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ABSTRACT
Natural products from the unique environments of sea water and oceans represent a

largely unfamiliar source for isolation of new microbes, which are potent producers

of secondary bioactive metabolites. These unique life-forms from the marine

ecosphere have served as an important source of drugs since ancient times and still

offer a valuable resource for novel findings by providing remedial treatments.

Therefore, it can be expected that many naturally bioactive marine microbial

compounds with novel structures and bioactivities against those from terrestrial

environments may be found among marine metabolites. Biofilms in aquatic

environment possess serious problems to naval forces and oceanic industries around

the globe. Current anti-biofilm or anti-biofouling technology is based on the use of

toxic substances that can be harmful to their surrounding natural locales.

Comprehensive research has been done to examine the bioactive potential of marine

microbes. Results are remarkably varied and dynamic, but there is an urgent need for

bioactive compounds with environmentally friendly or “green” chemical activities.

Marine microbes have the potential as upcoming and promising source of non-toxic

compounds with sustainable anti-biofouling/anti-biofilm properties as they can

produce substances that can inhibit not only the chemical components required for

biofilm production but also the attachment, microorganism growth, and/or cell–cell

communication.
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INTRODUCTION
Little is known about the ecology of marine microorganisms, which is probably the reason

that attention was not given by chemists and ecologists to these organisms for many years.

As they flourish in diverse types of ecological pressures, climates, food supplies, and

darkness, these marine organisms develop certain adaptation mechanisms. This can
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include the struggle for space, avoidance of predators, ability to effectively reproduce,

and many other unknown defense mechanisms. Evolution/production of unique and

natural bioactive metabolites is one such outcome resulting from these adaptations,

which can be beneficial for human beings in many ways. They can possibly be responsible

for the interaction with chemical components of biofilms (Joint, Muhling &

Querellou, 2010).

Naturally bioactive chemical compounds produced by bacteria and diatoms can cause

disruption in biofilm formation (Ganapiriya, Maharajan & Kumarasamy, 2012);

therefore, they can be useful in development of environmentally friendly compounds for

protection against marine bio-fouling (Holmström & Kjelleberg, 1999). It is just a matter of

finding the correct naturally bioactive compound for a specific application. Coating and

application of active ingredients from marine organisms (invertebrates, microorganisms,

algae) that prevent the growth and settlement of fouling organisms has been proposed

since the 1980s (Maki et al., 1988) but none of the potent, non-toxic, naturally bioactive

compounds from diverse marine life-forms are found to be active against biofouling.

When compared with the natural anti-biofoulants from macro-organisms (sponges,

mollusks, tunicates, bryozoans, polychetes, and many other marine invertebrates), very

limited information is available from marine microorganisms (Fusetani, 2004).

Our aim through this literature review was to search for potential biologically active

compounds, whose chemical information can be useful in facilitating the development of

new anti-biofouling or anti-biofilm agents from natural marine sources (Li et al., 2018).

These agents should possess some extent of bioactivity, either against biofilms or any other

biofilm producing microorganism and must rely on two actions: (1) synergistic action

and (2) continuous production of enough potent molecules/defensive compounds by

microbes so that they may also be induced upon attacks on the host. Thus far, after

comparing the available information on bioactive metabolites from macro-organisms,

only a small number of microorganisms have been investigated for bioactive metabolites

(Debbab et al., 2010). This review covers future research with new biologically active

natural marine microbial compounds and highlights their mechanism of action with

focus on chemical potential. Meticulous research in the field of bioactive compounds

from marine microbes may open the gates for many prospect implications in oceanic

industries as well as in the field of biomedical sciences.

The ocean is called the “mother of origin of life,” and an enormous proportion of all life

on Earth exists within the oceans (Mora et al., 2011). In densely populated marine

environments, space is often a limiting factor. When free space is not available, one

organism grows on top of another one. This process is defined as epibiosis (Wahl et al.,

2012). Adaptation to epibiosis arises via three methods: (1) tolerance; (2) avoidance; and

(3) defense (Wahl et al., 2012). Overgrowth is controlled by employing either one or a

combination of ecological, physical, and chemical defense mechanisms (Wahl, Jensen &

Fenical, 1994), which includes the major factor, production of bioactive metabolites

(Wahl & Banaigs, 1991). Studies unraveling the epibiotic chemical defense of marine

microorganisms can provide insight into the development of novel ecofriendly antifouling

compounds and strategies (Jensen & Fenical, 1996).
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Biofouling occurrence in the marine environment is a sequential process, commencing

with micro-fouling and concluding with macro-fouling. The adverse effects of biofouling

and economic penalties to the marine industries are well known (Bekiari et al., 2015;

Dang & Lovell, 2016). In addition, fouling is also known to cause destruction of metallic

surfaces by accelerating the corrosion rate (Edyvean, Thomas & Brook, 1988). Numerous

efforts are beingmade to control biofouling with applications of physical, chemical, biological

compounds, but it is achieved to the greatest extent only with the use of anti-fouling paint

coatings (Cao et al., 2011; Iorhemen, Hamza & Tay, 2016; Lade, Paul & Kweon, 2014).

