backfilling the part 126 above the curvature and creating a new burrow oriented in the opposite direction (Fig. 1I) 127 (Framenau & Hudson, 2017). Allocosa senex (Mello-Leitão, 1945) burrows from Uruguay are 128 also simple vertical shafts with a downward widening (Fig. 1J) (Foelix et al., 2017). Finally, the 129 burrows of Trochosa hispanica Simon, 1870 from Albania (Fig. 1K) were described as simple, 130 vertical shafts with a terminal chamber (Uchman, Vrenozi & Muceku, 2017). From the previous account, it is clear that the most common form in wolf-spider burrow are 131 132 almost vertical cylinders with a rounded end that increase progressively in width downward, vertical shafts with a terminal chamber, and Y shaped burrows. Hasiotis (2006) also suggested 133 that horizontal burrows systems with a pustulose ornamentation are produced by spiders, 134 however, the illustrated burrow system (Hasiotis, 2002, p. 114, figure B) is typical of surface 135 136 burrows produced by Grillotalpidae (e.g., Chamberlain, 1975). Figure 1 also highlight that the 137 burrows produced under experimental conditions (Fig. 1H) contrast markedly with the remaining 138 ones excavated in natural conditions.

Eliminado:

Eliminado:

140 MATERIALS AND METHODS

139

141

We studied burrows produced by Pavocosa sp. found on the edge of sparsely vegetated sandflat

144 of the Gran Salitral saline lake located in southwest La Pampa Province, Argentina 145 (37°24'18.40"S, 67°12'13.57"W) (Fig. 2A-B). This saline lake is placed in the subregion of 146 alluvial plains of the Atuel-Salado rivers, characterized by a flat relief and sandy sediments, under a semiarid climate and with halophyte vegetation (Fig. 2C) (INTA-UNLPam, 1980). The 147 Gran Salitral saline lake is the terminal part of an endorheic drainage system that occasionally 148 receives waters from the Atuel- Salado rivers. Modern brines exhibit a concentration ranging 149 150 from 213 to 252 g/l and the near-surface sediments of the saline lake attest for hydrological 151 variations during the Holocene, including fluctuations in brine salinity and lake level (Melchor & 152 Casadío, 2000). The mean monthly temperature ranges between 6.9 °C in July and 24.6 °C in 153 January, and the mean annual precipitation is 340 mm, in both cases for the period 1961-1980 154 (INTA-UNLPam, 1980). 155 Observations were conducted during three field trips in October-2016 (early spring, mean monthly temperature for 2016: 15.4 °C, and the total monthly precipitation was 140 mm), 156 157 December-2016 (late spring, mean monthly temperature for 2016: 23.1 °C, with no 158 precipitations) and February-2017 (summer, mean monthly temperature for 2017: 24.7 °C, and precipitation was 22 mm). Rain data was obtained from Policía de la Provincia de la Pampa 159 160 (http://www.policia.lapampa.gov.ar/contenidos/ver/lluvias); and temperature data from Servicio 161 Meteorológico Nacional (www.smn.gov.ar), in both cases for the nearby 25 de Mayo and Puelén 162 towns. 163 Sandflat sediments were logged in a shallow pit using standard sedimentological methods, and 164 samples were taken for grain size and carbonate content analysis. Carbonate content of sediment samples was estimated using the Digital Calcimeter "NETTO" that indicates the total percent 165 amount of calcium and magnesium carbonates. Grain size analyses of sediment samples were 166 167 obtained by a laser particle size counter Malvern Mastersizer 2000®, prior to elimination of

168	organic matter and carbonates, at the Laboratorio de Sedimentología of the Facultad de Ciencias
169	Exactas y Naturales, Universidad Nacional de La Pampa.
170	A total of nine burrows were casted using dental plaster and three spiders found inside the
171	burrows were collected for identification. Measurements on casts taken were the total length (L),
172	neck length (NL), the minimum (mD) and maximum diameter (MD), and the angle of inclination
173	(A); the measures of sets of surface ridges preserved on the cast, that are the length, the width,
174	and the orientation in relation to the principal axis of the burrow (See Fig. 3). We also measured
175	the entrance diameter (ED) from field photographs.
176	A 3D model of the burrows was generated based on photographs taken with a Lumix DMC-FZ70
177	camera and processed in the software Agisoft Photoscan Professional v.1.4.6. The resulting
178	models were export in OBJ files to Adobe Photoshop CC 2017 and converted to U3D files (a
179	standard format for 3D), to compose a PDF file for easier visualization.
180	The casts and spider specimens collected were stored in the "Colección Paleontológica de la
181	Facultad de Ciencias Exactas y Naturales" of the Universidad Nacional de La Pampa (acronym
182	GHUNLPam), and one of the <i>Pavocosa</i> sp. specimens in the Museo Argentino de Ciencias
183	Naturales "Bernardino Rivadavia" (acronym MACN-Ar). The specimens were preserved in
184	EtOH 80%; photographs of preserved specimens were taken with a Leica DFC 290 digital
185	camera mounted on a Leica M165 C stereoscopic microscope. Images taken in different focal
186	planes were combined with Helicon Focus 4.62 Pro (<u>www.heliconsoft.com</u>). The width between
187	the fangs of chelicera in collected spider specimens was measured for comparison with the marks
188	preserved in the casts.
189	

RESULTS

Ocurrence of Pavocosa sp. burrows

In early spring (October, 2016) abundant burrow entrances of similar size were observed in the sandflat surface. Spider burrows were found in a sparsely vegetated sandflat (0 to 10% of plant coverage), with the only presence of a small halophyte shrub *Heterostachys ritteriana* Ungern-Sternberg, 1876 (Fig. 4A). The burrows were simple vertical and silk lined forms (Fig. 4B), appearing either open and covered with a thin ring of silk (Fig. 4C) or partially closed with a plug of silk and sediment pellets (Fig. 4D). Surrounding the burrow (in a radius of up to 64 cm) abundant small spherical sediment pellets were observed (with a density of up to 290 pellets/ m²) (Fig. 4F), at this time no casts were made. In late spring (December, 2016) burrow density was lower, they were restricted to a small area on the edge of the saline lake with sparse vegetation at the boundary with the bare sandflat. A total of eight casts were obtained, five were inhabited burrows, while the remaining were abandoned. The inhabited burrows showed up two sacs of eggs in the lowermost part (Fig.4E). During the field trip conducted in summer (February, 2017), very few burrows were observed, all open and partially filled with some sands they seem to be

Eliminado:

Sandflat sediments

uppermost bed (# 1) is 13 cm thick and mainly composed of poorly-sorted pale yellowish brown (10 YR 6/2) silty sand containing 0.9 % of carbonate (Figs. 5B, 5C). The lower 5 cm of bed 1 exhibits thin diffuse evaporite laminae and a mud lamina. This bed contained the studied *Pavocosa* sp. burrows. Bed 2 (7 cm thick) is poorly-sorted moderate yellowish brown (10 YR 5/4) silty sand, with massive structure and 0.8% of carbonate. Bed 3 (5 cm thick) is very poorly-

sorted, dark yellowish brown (10 YR 4/2), silty sand with massive structure, containing 1.4% of

The pit dug in the saline sandflat where the burrows occur was 60 cm deep (Fig. 5A). The

uninhabited for a long time. At this time only one uninhabited burrow was casted.