Use of toxic anti-foulants and its related environmental concerns have caused an increase

in development of non-toxic alternatives (Callow & Callow, 2011; Nurioglu, Esteves &

de With, 2015). In this perspective, studies concerning marine micro-organisms’ epibiotic

chemical defense in the control of biofouling show great promise. Efforts in these areas have

proven that the wide range of marine organisms such as algae, sponges, gorgonians,

bryozoans, and ascidians are a potential source of anti-fouling metabolites (Ganapiriya,

Maharajan & Kumarasamy, 2012; Zhang et al., 2014). However, not much detail is known to

date regarding anti-biofouling/anti-biofilm natural compounds from marine

microorganisms. Figure 1 demonstrates statistics about the number of publications in

PubMed from 1989 until 2017 regarding this subject. These data explain the urgent need to

explore the enigma of favorable marine microbes’ activities against biofouling. Since the

beginning of this type of research, studies concerning marine microbial metabolites, have

Figure 1 Comparative statistical data about number of publications in PubMed since 1989 till 2017.

Comparative general data about the number of publications in PubMed when searching for several

keywords/phrases: (1) microbial natural bioactive compounds (blue column); (2) marine microbial

natural bioactive compounds (yellow column); (3) microbial anti-biofilm compounds (red column);

and (4) marine microbial anti-biofilm compounds (green column). Moving average trend lines show

the importance and urgent need for research concerning on marine microbial natural anti-biofouling/

anti-biofilm compounds. Full-size DOI: 10.7717/peerj.5049/fig-1
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shown significance that is only related to therapeutic and pharmaceutical agents for various

commercial and medical applications (Table 1); however, none have been identified to date,

which can be viewed as the existence of potent anti-biofouling/anti-biofilm marine

microbial derivatives without any synthetic modifications.

Enormous numbers of studies have been done to discover natural product-derived

anti-foulants as a substitute for toxic anti-fouling paints (Ciriminna, Bright & Pagliaro,

2015; Omae, 2003; Qian, Xu & Fusetani, 2009; Wang et al., 2017). Epibiotic chemical

defense of marine organisms have been evaluated, but some restrictions hindered those

investigations. For instance, these studies were carried out in the laboratory against one or

two groups of epibionts (Davis, 1991; Laudien & Wahl, 2004), and such unrealistic assay

conditions do not exist in nature (Henrikson & Pawlik, 1998). This restricts the scope of

studies concerning epibiotic chemical defense in marine organisms, which present a wide

range of epibionts in nature. In this respect, evaluation of metabolites obtained from

marine microorganisms against broad spectrum of epibionts provides better insight into

epibiotic chemical defense (Penesyan, Kjelleberg & Egan, 2010).

In the real world, identification of bioactive metabolites origins is complicated as some

marine invertebrates are home for a wide range of bacteria. For example, in some sponge

species, bacteria contribute up to 60% of the total biomass (Mohamed et al., 2008) and in

Table 1 List of areas commonly known for applications/uses of marine microbial natural bioactive

compounds.

Medical significance of marine microbial metabolites

Antibacterial

Antiviral

Antiparasitic

Antifungal

Anticoagulant

Antimutagenic

Antihyperglycaemic

Antitumoral

Antiinflammatory

Anticarcinogenic

Antioxidant

Taste astringent

Photoprotection

Immunomodulator

Emulsifier

Gelling agent

Cosmetics industry

Textile industry

Stimulant
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some studies they have been reported to produce bioactive metabolites similar to their

host (Graça et al., 2015; Elyakov et al., 1991). Such cases are a subject of scientific debate.

Several other studies have reported the isolation of bioactive metabolites from

microorganisms associated with their invertebrate hosts (Kelecom, 2002; Bernan,

Greenstein & Maiese, 1997; Hay, 2009). As an example, the marine sponge was the known

source for the isolation of surfactant-like depsipeptides (Prasad et al., 2011; Anjum et al.,

2016). Later, it was found that the bacterium Bacillus pumilus produces these compounds

which were previously associated with just the sponge (Kalinovskaya et al., 1995).

In view of this, it is important to understand the role of associated bacteria in the

production of bioactive metabolites and the importance of their association with

the invertebrate host, which is still not clear at this time. However, studies to explore the

relationship between anti-microbial activity and anti-fouling activities are lacking. In this

context, studies to elucidate the effectiveness/isolation of various types of extracts against/

frommicroorganisms will give a better understanding of these microorganisms’ activities.

SURVEY METHODOLOGY
All peer reviewed scientific papers were used for this review article. Extensive literature

searches have been performed using various literature search engines, including Science

Direct and PubMed with several terms: (1) microbial natural bioactive compounds;

(2) marine microbial natural bioactive compounds; (3) microbial anti-biofilm compounds;

and (4) marine microbial anti-biofilm compounds. All relevant studies meeting search

criteria were included in this review.

Need for antibiofilm or antibiofouling bioactive compounds with
green chemistry
What is green chemistry and why do we need it? Chemistry is undeniably a very obvious

part of our daily lives, and new chemical developments bring new environmental

complications with unexpected harmful side effects. Hence, there is continued pressure on

various chemical industries to reduce chemical waste and use their creativity to develop

novel synthetic methods, reaction conditions, analytical tools, catalysts, and processes

under the new paradigm of “green chemistry” (Erickson, Nelson & Winters, 2012).

The term green chemistry, also known as sustainable chemistry, was introduced by Paul

Anastas in 1991 (Matthews, 2000). Twelve principles of green chemistry were created that

encompass a new attitude toward industrial practices and chemical syntheses (Winterton,

2016). This set of principles describes guidelines for reduction/elimination of the

generation of hazardous substances while designing, manufacturing, and applying any

chemical products. It is the only science that focuses on the intrinsic hazards of a chemical

or chemical process. Thus, to realize more sustainable thinking and implementation of

sustainability criteria in research, development, and production, educational strategies

have to include green chemistry principles and indicators of sustainability (Burmeister,

Rauch & Eilks, 2012; Wilson & Schwarzman, 2009).

Formation of biofilms leads to biofouling, which is a process of gradual accumulation

of waterborne organisms on natural and artificial surfaces of marine environment that
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leads to corrosion and decline in the efficiency of moving parts (Adnan et al., 2010; Adnan,

Morton & Hadi, 2011; Yebra, Kiil & Dam-Johansen, 2004). Advances in polymer chemistry

in the early 1970s led to biofouling control, but it was based on the use of toxic substances

such as tributyl tin (TBT) (Rouhi, 1998), copper or organic compounds (such as Sea-Nine,

isothiazolone) (Yebra, Kiil & Dam-Johansen, 2004), or self-polishing copolymer anti-

fouling paints, in which organotins are the biocides. So far, organotins are the most

effective methods of biofouling control; however, these chemicals are toxic to aquatic

environments (Yebra, Kiil & Dam-Johansen, 2004). The use of such toxic biocides presents

environmental concerns involving anomalies in non-target organisms that include shell

malformation in bivalves, depletion of oyster population, imposex in gastropods, and

others (Park et al., 2016). TBT has been labeled as the most lethal substance to have been

deliberately introduced in to the marine environment by man (Park et al., 2016). In

general, the use of such toxins in marine environments poses a real threat to the marine

biota (Fleming et al., 2006). Effective from January 2008, the International Maritime

Organization (IMO) and Marine Environmental Protection Committee (MEPC)

introduced resolutions to ban the practice of using TBTor other substances containing tin

as biocides (Champ, 2003). Therefore, there is a need for the development of

environmental friendly non-toxic and natural anti-biofouling agents.

Advancement in methods used to prevent microbial biofilm and
biofouling
Since removal of biofilms is a very difficult, challenging, and demanding process, a

complete and cost-effective cleaning procedure should be developed (Caixeta et al., 2012)

because an inappropriate cleaning strategy generally leads to biofilm formation (Garrett,

Bhakoo & Zhang, 2008). A number of methods can be used to prevent microbial biofilm

formation and/or biofouling. Currently, these measures fall into three economically

lucrative categories: (1) physical; (2) chemical; and (3) biological methods (Cao et al.,

2011). In this review, we will discuss the biological methods that are currently used.

Adsorption of bioactive compounds such as bacteriocins and nisin onto food-contact

surfaces reduces bacterial adhesion. Enzyme mixtures have also proven to be effective for

cleaning and biofilm removal (Garrett, Bhakoo & Zhang, 2008; Stiefel et al., 2016; Guerra

et al., 2005; Van Houdt & Michiels, 2010; Pimentel-Filho et al., 2014). Unique properties of

Endo H (endoglycosidases) for removal of bacteria such as Staphylococci and E. coli

from glass and cloth surfaces makes it useful in buffers and detergent solutions

(Carpenter, Goldstein & Lad, 1995). Colanic acid-degrading enzymes, derived from a

Streptomyces isolate, are also useful for removal and prevention of biofilm formation

(Van, Bruggeman & Van, 1996).

Marine benthic organism surfaces act as potential locations for the settlement of

fouling organisms, including bacteria, algae, and invertebrates (Cao et al., 2011; Pereira

et al., 2002). However, at the same time these organisms present a great variety of potential

defense mechanisms against fouling organisms, which include surface sloughing,

possession of spines, production of mucus, low surface energy, and secondary metabolite

production (Pereira et al., 2002). Secondary metabolites demonstrating anti-fouling
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properties opened a new perception into inhibition of overgrowth by epibionts and could

possibly be used as commercial anti-biofoulants (Wahl et al., 2012). In fact, a vast range of

tested anti-biofoulants have been patented. However, these anti-biofoulants have been

tested under laboratory conditions, using the larvae of fouling organisms such as

barnacles and bryozoans (Pereira et al., 2002; Zimmerman et al., 1997). Moreover, there

are only few studies in which this test has been performed under ecological settings, in

which real concentrations of metabolites found in source organisms were used (Da Gama

et al., 2002). From a molecular perspective, secondary marine metabolites seem to hinder

bacterial colonization and can control biofilm formation/biofouling (Kjelleberg et al.,

1997). To justify and prove this statement, further investigations, including ecological and

molecular tests, are required.