Eliminado:

carbonate and small (2 mm) gastropod shells comparable with *Heleobia* Stimpson, 1865. The 27 cm thick bed 4 is very poorly-sorted, massive, moderate brown (5 YR 4/4), sandy silt containing 0.6% CO₃. The 6 cm thick lowermost bed (# 5), is mainly composed of fine-grained, pale yellowish brown (10 YR 6/2) sand with abundant carbonate cement that matches with the water table. Field work was conducted in rainy days, however, the water table was well below the bottom of *Pavocosa* sp. burrows (about 40-45 cm below the bottom of the burrows).

Producer of the burrows: Pavocosa sp.

Although the genus *Pavocosa* Roewer, 1960 was never reviewed, and its composition was recently questioned (Toscano-Gadea & Costa, 2016), the inclusion of the material studied as an undescribed species of *Pavocosa* was possible through the comparison of the males and females of *Pavocosa gallopavo* (Mello-Leitão, 1941) (Fig. 6A, 6C), the type species of the genus. The male holotype of *P. gallopavo* (MLP-15065) and females from MACN collection were examined and they share with *Pavocosa* sp. (Fig. 6B, 6D) the presence of deep furrows on the atrium, parallel to the median septum of the female epigyne and the coloration pattern (Fig. 6A, 6B), characters probably diagnostic of the genus (L Piacentini, personal observations). The enlarged posterior eyes in *Pavocosa* sp. and the shape of the genitalia are clearly distinctive from *P. gallopavo*. The fangs of specimens captured inside the burrows (n=3) are separated about 3.9 -4.6 mm (Fig. 7H). The environmental distribution of *Pavocosa* is little known, although it seems to prefer bare patches in sandy grassland soils (L. Piacentini, personal observations).

Additional material of the described species from Córdoba (Salinas Grandes, 29°50'39" S, 64°40'16" W), Santiago del Estero and San Luis (Pampa de las Salinas; 32°12'19" S, 64°39'13" W) were recorded from MACN-Ar collection (23503, 23505 to 23513, 24096, and 38710), all

Eliminado:

241 from saline environments. The burrows of Pavocosa sp. from Córdoba (A. Peretti, C. Mattoni 242 and M. Izquierdo, personal communication, 2008) and San Luis (M. Ramírez pers 243 communication, 2016) are very similar to those described in this work. 244 Pavocosa sp. burrows 245 The inhabited burrows (n=5) (Fig. 7A-E) are simple, vertical and circular shafts with an 246 inclination of the main axis of 72°-88° (average: 80°), the length ranges from 115 to 130 mm 247 (average: 120 mm). The diameter gradually increases from an upper narrow neck that is 12 to 15 248 249 mm wide (average 14 mm) and 5-8 mm long (average 6 mm), to a maximum diameter in the lower half ranging from 18 to 28 mm (average 23 mm). The outline of the entrance and cross-250 251 section of the maximum diameter of the burrows are subcircular. In average, the widest part of 252 the burrow is 64% larger than the neck. The burrow cast surface of five burrow casts exhibits 253 sparse ornamentation in the form sets of two linear parallel ridges (Fig. 7F-G) about 2.8-4.4 mm 254 long (average 3.4 mm, n=16) and 2.2-4.5 mm wide (average: 3.4 mm, n=14) aligned oblique to 255 perpendicular (range: 42°-89°, average: 64°, n=14) to the main axis of the burrow. The 256 supplementary material contains interactive PDF files of each *Pavocosa* sp. burrow casts. 257 258 Modified Pavocosa sp. burrows 259 Uninhabited Pavocosa sp. burrows (n=4) (Fig. 8) display some kind of modification in its overall 260 form (Fig. 6A-D) (see Supplemental Material for interactive 3D models of each cast). All are Eliminado: Supplementary 261 composed of a highly inclined shaft (range: 78°-87°; average: 84.5°), with an upper constriction 262 and an average maximum diameter ranging from 15 to 22 mm (average 19 mm). Three types of 263 modifications were identified. 1) Subcylindrical burrows (108-116 mm long by 15-22 mm wide)

with a subhorizontal expansion in the middle part forming an "umbrella" (Figs. 8A-B). The shaft boundary exhibit scarce ornamentation in the form of sets of two linear parallel ridges similar to those of the inhabited *Pavocosa* sp. burrows. The "umbrella" structure shows an oval to lobed shape in the plan view (Figs. 8C-D), with minimum diameter of 47-54 mm and a maximum diameter of 59-66 mm. The "umbrella" surface exhibits an ornamentation in form of small (1.4 mm in diameter) rounded knobs (Fig. 8E). The burrow bottom is rounded or partially filled with sediments. 2) Subcylindrical burrow about 116 mm long and 21 mm wide with two smaller burrows (8 mm of diameter) arising at the bottom of the larger burrow (Fig. 8 F). 3) A third form is a 143 mm high and 101 mm wide funnel that ends in a 24 mm wide cylindrical shaft with an oblique bottom (Fig. 8 G). The surface of the funnel exhibits sets of two parallel ridges (about 21 mm long and 9.2 mm wide) running oblique to the major axis (Fig. 8H).

DISCUSSION

Clues for identification of wolf-spider burrows in the fossil record

Pavocosa sp. produces open burrows with distinctive features as cylindrical, nearly vertical, silk lined shaft showing a gradual downward widening, a neck in the top and a rounded end, the entrance sometimes plugged with a cap of silk and sediment pellets, and a particularly distinctive surface ornamentation on the burrow margin. Most of these features are shared with other wolf spider burrows documented in the literature (Fig. 1) (Hancock, 1899; Ratcliffe & Fagerstrom, 1980; Carrel, 2008; Suter, Stratton & Miller, 2011; Albín, Simó & Aisenberg, 2015; Hils & Hembree, 2015; Vrenozi & Uchman, 2015; Foelix et al., 2017; Uchman, Vrenozi & Muceku, 2017). In particular, the presence of a neck and downward widening seem to be a common feature in wolf spider burrows found in natural settings. For Pavocosa sp. burrows this widening is about 64%, whereas it is 52% for Trochosa hispanica (Uchman, Vrenozi & Muceku, 2017).

Another highly distinctive feature of *Pavocosa* sp. burrows is its surface ornamentation in the form of two short parallel ridges oblique to perpendicular with the burrow axis that appear in the most burrow casts (Fig. 7F-G). Although this surface ornamentation was not recorded in some casts, probably due to the presence of the silk lining, all the burrow casts with delicate preservation of the surface texture exhibit these paired ridges. This feature was not identified in previous studies of wolf spider burrows and is potentially related to the burrowing technique used by Pavocosa sp. Spiders uses two main mechanisms of excavation: 1) by pushing and compressing sediment using the pedipalps (Hils & Hembree, 2015) and 2) by scraping the soil with help of fangs from chelicerae (Stokes, 1884; Suter, Stratton & Miller, 2011; Hils & Hembree, 2015; Foelix et al., 2016). Although we have not observed *Pavocosa* sp. during digging, the sets of two linear parallel ridges observed on the better preserved burrow casts surface are similar in form and shape with the arrangement of fangs of collected specimens. The distance between fangs (3.9–4.6 mm) overlaps with distance between ridges within a set (2.2–4.5 mm). Thus we propose that excavation in *Pavocosa* sp. involves the use of fangs, as in type 2 excavation mechanism mentioned above. Silk lined burrows are unique in spiders and essentially impart stability in soft substrates to prevent collapse (Ratcliffe & Fagerstrom, 1980; Foelix et al. 2017; Hils & Hembree, 2015). The presence of organic matter in the form of a silk lining increase the potential of preservation of wolf spider burrows (Uchman, Vrenozi & Muceku, 2017), well above those of all others arthropods that habit in the same environment. Spider burrows may result modified by reoccupation or predation, as well as by environmental changes. Reoccupation of abandoned lycosid and mygalomorph burrows by lizards, centipedes, moths, wasps, beetles and ants have been documented (e.g., Fellows, Fenner & Bullet, 2009). Ants have been also observed invading occupied wolf spider burrows with the purpose of prey