Ecological role of marine bioactive compounds
Natural marine products, secondary metabolites, enzymes, lipids, and

heteropolysaccharides derived from marine sources are biologically active. Moreover, they

are safer, cheaper, and less toxic than existing medicines (D’Ayala, Malinconico &

Laurienzo, 2008; Bergé & Barnathan, 2015). Out of 36 known living phyla, 34 are found in

throughout the marine environment with more than 300,000+ known species of flora and

fauna (Baskaran et al., 2017) (and still counting). However, the detailed ecological role of

these marine animal-extracted secondary metabolites, which includes prevention of

fouling, anti-predation, protection from ultraviolet radiation, mediation of spatial

competition, and other functions (Armstrong, Boyd & Burgess, 2000) is still not clear and

present areas for novel and extensive studies.

Many natural marine products are currently being tested in clinical trials, and various

others are presently used for treating microbial infections (fungal, malarial, bacterial,

viral, and nematode) and pain management in addition to cancer and inflammation

control (Martins et al., 2014). The first marine compound to enter a human cancer clinical

trial as a purified natural product was Didemnin-B from the Caribbean tunicate

Trididemnum solidum (Ram et al., 2008). Unfortunately, secondary metabolites of macro-

organisms are usually present in trace amounts, and that presents a drawback to use of the

marine compounds. Due to less stock, the marine compound cannot compete with the

development of widely available medicines. The developmental ways such as bioprocess

engineering is currently the most important method for obtaining large quantities of

beneficial secondary metabolites. This can only be accomplished by extracting and testing

less investigated drug sources such as marine fungi and bacteria, which are vast untapped

reservoirs of metabolic diversity (Debbab et al., 2010).

Microorganisms have some advantages such as isolation of the same compound in

large-scale cultivation using biotechnological fermentations and advance bioprocessing

engineering techniques with different parameters without ecological exploitation. They

can also easily be genetically manipulated. There is still opportunity for an advanced scale

of research and investigation to discover the potential of marine microorganisms as

producers of novel drugs (Malve, 2016).
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Bioactive compounds from marine bacteria, fungi and cyanobacteria
Over the last several decades, microorganisms have been accepted as significant and

unexploited resources for many unique bioactive compounds with clinical significance

(Malve, 2016; Zhang et al., 2005). It is very clear that microbial diversity found in the

oceans is poorly understood, and <5% of marine bacterial and fungal species are known

(de Felı́cio et al., 2015). Microbes thrive not only in the sea’s surface waters but also in the

lower and immeasurable depths (Das, Lyla & Khan, 2006). For survival, soft-bodied

marine organisms rely on chemical defenses from the production of bioactive secondary

metabolites either by themselves or in association with microflora (Mehbub et al., 2014).

These secondary metabolites may represent a diverse structure of classes that include

terpenes, peptides, polypeptides, and compounds of mixed biosynthetic origin. A total of

961 new compounds from marine microorganisms were described in the year 2007 (Blunt

et al., 2009). These studies and the sharp rise in numbers of these compounds indicate that

the study on secondary metabolites from marine bacteria and fungi as source of new

bioactive metabolites has been steadily increasing. So far, only a few anti-larval settlement

compounds have been isolated and identified from bacteria (Table 2).

One of the ways of discovering novel bioactive metabolites from marine

microorganisms is via isolation of new microorganisms. Research over the years has

demonstrated that out of 10% of cultivable microorganisms, only 1% were found to have

clinical and industrial significance (Vartoukian, Palmer & Wade, 2010). Due to the

complex nature of the oceans, marine bacteria have developed sophisticated physiological

and biochemical systems with which they uniquely adapt to extreme habitats and various

unfavorable marine environmental conditions. They live in a biologically competitive

environment with unique conditions of pH, temperature, pressure, oxygen, light,

nutrients, and salinity, which is especially rich in chlorine and bromine elements.

Microbes can quickly sense, adapt, and respond to their environments (Adnan et al., 2010;

Adnan, Morton &Hadi, 2011) and can compete for defense and survival via the generation

of unique secondary metabolites. Although the response to stress initiates the production

of these compounds, they have shown value in pharmaceutical and biotechnological

applications (Darvishi Harzevili & Chen, 2014).

Among all microorganisms, fungi are found to be a potentially useful source of

pharmacologically active metabolites because they have the capability to adapt and survive

in marine environments and to produce unique secondary metabolites. Fungi have also

been widely distributed in marine habitats such as seawater, sediment, marine animals,

and plants. Even though decomposition of dead plants and animal tissues has been

suggested to play an important ecological role in recycling nutrients (Zhang et al., 2015),

the role of marine fungi is poorly understood. Marine fungi have been isolated from

different marine habitats for the investigation of natural products (Imhoff, 2016). They

found to form a mutual synergetic relationship with other marine organisms such as

algae, sponges, mollusks and corals, but this association and related functions are rarely

known (Ding et al., 2011). Culture-based technology is used for the isolation of various

fungi from marine habitats. Due to their uniqueness when compared with their terrestrial
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Table 2 List of few marine microbial species reported to produce bioactive metabolites with antibiofilm and antifouling activities (Abu Sayem

et al., 2011; Arai, Niikawa & Kobayashi, 2013; Busetti et al., 2015; Dos Santos et al., 2010; Estrela & Abraham, 2016; Fusetani, 2011;

Hong & Cho, 2013; Jiang et al., 2011; Salta et al., 2013; Satheesh, Ba-Akdah & Al-Sofyani, 2016; Scopel et al., 2014; Shao et al., 2015; Shao

et al., 2011; Yang et al., 2007).

Microorganism Bioactive compound Biological

activity

Effects against Relevance

Bioactive compounds isolated from marine bacteria

Bacillus licheniformis a-D-galactopyranosyl-(1/2)-

glycerol-phosphate

Antibiofilm Escherichia coli and Pseudomonas

fluorescens

Clinical

Alteromonas sp. Ubiquinone-8 Antifouling Larval settlement of barnacle Balanus

amphitrite

Environmental

Acinetobacter sp. 6-bromoindole-3-carboxaldehyde Antifouling Larval settlement of barnacle Balanus

amphitrite

Environmental

Pseudomonas sp. Pyolipic acid Antifouling Larval settlement under laboratory and

field experiment assays

Environmental

Pseudomonas sp. Phenazine-1-carboxylic acid Antifouling Larval settlement under laboratory and

field experiment assays

Environmental

Pseudomonas sp. 2-alkylquinol-4-ones Antifouling Larval settlement under laboratory and

field experiment assays

Environmental

Streptomyces praecox Diketopiperazines Antifouling Larval settlement under laboratory and

field experiment assays

Environmental

Streptomyces

violaceoruber

3-octa-1′,3′-dienyl-4-methylfuran-2

(5H)-one

Antifouling Zoospores of Ulva pertusa, the diatom

Navicula annexa, and the mussel

Mytilus edulis

Environmental

Streptomyces

violaceoruber

3-octa-1′-enyl-4-methylfuran-2(5H)-

one

Antifouling Zoospores of Ulva pertusa, the diatom

Navicula annexa, and the mussel

Mytilus edulis

Environmental

Vibrio sp. QY101 Exopolysaccharide A101 Antibiofilm Pseudomonas aeruginosa FRD1 Clinical

Bioactive compounds isolated from marine fungi

Letendraea

helminthicola

3-methyl-N-(2-phenylethyl)

butanamide

Antifouling Larval settlement of barnacle Balanus

amphitrite

Industrial/Environmental

Scopulariopsis sp. Dihydroquinolin-2(1H)-one Antifouling Larval settlement of barnacle Balanus

amphitrite

Industrial/Environmental

Letendraea

helminthicola

Cyclo (D-Pro-D-Phe) Antifouling Larval settlement of barnacle Balanus

amphitrite

Cochliobolus lunatus Resorcyclic acid lactones Antifouling Larval settlement of barnacle Balanus

amphitrite

Industrial/Environmental

Emericella variecolor Ophiobolin K Antibiofilm Mycobacterium bovis Clinical

Emericella variecolor 6-epi-ophiobolin K Antibiofilm Mycobacterium smegmatis Clinical

Emericella variecolor 6-epi-ophiobolin Antibiofilm Mycobacterium smegmatis Clinical

Unidentified marine

fungus

Mevalonolactone Antibiofilm Staphylococcus epidermidis Clinical

Marine Penicillium sp. Cyclo(L-Tyr-L-Leu) Antibiofilm Staphylococcus epidermidis Clinical/Environmental

Penicillium commune Cyclo(L-Leu-L-Pro) Antibiofilm Staphylococcus aureus Clinical/Environmental

Cladosporium sp. F14 cyclo-(Phe-Pro) Antibiofilm Loktanella hongkongenis, Micrococcus

luteus and Ruegeria sp.

Clinical/Environmental

Cladosporium sp. cyclo-(Val-Pro) 4 Antibiofilm Loktanella hongkongenis Clinical/Environmental

Aspergillus flavipes Flavipesin A 49 Antibiofilm Staphylococcus aureus and Bacillus

subtilis

Clinical

(Continued)
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counterparts, they have also shown to be phylogenetically distant (Reich & Labes, 2017;

Rédou et al., 2015). They are a promising source for new bioactive natural products with

high structural diversity when compared with other microbial sources isolated from the

sea. Because of their living conditions, including tolerance to salinity, high pressure,

nutrition requirements, temperature variations, and competition with other microbes, they

may have developed unique metabolic pathways (Samuel, Prince & Prabakaran, 2011).

The most famous and first reported group of bioactive compounds obtained from

marine-derived fungi were cephalosporins (with cephalosporin C) that were isolated by

Brotzu in 1945 from a marine strain of Acremonium chrysogenum. They had been

discovered in a sewage outlet in the Mediterranean Sea close to the island of Sardinia

coast, and they exhibited pronounced antibacterial activities (Silber et al., 2016; Demain &

Elander, 1999). After the discovery of cephalosporin C, siccayne was isolated from

Halocyphina vilosa and was identified as the second antibiotic from marine-derived fungi

(Kupka et al., 1981). Marine-derived fungi have been widely studied for novel anti-cancer,

anti-bacterial, anti-plasmodial, anti-inflammatory, and anti-viral agents (Rajasekar et al.,

2012). However, very few anti-biofilm/anti-biofouling bioactive metabolites have been

derived from marine fungi.