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

piracy (Marshall, 1995). However, it has not been documented if the reoccupation results in any change in the morphology of the burrow. Common spider burrow disturbances caused by predation includes those produced by pompilid wasps that preys the spider and occasionally digs a tunnel perpendicular to the spider burrow (Gwynne, 1979; Costa et al., 2004), and excavation of the upper part of the burrows by armadillos (Suter, Stratton & Miller, 2011). Most of Pavocosa sp. burrows are susceptible to go through a large amount of disturbances, including those caused by the reoccupation by another organism (Fig. 8A-B and F) and predation of the dweller (Fig. 8G). Two kinds of burrow modifications observed during this study are tentatively related to reoccupation of burrows: those with an expansion in the middle part as a kind of "umbrella" (Fig. 8A-B) and that with smaller excavations at the bottom of the burrow (Fig. 8F). Even if we cannot discard an inorganic origin (i.e., evaporite leaching) for the "umbrella" structure seen in some casts is highly reminiscent of oval to lobed ant nest chambers (Tschinkel, 2003). Although no ants were recorded when making the casts, they were commonly seen in the sandflat surface constructing nests within vertebrate footprints and abandoned burrows, presumably to avoid the hard efflorescent salt crust of the sandflat surface. The producer of the smaller burrows at the bottom of *Pavocosa* sp. burrow is unknown. Funnel shaped burrows (Fig. 8G) are alike to the probing marks related to predation by small mammals, similar structures are described in the literature including Sarzetti & Genise (2011) from northern Argentina, Suter, Stratton & Miller (2011: fig. 2), and Platt (2014), the two latter from Mississippi, USA. Small mammals found in this area with similar behaviours are the armadillos and skunks. The more likely producer is a small armadillo as suggested by the size of the funnel and most importantly by the presence of sets of two large ridges in the cast surface (compare Platt, 2014), interpreted as scratch marks (Fig. 8H).

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

Preservation of burrows in the margin of saline lakes, including those of wolf spiders, are affected by environmental factors like early cementation by evaporites and swelling of expansive clays during flooding (e.g., Scott, Renaut & Owen, 2010). Cementation by evaporites favors preservation, whereas wetting and drying cycles of swelling clays can destroy the burrows. Both the original Pavocosa sp. burrows and those modified by reoccupation or predation can be compared with known ichnogenera. The simple vertical forms are grossly comparable with Skolithos (see Alpert, 1974 and Schlirf, 2000); some significant differences are the presence of a constriction or neck, the downward widening and the surface texture. These features are potentially significant ichnotaxonomicaly (Schlirf & Uchman, 2005), although no proposed ichnotaxon match them. Slight variations in burrow diameter are allowed in Skolithos (Alpert, 1974; Schlirf, 2000), although the observed differences in *Pavocosa* sp. burrow diameter are significant and repetitive. There are a few examples of ornamented Skolithos, all of them from continental settings and tentatively assigned to insects or spiders, but they are not comparable to that observed in *Pavocosa* sp. burrows (Bromley & Asgaard, 1979; Schlirf et al. 2001; Netto, 2007). These ornamented Skolithos exhibit indistinct striations, except for the example described by Netto (2007) that display horizontal striae forming a circular ring. In consequence, there is no known fossil burrow with all the features described for the studied wolf spider burrows. Modified Pavocosa sp. burrows with an "umbrella" if fossilized can be confused with Daimoniobarax Smith et al., 2011; in particular, the umbrella is comparable with chambers and the vertical burrow of the spider is comparable with the shaft connecting the chambers in Daimoniobarax. A potential difference is the considerably larger diameter of the burrow connecting the chambers that averages 40% of chamber diameter in the modified Pavocosa sp. burrow and 10% in Daimoniobarax (Smith et al., 2011). The modified Pavocosa sp. burrow with smaller burrows arising from the bottom can be confused with a downward bifurcation as seen in

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

Con formato: Fuente: Sin Cursiva

Con formato: Fuente: Sin Cursiva

360 rhizoliths (Klappa, 1980), a roughly similar rhizolith was figured by Melchor et al. (2002, fig. 361 3B). Finally, funnel shaped burrows can be compared with several ichnogenera including 362 Monocraterion Torell, 1870; Conostichnus Lesquereux, 1876; Rosselia Dahmer, 1937; 363 Conichnus Männil, 1966; and Cornulatichnus Carroll & Trewin, 1995 (see also Platt, 2014). A 364 fundamental difference with these ichnogenera is the lack of large paired surface ridges, as seen 365 in the predated Pavocosa sp. burrow. Further differences are: 1) Monocraterion shows smaller 366 radial burrows arising from the central funnel (Jensen, 1997); 2) Conostichnus exhibits a 367 duodecimal symmetry and transverse and longitudinal ridges and furrows (Pemberton et al. 368 1988); 3) Rosselia is a bulbous structure with a concentrically laminated fill (Schlirf et al. 2002); 369 4) Conichnus exhibits a rounded apex and common chevron-like fill (Pemberton et al. 1988); and 370 5) Cornulatichnus has a well-developed lining (Carroll & Trewin, 1995). Conical sedimentary 371 structures of inorganic origin can also resemble Pavocosa sp. burrows modified by predation. 372 Buck & Goldring (2003) identified two main inorganic processes that produced conical Eliminado: 373 sedimentary structures: collapse and dewatering. The former is distinguished by V or U shaped 374 downwarping of lamination and the latter by deformed lamination and massive zone at the base 375 of the cone (Buck & Goldring, 2003). These features allow distinction from the predated (i.e., 376 funnel-shaped) Pavocosa sp. burrow, that would have a massive fill. Burrowing spiders belong to Mesothelae and Opisthothelae (Coddington, 2005). Although 377 378 Mesothelae dates back to the Late Carboniferous, the only known burrowing group (Liphistiidae) 379 has no fossil record (Dunlop, Penney & Jekel, 2017). Within Opisthothelae, burrowing spiders 380 are found in the Middle Triassic to Recent Mygalomorphae, which includes the tarantulas and Eliminado: that 381 trapdoor spiders, and in the Cretaceous to Recent Lycosoidea (included in Araneomorphae) that Eliminado: comprises the wolf spiders (Dunlop, 2010; Dunlop, Penney & Jekel, 2017). The oldest putative 382 383 example of Lycosoidea comes from Turonian beds of Botswana (Selden, Anderson & Anderson,

2009); which is close to the age of the superfamily suggested by phylogenetic studies (70 Ma,
after Garrison et al., 2016); although most fossil records are from the Paleogene to Recent
(Dunlop, Penney & Jekel, 2017). In addition, phylogenetic studies on web type suggest that the
spider common ancestor likely foraged from a subterranean burrow, mostly sealed by a trapdoor
(Garrison et al. 2016). In consequence, the record of spider burrows can be traced back, at least to

the Middle Triassic (and probably to the Late Carboniferous) and lycosid burrows in Late

Eliminado:

393 Cretaceous or Cenozoic rocks.

The use of fossil to calibrate molecular phylogenies is an uprising topic in spider biology (Planas et al, 2013; Wood et al, 2013; Moradmand et al, 2014). The absence of reliable fossil record, such as in Lycosidae (Penney, 2001), is an important impediment and the potential identification of wolf spider burrows on the fossil record, with the clues provided herein, can be a useful alternative source of data.