More than 270 new natural products isolated from marine fungi between 1990 and

2002 followed by 330 new metabolites between 2002 and 2006 have been reported (Imhoff,

2016). In 2009 and 2010, >472 new structures were reported. The total number of new

natural products from marine-derived fungi currently exceeds 1,000, and a few of them

are in preclinical and clinical trials (Gomes et al., 2015). The ecological role of these

multiple compounds include prevention of fouling, competition for space/resources,

protection from ultraviolet radiation, and facilitation of reproduction (Nunez-Pons &

Avila, 2015). These marine-derived fungal metabolites have been proven to be promising

anti-fouling/anti-biofilm agents, but still required additional investigation and

implementation in oceanic-related industries.

Marine cyanobacteria (blue–green algae) are another such group of prokaryotic

photosynthetic organism and are potent sources of pharmacological and industrial

products having diverse structures and habitats that are known to produce various

Table 2 (continued).

Microorganism Bioactive compound Biological

activity

Effects against Relevance

Bioactive compounds isolated from marine algae

Chondrus crispus (+)—Usnic acid Antibiofilm Cobetia marina and Marinobacter

hydrocarbonoclasticus

Environmental

Chondrus crispus Juglone Antibiofilm Cobetia marina and Marinobacter

hydrocarbonoclasticus

Environmental

Laurencia elata Elatol Antifouling Leishmania amazonensis Clinical

Halidrys siliquosa Organic extract Antibiofilm Staphylococcus; Streptococcus;

Enterococcus; Pseudomonas;

Stenotrophomonas; and

Chromobacterium

Clinical
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bioactive compounds (Mourelle, Gómez & Legido, 2017). The potential use of

cyanobacteria has gained worldwide attention in view of their importance in agriculture,

industry, pharmaceutical markets, and other areas (Singh et al., 2017). They are the richest

sources of known and unique bioactive compounds, including toxins with potential for

therapeutic applications (Singh et al., 2017). Marine cyanobacteria demonstrate a wide

range of biological activities, including its use as biocontrol agents against various

bacterial and fungal pathogens in addition to its use as a potential source of novel

antibiotics. They are known to produce anti-bacterial and anti-fungal compounds

(Shantanu et al., 2013), anti-cancerous and anti-neoplastic agents, and compounds that

may be useful in the treatment of human immunodeficiency virus (Vijayakumar &

Menakha, 2015; Swain, Padhy & Singh, 2015). Screening of cyanobacteria for potent anti-

biofouling/anti-biofilm natural agents will open a new horizon for marine industries

(Table 2). More than 50% of marine cyanobacteria are potentially exploitable for

extracting bioactive substances, which can be effective anti-biofouling agents.

Cyanobacterial blooms are rich sources of secondary metabolites with novel chemical and

molecular structures (Engene et al., 2011). Exploring the efficiency of cyanobacterial

products has an advantage; it can be grown in mass culture, which can be manipulated to

attain optimal production of bioactive substances.

CONCLUSIONS
Ever since the beginning of development of a civilized society, biologically active

compounds, which are obtained from diverse range of microbes, have been extensively

investigated. Bacterial biofilms are the dominant reason for biofouling in most

commercial systems with no permanent solution toward removal of biofilms. Microbial

secondary bioactive metabolites possess quite a few pharmaceutical applications. Use of

ecofriendly biocides as an alternative to synthetic chemicals has recently emerged because

the sole purpose of green chemistry is to either discover or to produce the best and novel

chemical products that are safe for use with increased productivity. Unquestionably, our

understanding of the field of microbial metabolites has significantly improved over the

past several years, but there are still many steps to achieve a better understanding about

the potential of marine microbial metabolites. We are in a promising era of science, which

proves to be the right time; we can uncover the potential of marine microbes in the field of

biofouling prevention and not in biofouling causation. In order to explore the natural

anti-fouling/anti-biofilm compounds (green chemistry) and potential of marine

microbes, this review will definitely draw attention to the search for bioactive metabolites

that can resolve many difficulties and obstacles not only for oceanic industries, but many

other industrial systems.
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Mourelle LM, Gómez PC, Legido LJ. 2017. The potential use of marine microalgae and

cyanobacteria in cosmetics and thalassotherapy. Cosmetics 4(4):46

DOI 10.3390/cosmetics4040046.

Nunez-Pons L, Avila C. 2015. Natural products mediating ecological interactions in Antarctic

benthic communities: a mini-review of the known molecules. Natural Product Reports

32(7):1114–1130 DOI 10.1039/c4np00150h.

Nurioglu AG, Esteves AC, de With G. 2015. Non-toxic, non-biocide-release antifouling coatings

based on molecular structure design for marine applications. Journal of Materials Chemistry B

3(32):6547–6570 DOI 10.1039/c5tb00232j.