Environmental distribution of *Pavocosa* sp. burrows

The sediments of the sandflat containing the *Pavocosa* sp. burrows reflect the interaction between the nearby eolian and lacustrine settings. The two upper beds are essentially sandy deposits with a mixture of dominant fine sand and silt (samples S1 and S2; Fig. 5). The dominance of the coarse fraction (fine sand), poor sorting and the frequency distribution is comparable with those of modern interdune deposits (e.g., Ahlbrandt, 1979). Poorly defined laminae with evaporites in bed 1 are interpreted as result of capillary rise and precipitation from brines. The sandy nature of the material where *Pavocosa* sp. excavated the burrows and their location 40 cm above the water table suggests preference for well-drained substrates. In contrast, the lowermost silty beds (samples S3 and S4; Fig. 5) are interpreted as dominantly lacustrine deposits, on the basis of the

fine grain size and the presence of gastropods shells. Heleobia is a very common extant

Eliminado: the depth to

413 gastropod in South America recorded in estuarine and continental settings, including saline lakes (see review in Cazzaniga, 2011). In consequence, the logged section reflects the migration of the 414 415 parabolic dune towards the northeast over the Gran Salitral lacustrine sediments (for a more detailed interpretation of dune deposits see Melchor et al., 2012). The presence of abundant 416 Pavocosa sp. burrows in the well-drained sandflat deposits of the Gran Salitral and similar 417 occurrences of reported in the literature (e.g., Hudson & Adams, 1996) suggest that wolf spider 418 419 colonization of saline lakes occur preferentially during dry periods of the lake. 420 Wolf spiders (Lycosidae) are one of the most successful spider families distributed in most of the habitats around the World (World Spider Catalog, 2017). Lycosids display a wide range of prey-421 capture strategies from web builders to burrow-dwellers or vagrant species. The use of burrows in 422 wolf spiders can be in some cases obligatory, temporary in male juveniles, and as brood care in 423 424 females (Logunov, 2011), or merely facultative in absence of objects as a rock that serves as a 425 retreat. In general, burrows in wolf spiders are related to open areas of xerothermic habitats with 426 sparse or no vegetation (e.g. sandy seashores, dune heaths, limestone areas and desert 427 nanophanerophyte steppe) (Logunov, 2011). Some wolf spider species have specific habit preferences, as is the case of halotolerant species that inhabit the surface of salt lakes, most of 428 429 them included in *Tetralycosa* and other species as *Lycosa salifodina* McKay, 1976 from Australia (Hudson & Adams, 1996; Framenau & Leung, 2013), and two other Argentinian species 430 431 including Pavocosa sp. In particular, Pavocosa sp. has been documented in saline lakes of Cordoba, Santiago del Estero, San Luis and La Pampa. In consequence, it is likely that the 432 433 described burrows are typical of saline environments.

Con formato: Fuente: Cursiva

Eliminado: preferentialy

Eliminado: is

Eliminado: vagant

CONCLUSIONS

434

435

Observations on the burrows of the wolf spider Pavocosa sp. in the coast of a saline lake in 439 central Argentina suggest that: 440 441 1) Pavocosa sp. produces burrows with recognizable features as open, cylindrical, nearly vertical, 442 silk lined shafts, showing a gradual downward widening, with a neck and the entrance and a rounded end, and a particularly distinctive surface ornamentation on the burrow margin. These 443 features are considered typical of wolf spider burrows. 444 2) Burrows are susceptible to go through a large amount of disturbances, including reoccupation 445 by another organism or by predation of the dweller. Two types of modified Pavocosa sp. are 446 related to reoccupation of burrows: those with a lateral expansion in the middle part as a kind of 447 448 "umbrella" and another with smaller excavations at the bottom of the burrow. Predation by small mammals results in funnel-shaped burrows. 449 450 3) Pavocosa sp. burrows have significant differences with those found in the Skolithos ichnospecies. Such features as the presence of a neck, a downward widening and the surface 451 texture make them identifiable in the fossil record. The modified Pavocosa sp. burrows can be 452 confused with Daimoniobarax, rhizoliths, and several conical sedimentary structures, although 453 454 some key aspects allow their distinction. 455 4) The features of Pavocosa sp. burrows that are considered diagnostic of wolf spider burrows 456 are not identified to date in any published description of fossil examples. 457 5) Pavocosa sp. colonized well drained sandy substrates of eolian origin on the margin of a saline 458 lake. Known occurrences of this species suggest that it is a halotolerant wolf spider that inhabits the surface of saline lakes. Furthermore, as the wolf spiders avoid flooded substrates, it is 459

460	suggested that the occurrence of wolf spider burrows in saline lakes is probably related to dry	
461	periods.	
462	6) The potential record of wolf spider burrows dates back to the Paleogene (possibly Late	
	Cretaceous). The presence of silk lining increases its potential of preservation and the typical	
463		
464	morphology and the surface texture render them recognizable in the fossil record.	
465		
466	Acknowledgements. Silverio Feola, Mauricio Fernández, Sofía Mulatero, Luis Torres and	
467	Angélica Tamame helped during field work. The landowner of Puesto La Porfía, Mr <u>Tránsito</u>	 Eliminado: Transito
468	Cerda is thanked for permission to work on his property.	
469		
470	NAME AND ADDRESS OF THE PARTY.	
471	BIBLIOGRAPHY	
472	Ahlbrandt TS, Andrews S, Gwynne DT. 1978. Bioturbation in eolian deposits. <i>Journal of</i>	
473	Sedimentary Petrology, 48:839-848.	
474	Ahlbrandt TS. 1979. Textural parameters of eolian sands. In: Mckee, E.D., A study of global	
475	sand seas. Geological Survey Professional Paper, 1052:21-52.	 Con formato: Inglés (Estados
476	Aireston A. Winn C. Corte FC. 2007. Perine females denoted and a serial constant	Unidos)
476	Aisenberg A, Viera C, Costa FG. 2007. Daring females, devoted males, and reversed sexual size	
477	dimorphism in the sand-dwelling spider Allocosa brasiliensis (Araneae, Lycosidae). Behavioral	
478	Ecology and Sociobiology, 62:29-35. DOI 10.1007/s00265-007-0435-x.	
479	Albín A, Simó M, Aisenberg A. 2015. Characterisation of burrow architecture under natural	
480	conditions in the sand-dwelling wolf spider Allocosa brasiliensis. Journal of Natural History,	
481	50:201–209. DOI 10.1080/00222933.2015.1068395.	