Omae I. 2003. Organotin antifouling paints and their alternatives. Applied Organometallic

Chemistry 17(2):81–105 DOI 10.1002/aoc.396.

Park MS, Kim YD, Kim BM, Kim YJ, Kim JK, Rhee JS. 2016. Effects of antifouling biocides on

molecular and biochemical defense system in the gill of the pacific oyster Crassostrea gigas.

PLOS ONE 11(12):e0168978 DOI 10.1371/journal.pone.0168978.

Penesyan A, Kjelleberg S, Egan S. 2010. Development of novel drugs from marine surface

associated microorganisms. Marine Drugs 8(3):438–459 DOI 10.3390/md8030438.

Pereira RC, Carvalho AGV, Gama BAP, Coutinho R. 2002. Field experimental evaluation of

secondary metabolites from marine invertebrates as antifoulants. Brazilian Journal of Biology

62(2):311–320 DOI 10.1590/s1519-69842002000200015.

Pimentel-Filho NdJ, Martins MCdF, Nogueira GB, Mantovani HC, Vanetti MC. 2014. Bovicin

HC5 and nisin reduce Staphylococcus aureus adhesion to polystyrene and change the

hydrophobicity profile and Gibbs free energy of adhesion. International Journal of Food

Microbiology 190:1–8 DOI 10.1016/j.ijfoodmicro.2014.08.004.

Prasad P, Aalbersberg W, Feussner KD, Van Wagoner RM. 2011. Papuamides E and F, cytotoxic

depsipeptides from the marine sponge Melophlus sp. Tetrahedron 67(44):8529–8531

DOI 10.1016/j.tet.2011.08.100.

Qian PY, Xu Y, Fusetani N. 2009.Natural products as antifouling compounds: recent progress and

future perspectives. Biofouling 26(2):223–234 DOI 10.1080/08927010903470815.

Adnan et al. (2018), PeerJ, DOI 10.7717/peerj.5049 16/18

http://dx.doi.org/10.1007/bf00391303
http://dx.doi.org/10.4103/0975-7406.171700
http://dx.doi.org/10.3390/md12021066
http://dx.doi.org/10.3390/md12084539
http://dx.doi.org/10.1128/aem.00454-08
http://dx.doi.org/10.1371/journal.pbio.1001127
http://dx.doi.org/10.3390/cosmetics4040046
http://dx.doi.org/10.1039/c4np00150h
http://dx.doi.org/10.1039/c5tb00232j
http://dx.doi.org/10.1002/aoc.396
http://dx.doi.org/10.1371/journal.pone.0168978
http://dx.doi.org/10.3390/md8030438
http://dx.doi.org/10.1590/s1519-69842002000200015
http://dx.doi.org/10.1016/j.ijfoodmicro.2014.08.004
http://dx.doi.org/10.1016/j.tet.2011.08.100
http://dx.doi.org/10.1080/08927010903470815
http://dx.doi.org/10.7717/peerj.5049
https://peerj.com/


Rajasekar T, Balaji S, Kumaran S, Deivasigamani B, Pugzhavendhan SR. 2012. Isolation and

characterization of Marine fungal metabolites against clinical pathogens. Asian Pacific Journal of

Tropical Disease 2:S387–S392 DOI 10.1016/s2222-1808(12)60187-x.

Ram S, Mukul S, Penny J, Diwan SR. 2008. Clinical status of anti-cancer agents derived from

marine sources. Anti-Cancer Agents in Medicinal Chemistry 8(6):603–617

DOI 10.2174/1871520610808060603.

Rédou V, Navarri M, Meslet-Cladière L, Barbier G, Burgaud G. 2015. Species richness and

adaptation of marine fungi from deep-subseafloor sediments. Applied and Environmental

Microbiology 81(10):3571–3583 DOI 10.1128/aem.04064-14.

Reich M, Labes A. 2017. How to boost marine fungal research: a first step towards a

multidisciplinary approach by combining molecular fungal ecology and natural products

chemistry. Marine Genomics 36:57–75 DOI 10.1016/j.margen.2017.09.007.

Rouhi AM. 1998. The squeeze on tributyltins. Chemical & Engineering News 76(17):41–42

DOI 10.1021/cen-v076n017.p041.

Salta M, Wharton JA, Dennington SP, Stoodley P, Stoke KR. 2013. Anti-biofilm performance of

three natural products against initial bacterial attachment. International Journal of Molecular

Sciences 14(11):21757–21780 DOI 10.3390/ijms141121757.

Samuel P, Prince L, Prabakaran P. 2011. Antibacterial activity of marine derived fungi collected

from South East Coast of Tamilnadu, India. Journal of Microbiology and Biotechnology Research

1(4):86–94.

Satheesh S, Ba-Akdah MA, Al-Sofyani AA. 2016. Natural antifouling compound production by

microbes associated with marine macroorganisms—a review. Electronic Journal of Biotechnology

21:26–35 DOI 10.1016/j.ejbt.2016.02.002.

Scopel M, Abraham WR, Antunes AL, Henriques AT, Macedo AJ. 2014. Mevalonolactone: an

inhibitor of staphylococcus epidermidis adherence and biofilm formation.Medicinal Chemistry

10(3):246–251 DOI 10.2174/15734064113096660055.