- 483 Alpert SP. 1974. Systematic Review of the Genus Skolithos. Journal of Paleontology, 48(4):661-
- 484 669. Available at http://www.jstor.org/stable/1303217.
- Banks N. 1895. Some Missouri spiders. *Entomological News*, 6:204-207.
- 486 Bromley RG. 1981. Concepts in ichnology illustrated by small round holes in shells. Acta
- 487 Geológica Hispánica, 16:55-64.
- 488 Bromley RG, Asgaard U. 1979. Triassic freshwater ichnocoenoses from Carlsberg Fjord.
- 489 Palaeogeography, Palaeoclimatology, Palaeoecology, 28:39-80.
- 490 Bryson HR. 1939. Identification of soil insects by their burrow characteristics. *Transactions of*
- 491 the Kansas Academy of Science. 42:245-253.
- 492 Buck SG, Goldring R. 2003. Conical sedimentary structures, trace fossils or not? Observations,
- 493 experiments, and review. *Journal of Sedimentary Research*, 73:338-353.
- 494 Carrel JE. 2008. Differential survival of Geolycosa xera archboldi and G. hubbelli (Araneae,
- 495 Lycosidae) after fire in Florida scrub. *Journal of Arachnology*, 36:595-599.
- 496 Carroll S, Trewin NH. 1995. Cornulationus: a new trace fossil from the Old Red Sandstone of
- 497 Orkney. Scottish Journal of Geology, 31:37-41.
- 498 Cazzaniga N. 2011. El género Heleobia (Caenogastropoda: Cochliopidae) en América del Sur.
- 499 Amici Molluscarum, special number: 1-79.
- 500 Chikhale MP, Santape GB, Bodkhe AK. 2013. Some observations on burrow architecture of
- 501 burrowing spider Geolycosa Montgomery, 1904 (Araneae, Lycosidae) At Vairat, Melghat Tiger
- Reserve, Maharashtra, India. *Indian Journal of Arachnology*, 2:34-38.

503	Cloudsley-Thompson JL. 1983. Desert adaptation in spiders. <i>Journal of Arid Environments</i> ,	
504	4:307-317.	
505	Coddington JA. 2005. Phylogeny and classification of spiders. In: Ubick D, Paquin P, Cushing	
	PE, Roth V. (Eds.), Spiders of North America: an Identification Manual. <i>American</i>	
506		
507	Arachnological Society, 18-24.	
508	Costa FG, Pérez-Miles F, Mignone A. 2004. Pompilid wasp interactions with burrowing	
509	tarantulas: Pepsis cupripennis versus Eupalaestrus weijenberghi and Acanthoscurria suina	
510	(Araneae, Theraphosidae). Studies on Neotropical Fauna and Environment, 39(1):37-43. DOI	
511	10.1080/01650520412331270945.	
512	Curran HA, White B. 1991. Trace fossils of shallow subtidal to dunal ichnofacies in Bahamian	
513	Quaternary carbonates. <i>Palaios</i> , 6:498-510.	
514	Curran HA, White B. 2001. Ichnology of Holocene carbonate eolianites of the Bahamas. <i>Society</i>	
515	of Economic Paleontologists and Mineralologists, Special Publication 71:47-55.	
516	Dahmer G. 1937. Lebensspuren aus dem Taunusquarzit und den Siegener Schichten	
517	(Unterdevon). Preussischen Geologischen Landesanstalt zu Berlin Jahrbuch 1936, 57:523-539.	
518	De Simone GA, Aisenberg A, Peretti AV. 2015. Female and juvenile burrow digging in <i>Allocosa</i>	
519	brasiliensis, a South American sand-dwelling wolf spider. Arachnology, 16(8):276-280,	Eliminado:
		Eliminado:
520	http://dx.doi.org/10.13156/arac.2015.16.8.276.	
521	Dunlop JA. 2010. Geological history and phylogeny of Chelicerata. Arthropod Structure and	
522	Development, 39:124-142. DOI 10.1016/j.asd.2010.01.003.	

524525526527528	Dunlop JA, Braddy SJ. 2011. <i>Cteniza bavincourti</i> and the nomenclature of arachnid-related trace fossils. <i>The Journal of Arachnology</i> , 39:250-257. Dunlop JA, Penney D, Jekel D. 2017. A summary list of fossil spiders and their relatives. In World Spider Catalog. Natural History Museum Bern, Available at http://wsc.nmbe.ch, version 18.5 (accessed 11 September 2017).	
529	Fellows HL, Fenner AL, Bull CM. 2009. Spiders provide important resources for an endangered	
530	lizard. Journal of Zoology, 279(2):156-163. DOI 10.1111/j.1469-7998.2009.00600.x.	
531 532	Fernandes ACS, Borghi L, Carvalho IS. 1992. Icnofósseis de Artropodes na Formação Resende (Bacia de Resende, RJ). <i>Academia Brasileira de Ciências</i> , 64:269-275.	
533	Foelix R, Rechenberg I, Erb B, Joel AC. 2016. Über den Bau der Wohnröhren bei	
534	wüstenlebenden Spinnen. Arachne, 21:4-17.	Con formato: Portugués (Brasil)
534	wüstenlebenden Spinnen. <i>Arachne</i> , 21:4-17. Foelix R, Rechenberg I, Erb B, Albín A, Aisenberg A. 2017. Sand transport and burrow	Con formato: Portugués (Brasil)
		Con formato: Portugués (Brasil)
535	Foelix R, Rechenberg I, Erb B, Albín A, Aisenberg A. 2017. Sand transport and burrow	Con formato: Portugués (Brasil)
535	Foelix R, Rechenberg I, Erb B, Albín A, Aisenberg A. 2017. Sand transport and burrow construction in sparassid and lycosid spiders. <i>Journal of Arachnology</i> , 45:255-264.	Con formato: Portugués (Brasil)
535 536 537	Foelix R, Rechenberg I, Erb B, Albín A, Aisenberg A. 2017. Sand transport and burrow construction in sparassid and lycosid spiders. <i>Journal of Arachnology</i> , 45:255-264. Framenau VW, Leung AE. 2013. <i>Costacosa</i> , a new genus of wolf spider (Araneae, Lycosidae)	Con formato: Portugués (Brasil)
535 536 537 538	Foelix R, Rechenberg I, Erb B, Albín A, Aisenberg A. 2017. Sand transport and burrow construction in sparassid and lycosid spiders. <i>Journal of Arachnology</i> , 45:255-264. Framenau VW, Leung AE. 2013. <i>Costacosa</i> , a new genus of wolf spider (Araneae, Lycosidae) from coastal north-west Western Australia. <i>Records of the Western Australian Museum</i> , 83:173–	Con formato: Portugués (Brasil)
535 536 537 538 539	Foelix R, Rechenberg I, Erb B, Albín A, Aisenberg A. 2017. Sand transport and burrow construction in sparassid and lycosid spiders. <i>Journal of Arachnology</i> , 45:255-264. Framenau VW, Leung AE. 2013. <i>Costacosa</i> , a new genus of wolf spider (Araneae, Lycosidae) from coastal north-west Western Australia. <i>Records of the Western Australian Museum</i> , 83:173–184. DOI 10.18195/issn.0313-122x.83.2013.173-184.	Con formato: Portugués (Brasil)
535 536 537 538 539	Foelix R, Rechenberg I, Erb B, Albín A, Aisenberg A. 2017. Sand transport and burrow construction in sparassid and lycosid spiders. <i>Journal of Arachnology</i> , 45:255-264. Framenau VW, Leung AE. 2013. <i>Costacosa</i> , a new genus of wolf spider (Araneae, Lycosidae) from coastal north-west Western Australia. <i>Records of the Western Australian Museum</i> , 83:173–184. DOI 10.18195/issn.0313-122x.83.2013.173-184. Framenau VW, Hudson P. 2017. Taxonomy, systematics and biology of the Australian	Con formato: Portugués (Brasil)

544	Servicos Geologicos de Portugal, 67:153-168.	
545	Garrison NL, Rodriguez J, Agnarsson I, Coddington JA, Griswold CE, Hamilton CA, Hedin M,	
546	Kocot KM, Ledford JM, Bond JE. 2016. Spider phylogenomics: untangling the Spider Tree of	
547	Life. <i>PeerJ</i> , 4:e1719. DOI 10.7717/peerj.1719.	
548	Gwynne DT. 1979. Nesting biology of the spider wasps (Hymenoptera: Pompilidae) which prey	
549	on burrowing wolf spiders (Araneae: Lycosidae, Geolycosa). Journal of Natural History, 13:681-	
550	692.	
551	Haldeman SS. 1840. Supplement to number one of 'A monograph of the Limniades, and other	
552	freshwater bivalve shells of the apparently new animals in different classes, and names and	
553	characters of the subgenera in <i>Paludina</i> and <i>Anculosa</i> , J. Dobson, Philadelphia. 3 pp.	Eliminado:
554	Hancock JL. 1899. The castle-building spider. <i>Entomological News</i> , 10:23-29.	
555	Hasiotis ST. 2002. Continental Trace Fossils. Short Course Notes, SEPM (Society for	
556	Sedimentary Geology), Tulsa, 134 p.	
557	Hasiotis ST. 2007. Continental ichnology: fundamental processes and controls on trace fossil	
558	distribution. The continental realm. In: Miller W III (ed) Trace Fossils: Concepts, Problems,	
559	Prospects. Elsevier Sci, Amsterdam, 268–284.	
560	Hasiotis ST, Bourke MC. 2006. Continental trace fossils and museum exhibits: displaying	
561	burrows as organism behaviour frozen in time. <i>The Geological Curator</i> , 8(5):211-226.	
562	Hembree DI. 2017. Neoichnology of tarantulas (Araneae: Theraphosidae): Criteria for	
563	recognizing spider burrows in the fossil record. <i>Palaeontologia Electronica</i> , 20.3.45A:1-30.	

565	Available at palaeo-electronica.org/content/2017/2003-neoichnology-of-tarantulas.			
566	Hentz NM. 1844. Descriptions and figures of the araneides of the United States. <i>Boston Journal</i>			
567	of Natural History, 4:386-396.			
568	Hickman VV.1944. Scorpions and spiders. In: The Simpson desert expedition, 1939-Scientific			
569	reports No. 1, Biology. Transactions of the Royal Society of South Australia, 68:18-48.			
570	Hils JM, Hembree DI. 2015. Neoichnology of the burrowing spiders Gorgyrella inermis			
571	(Mygalomorphae: Idiopidae) and Hogna lenta (Araneomorphae: Lycosidae). Palaeontologia			
572	Electronica, 18.1.7A:1-62. Available at palaeo-electronica.org/content/2015/1057-neoichnology-			
573	of-spiders.			
			Col	n formato: Inglés (Estados
574	Hudson P, and Adams M. 1996. Allozyme characterisation of the salt lake spiders (Lycosa:			dos)
575	Lycosidae: Araneae) of southern Australia: Systematic and population genetic Implications.			n formato: Fuente: Cursiva, lés (Estados Unidos)
576	Australian Journal of Zoology 44:535-567. https://doi.org/10.1071/ZO9960535			n formato: Inglés (Estados dos)
				n formato: Inglés (Estados dos)
577	INTA, UNLPam. 1980. Inventario Integrado de los Recursos Naturales de la Provincia de la		\sim	digo de campo cambiado
578	Pampa. Buenos Aires. ISAG.		Coı	n formato: Inglés (Estados dos)
579	Jensen S. 1997. Trace fossils from the Lower Cambrian Mickwitzia sandstone, south-central	\		n formato: Inglés (Estados dos)
580	Sweden. Fossils and Strata, 42:111.			
581	Klappa CF. 1980. Rhizoliths in terrestrial carbonates: classification, recognition, genesis and			
582	significance. Sedimentology, 27:613-629.			
583	Koch CL. 1838. Die Arachniden. Nürnberg, Vierter Band, 109-144, Funfter Band, 1-124.			
584	Lesquereux L. 1876. Species of fossil marine plants from the Carboniferous Measures.			

585	Geological Survey of Indiana, Annual Report, 7:134-145.
586	Linck O. 1949. Lebens-Spuren aus dem Schilfsandstein (Mittl. Keuper, km 2) NW-Württembergs
587	und ihre Bedeutung für die Bildungsgeschichte der Stufe. Jahreshefte des Vereins für
588	vaterländische Naturkunde in Württemberg 97-101:1–100.
589	Logunov DV. 2011. Sexual size dimorphism in burrowing wolf spiders (Araneae: Lycosidae).
590	Proceedings of the Zoological Institute RAS, 315:274-288.
591	Macsotay O. 1967. Huellas problemáticas y su valor paleoecológico en Venezuela. GEOS Revista
592	Venezolana de Ciencias de la Tierra, 16:1-87.
593	Männil R. 1966. O vertikalnykh norkakh zaryvaniya v ordovikskikh izvestnyakakh Pribaltiki. In
594	Hecker RF. (ed.), Organizm i sreda v geologischeskom proshlom. Akademiya Nauk SSSR.
595	Paleontologicheskij Institut, 200-207.
596	Marshall SD. 1995. Natural history, activity patterns, and relocation rates of a burrowing wolf
597	spider: Geolycosa xera archboldi (Araneae, Lycosidae). Journal of Arachnology, 23:65-70.
598	Marshall SD. 1996. Evidence for territorial behavior in a burrowing wolf spider. Ethology,
599	102:32-39.
600	McCrone JD. 1963. Taxonomic status and evolutionary history of the <i>Geolycosa pikei</i> complex
601	in the Southeastern United States (Araneae, Lycosidae). American Midland Naturalist, 70:47-73.
602	McKay RJ. 1976. The wolf spiders of Australia (Araneae: Lycosidae): 8. Two new species
603	inhabiting salt lakes of Western Australia. Memoirs of the Queensland Museum, 17: 417-423.

Melchor RN, Casadío S. 2000, Descripción Geológica de la Hoja 3766-III "La Reforma"

Con formato: Español (Uruguay)
Con formato: Español (Argentina)
Con formato: Español (Argentina)
Con formato: Español (Argentina)

605	(1:250.000), Provincia de la Pampa. Boletín del Servicio Geológico Minero Argentino, 295: 1-
606	<u>70.</u>
607 608	Melchor RN, Genise JF, Miquel SE. 2002. Ichnology, sedimentology and paleontology of Eocene calcareous paleosols from a palustrine sequence, Argentina. <i>Palaios</i> , 17:16-35.
609	Melchor RN, Genise JF, Umazano AM, Superina M, 2012. Pink fairy armadillo meniscate
610	burrows and ichnofabrics from Miocene and Holocene interdune deposits of Argentina:
611	palaeoenvironmental and palaeoecological significance. Palaeogeography, Palaeoclimatology,
612	Palaeoecology, 350–352:149–170.
613 614	Mello-Leitão CF de. 1941. Las arañas de la provincia de Santa Fe colectadas por el Profesor Birabén. <i>Revista del Museo de La Plata (N.S. Zoología)</i> , 2:199-225.
615 616	Mello-Leitão CF de. 1945. Arañas de Misiones, Corrientes y Entre Ríos. <i>Revista del Museo de La Plata (N.S. Zoología)</i> , 4:213-302.
617 618	Mikuś P, Uchman A. 2012. Beetle burrows with a terminal chamber: a contribution to the knowledge of the trace fossil <i>Macanopsis</i> in continental sediments. <i>Palaios</i> , 28:403-413.
619	Murphy NP, Framenau VW, Donnellan SC, Harvey MS, Park YC, Austin AD. 2006.
620	Phylogenetic reconstruction of the wolf spiders (Araneae: Lycosidae) using sequences from the
621	12S rRNA, 28S rRNA, and NADH1 genes: Implications for classification, biogeography, and the
622	evolution of web building behavior. <i>Molecular Phylogenetics and Evolution</i> , 38:583–602.
623 624 625	Moradmand M, Schönhofer A, Jäger P. 2014. Molecular phylogeny of the spider family Sparassidae with focus on the genus <i>Eusparassus</i> and notes on the RTA-clade and 'Laterigradae'. <i>Molecular Phylogenetics and Evolution</i> , 74:48-65.
023	2. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.

Con formato: Español (Argentina)
Con formato: Español (Argentina)
Con formato: Español (Argentina)
Con formato: Español (Argentina)

Con formato: Español (Argentina)

- Netto RG. 2007. Skolithos-dominated piperock in non-marine environments: an example from
- 627 the Triassic Caturrita Formation, southern Brazil. In: Bromley RG, Buatois LA, Mángano MG,
- 628 Genise JF, Melchor RN (eds.), Sediment- Organism Interactions: a Multifaceted Ichnology.
- 629 SEPM, Special Publication, 88:109-121.
- 630 Pemberton SG, Frey RW, Bromley RG. 1988. The ichnotaxonomy of Conostichus and other
- 631 plug-shaped ichnofossils. Canadian Journal of Earth Sciences, 25:886 892.
- 632 Penney D. 2001. Advances in the taxonomy of spiders in Miocene amber from the Dominican
- Republic (Arthropoda: Araneae). *Palaeontology*. 44:987-1009.
- 634 Petrunkevitch A. 1910. Some new or little known American Spiders. Annals of the New York
- 635 Academy of Science, 19:205-224.
- Planas E, Fernández-Montraveta C, Ribera C. 2013. Molecular systematics of the wolf spider
- 637 genus Lycosa (Araneae: Lycosidae) in the Western Mediterranean Basin. Molecular
- 638 Phylogenetics and Evolution, 67:414–428.
- Platt BF. 2014. The foraging pits of the nine-banded armadillo, Dasypus novemcinctus
- 640 (Mammalia: Xenarthra: Dasypodidae), and implications for interpreting conical trace fossils.
- 641 Palaeontologia Electronica, 17.3.46A:1–17. Available at palaeo-
- electronica.org/content/2014/1013-armadillo-foraging-pits.
- Policía de la Provincia de la Pampa. Registros Pluviales para el Departamento Puelén
- 644 (http://www.policia.lapampa.gov.ar/contenidos/ver/lluvias).
- 645 Punzo F. (2000). Desert Arthropods: Life History Variations. Berlin, Springer Verlag, 230 p.

Ratcliffe BC, Fagerstrom JA. 1980. Invertebrate lebensspuren of Holocene floodplains: Their 646 647 morphology, origin and paleoecological significance. Journal of Paleontology, 54:614-630. 648 Roewer CF. 1960. Araneae Lycosaeformia II (Lycosidae) (Fortsetzung und Schluss). Exploration 649 du Parc National de l'Upemba, Mission G. F. de Witte, 55:519-1040. 650 Sarzetti LC, Genise JF. 2011. Predation of soil-nesting Centris muralis (Insecta: Apidae) by 651 armadillos (Zaedyus pichiy) (Mammalia: Cingulata) in La Rioja Province, Northwestern 652 Argentina. Journal of the Kansas Entomological Society.84:179-183. 653 Schlirf M. 2000. Upper Jurassic trace fossils from the Boulonnais (northern France). Geologica et 654 Palaeontologica, 34:145-213. 655 Schlirf M, Uchman A, Kümmel M. 2001. Upper Triassic (Keuper) non-marine trace fossils from 656 the Haßberge area (Franconia, south-eastern Germany). Palāontologische Zeitschrift, 75:71-96. 657 Schlirf M, Nara M, Uchman A. 2002. Invertebraten-Spurenfossilien aus dem aunusquarzit (Siegen, Unterdevon) von der 'Rossel' nahe Rudesheim. Jahrbucher des Nassauischen Vereins 658 659 für Naturkunde, 123:43-63. 660 Schlirf M, Uchman A, 2005. Revision of the ichnogenus Sabellarifex Richter, 1921 and its 661 relationship to Skolithos Haldeman, 1840 and Polykladichnus Fürsich, 1981. Journal of Systematic Palaeontology, 3:115–131. 662 663 Scott JJ, Renaut RW, and Owen RB. 2010. Taphonomic controls on animal tracks at saline, alkaline lake Bogoria, Kenya rift valley: Impact of salt efflorescence and clay mineralogy. 664

665

Journal of Sedimentary Research 80:639-665.

- 666 Selden PA, Anderson HM, Anderson JM. 2009. A review of the fossil record of spiders
- 667 (Araneae) with special reference to Africa, and description of a new specimen from the Triassic
- Molteno Formation of South Africa. African Invertebrates, 50:105-116.
- 669 Servicio Meteorológico Nacional. Meteorological station Neuquén Aero, Period 2016-2017
- 670 (http://www.smn.gov.ar/).
- 671 Shepard FP. 1954. Nomenclature based on sand-silt-clay ratios. *Journal of Sedimentary*
- 672 Research, 24:151-158.
- 673 Simon E.1870. Aranéides noveaux ou peu connus du midi de l'Europe. Mémoires de la Société
- 674 Royale des Sciences de Liège, 2(3):271-358.
- 675 Smith JJ, Hasiotis ST, Kraus MJ, Woody DT. 2008. Relationship of floodplain ichnocoenoses to
- paleopedology, paleohydrology, and paleoclimate in the Willwood Formation, Wyoming, during
- the Paleocene-Eocene Thermal Maximum. *Palaios*, 23:683-699.
- 678 Smith JJ, Platt BF, Ludvigson GA, Thomasson JR. 2011. Ant-nest ichnofossils in honeycomb
- calcretes, Neogene Ogallala formation, high Plains region of western Kansas, U.S.A.
- Palaeogeography, Palaeoecology, Palaeoclimatology, 308:383-394.
- 681 Stimpson W. 1865. Researches upon the Hydrobiinae and allied forms; chiefly made upon
- 682 materials in the Museum of the Smithsonian Institution. Smithsonian Miscellaneous Collections,
- 683 201:1-59.
- Stokes AC. 1884. A burrowing spider. Science, 4:114-116.
- Suter RB, Stratton GE, Miller PR. 2011. Mechanics and energetics of excavation by burrowing

686	wolf spiders, Geolycosa spp. Journal of Insect Science, 11:22.	
687	Torell O. 1870. Petrificata Suecana Formationis Cambricae. <i>Lunds Universitet Årsskrift</i> , 6:1-14.	Con formato: Inglés (Estados Unidos)
688	Toscano-Gadea CA., Costa FG. 2016. Description of the sexual behavior of the Neotropical wolf	
689	$spider \textit{Pavocosa gallopavo} \ (Araneae: Lycosidae), with comments on sexual cannibalism. \textit{Journal}$	
690	of Arachnology, 44:412-416.	
691	Tschinkel WR. 2003. Subterranean ant nests: Trace fossils past and future? Palaeogeography,	
692	Palaeoecology, Palaeoclimatology, 192:321-333.	
693	Uchman A, Vrenozi B, Muceku B. 2017. Spider burrows in ichnological context: A review of	
694	literature data and burrows of the wolf spider <i>Trochosa hispanica</i> Simon, 1870 from Albania B.	
695	Rendiconti Lincei. Scienze Fisiche e Naturali. https://doi.org/10.1007/s12210-017-0662-7.	
696	Ungern-Sternberg F. 1876. Salicorniearum Synopsis. Atti del congresso internazionale botanico	
697	tenuto in Firenze nel mese di maggio 1874. 1: 8, Firenze, 259-343.	Con formato: Inglés (Estados Unidos)
698	Vrenozi B, Uchman A. 2015. Data on the burrows of the wolf spider <i>Geolycosa vultuosa</i> (C. L.	Eliminado:
699	Koch, 1838), the first record for Albania. First International Congress on Continental Ichnology	
700	Abstracts, 69-70.	
701	Wallace HK. 1942. A revision of the burrowing spiders of the genus <i>Geolycosa</i> (Araneae,	
702	Lycosidae). American Midland Naturalist, 27:1-62.	
703	White B, Curran HA.1988. Mesoscale physical sedimentary structures and trace fossils in	
703		
704	Holocene carbonate eolianites from San Salvador Island, Bahamas. Sedimentary Geology,	
	Holocene carbonate eolianites from San Salvador Island, Bahamas. <i>Sedimentary Geology</i> , 55:163-184. https://doi.org/10.1016/0037-0738(88)90095-4.	

Wisshak M, Kroh A, Bertling M, Knaust D, Nielsen JK, Jagt JWM, Neumann C, Nielsen KSS.
2015. In defence of an iconic ichnogenus – *Oichnus* Bromley, 1981. *Annales Societatis Geologorum Poloniae*, 85:445-451.
World Spider Catalog 2017. World Spider Catalog. Natural History Museum Bern. Available at
http://wsc.nmbe.ch, version 18.5, (accessed 11 September 2017). DOI 10.24436/2.

Figure captions

714

- 715 Figure 1. Compilation of previous descriptions of wolf spider burrows: (A) *Geolycosa domifex*
- 716 (Hancock, 1899; fig. Pl II). (B) Generalized shape of spider burrows (Ctenizidae, Antrodiaetidae,
- 717 Theraphosidae and Lycosidae) from Ratcliffe & Fagerstrom (1980, fig. 1B). Not to scale. (C)
- 718 Geolycosa xera archboldi and (D) G. hubbelli burrows by Carrel (2008, fig. 1). (E) Geolycosa
- 719 missouriensis burrow (Suter et al., 2011, fig. 1). (F) Geolycosa sp. (Chikhale et al., 2013, fig. 7).
- 720 (G) Allocosa brasiliensis burrows produced by females (a)., males (b), and juveniles (c) (Albín et
- 721 al. 2015, fig. 1). (H) Hogna lenta: a. vertical shaft (Hils and Hembree ,2015; fig. 12-2), b. vertical
- 722 shaft with a terminal chamber (Hils and Hembree ,2015; fig. 14-4), c. subvertical shaft (Hils and
- 723 Hembree ,2015; fig. 13-4), and d. Y-shaped burrow (Hils and Hembree ,2015;, fig. 15-1) (I)
- 724 Tetralycosa (a) offset burrow (b) with original backfilled burrow (Framenau and Hudson, 2017,
- 725 | fig. 3). (J) Allocosa senex (Foelix et al., 2017; fig. 16). (K) Trochosa hispanica (Uchman et al.,
- 726 2017; fig. 6A).
- 727 Figure 2. Location map of the study area. (A-B) Site of study in the Gran Salitral saline lake in
- La Pampa Province, Argentina. (C) Geomorphologic map of the Gran Salitral area and location
- 729 of *Pavocosa* sp. burrows (GS).
- 730 Figure 3. Measurements on burrow casts. Length (L), neck length (NL), minimum (mD) and
- 731 maximum diameter (MD), angle of inclination (A).
- 732 Figure 4. View of *Pavocosa* sp. burrows in the field. (A) Site of observation of burrows in an
- open area with sparse vegetation (Heterostachys ritteriana). (B) Longitudinal section of an
- 734 inhabited burrow with silk lining. Scale divisions in centimeters. (C) Entrance covered with a thin
- 735 layer of silk. (D) Burrow partially closed with a cap of silk and sediment pellets; (E) Sac of eggs

Con formato: Español (Argentina)

- 736 found inside the burrow. Scale divisions in millimetres. (F) Partially plugged entrance and
- 737 sediment pellets dispersed on the surface of the sandflat.
- 738 Figure 5. Sediments of the sandflat. (A) Detailed section of the sediments observed at the pit. (B)
- 739 Representative grain size distribution of sediment samples. (C) Classification of sediment
- samples after Shepard (1954).
- 741 Figure 6. Comparison between type material of *Pavocosa gallopavo* and *Pavocosa* sp. (A)
- 742 Female epigyne of *Pavocosa gallopavo* (MACN-Ar 13208), arrow pointing deep furrows on the
- 743 atrium. (B) Female epigyne of *Pavocosa* sp. (MACN-Ar 38582), arrow pointing deep furrows on
- 744 the atrium. (C) Dorsal view of Pavocosa gallopavo (MACN-Ar 13208). (D) Dorsal view of
- 745 *Pavocosa* sp. (MACN-Ar 38582). Scale divisions in millimetres.
- 746 Figure 7. Plaster casts of *Pavocosa* sp. burrows. (A) GHUNLPam-4771 (*Pavocosa* sp. Dweller is
- 747 specimen GHUNLPam -4780). (B) GHUNLPam -4772. (C) GHUNLPam -4773. (Pavocosa sp.
- dweller and an egg sac found at the bottom of the burrow is specimen GHUNLPam -4770). (D)
- 749 GHUNLPam -4774. Originally with an egg sac found at the bottom. (E) GHUNLPam -4775. (F-
- 750 G) Surface texture of burrow casts in the form of sets of two linear parallel ridges (arrows). (H)
- 751 View of cheliceral fangs of *Pavocosa* sp. (specimen GHUNLPam -4780).
- Figure 8. Plaster casts of modified *Pavocosa* sp. burrows. (A-B) Burrows with umbrella-like
- 753 structures in the middle part, probably produced by reoccupation by ants (GHUNLPam-4776 and
- 754 4777). (C-D) Plan view of umbrella-like structure from burrow casts GHUNLPam-4776 and
- 755 4777. (E) Detail of the knobby surface texture of the umbrella-like structure. (F) Cast showing
- 756 two smaller burrows arising from the bottom of the wolf spider burrow (GHUNLPam -4778). (G)
- 757 Funnel-shaped burrow cast as result of predation by a small mammal (GHUNLPam -4779).

- Arrows point to a set of two parallel ridges. (H) Detail of the set of two linear parallel ridges
- 759 (arrows). (I) Field view of burrow modified by predation (related to the cast figured in G). Note
- 760 brecciated fragments produced during excavation.