Shantanu B, Deep PR, Binata N, Monalisa P, Bharati M. 2013. Antimicrobial activity of two

diazotropic cyanobacteria against Staphylococcus aureus. ID—20133248222. International

Journal of Medicinal and Aromatic Plants 3:283–292.

Shao CL, Xu RF, Wang CY, Qian PY, Wang KL, Wei MY. 2015. Potent antifouling marine

dihydroquinolin-2(1H)-one-containing alkaloids from the gorgonian coral-derived fungus

Scopulariopsis sp. Marine Biotechnology 17(4):408–415 DOI 10.1007/s10126-015-9628-x.

Shao CL, Wu HX, Wang CY, Liu QA, Xu Y, Wei MY, Qian PY, Gu YC, Zheng CJ, She ZG, Lin YC.

2011. Potent antifouling resorcylic acid lactones from the gorgonian-derived fungus

Cochliobolus lunatus. Journal of Natural Products 74:629–633.

Silber J, Kramer A, Labes A, Tasdemir D. 2016. From discovery to production: biotechnology of

marine fungi for the production of new antibiotics. Marine Drugs 14(7):137

DOI 10.3390/md14070137.

Singh R, Parihar P, Singh M, Bajguz A, Kumar J, Singh S, Singh VP, Prasad SM. 2017.

Uncovering potential applications of cyanobacteria and algal metabolites in biology, agriculture

and medicine: current status and future prospects. Frontiers in Microbiology 8:515

DOI 10.3389/fmicb.2017.00515.

Stiefel P, Mauerhofer S, Schneider J, Maniura-Weber K, Rosenberg U, Ren Q. 2016. Enzymes

enhance biofilm removal efficiency of cleaners. Antimicrobial Agents and Chemotherapy

60(6):3647–3652 DOI 10.1128/aac.00400-16.

Swain SS, Padhy RN, Singh PK. 2015. Anticancer compounds from cyanobacterium Lyngbya

species: a review. Antonie van Leeuwenhoek 108(2):223–265 DOI 10.1007/s10482-015-0487-2.

Adnan et al. (2018), PeerJ, DOI 10.7717/peerj.5049 17/18

http://dx.doi.org/10.1016/s2222-1808(12)60187-x
http://dx.doi.org/10.2174/1871520610808060603
http://dx.doi.org/10.1128/aem.04064-14
http://dx.doi.org/10.1016/j.margen.2017.09.007
http://dx.doi.org/10.1021/cen-v076n017.p041
http://dx.doi.org/10.3390/ijms141121757
http://dx.doi.org/10.1016/j.ejbt.2016.02.002
http://dx.doi.org/10.2174/15734064113096660055
http://dx.doi.org/10.1007/s10126-015-9628-x
http://dx.doi.org/10.3390/md14070137
http://dx.doi.org/10.3389/fmicb.2017.00515
http://dx.doi.org/10.1128/aac.00400-16
http://dx.doi.org/10.1007/s10482-015-0487-2
http://dx.doi.org/10.7717/peerj.5049
https://peerj.com/


Van SMMP, Bruggeman G, Van PJ. 1996. Exopolysaccharide degrading enzyme and use of the

same. Google Patents .

Van Houdt R, Michiels CW. 2010. Biofilm formation and the food industry, a focus on the

bacterial outer surface. Journal of Applied Microbiology 109(4):1117–1131

DOI 10.1111/j.1365-2672.2010.04756.x.

Vartoukian SR, Palmer RM, Wade WG. 2010. Strategies for culture of ‘unculturable’ bacteria.

FEMS Microbiology Letters 309:1–7 DOI 10.1111/j.1574-6968.2010.02000.x.

Vijayakumar S, Menakha M. 2015. Pharmaceutical applications of cyanobacteria—a review.

Journal of Acute Medicine 5(1):15–23 DOI 10.1016/j.jacme.2015.02.004.

Wahl M, Banaigs B. 1991. Marine epibiosis. III. Possible antifouling defense adaptations in

Polysyncraton lacazei (Giard) (Didemnidae, Ascidiacea). Journal of Experimental Marine Biology

and Ecology 145(1):49–63 DOI 10.1016/0022-0981(91)90005-h.

Wahl M, Goecke F, Labes A, Dobretsov S, Weinberger F. 2012. The second skin: ecological role of

epibiotic biofilms on marine organisms. Frontiers in Microbiology 3:292

DOI 10.3389/fmicb.2012.00292.

Wahl M, Jensen PR, Fenical W. 1994. Chemical control of bacterial epibiosis on ascidians.Marine

Ecology Progress Series 110:45–57 DOI 10.3354/meps110045.

Wang KL, Wu ZH, Wang Y, Hao YY, Wang Y. 2017. Mini-review: antifouling natural products

from marine microorganisms and their synthetic analogs. Marine Drugs 15(9):266

DOI 10.3390/md15090266.

Wilson MP, Schwarzman MR. 2009. Toward a new U.S. chemicals policy: rebuilding the

foundation to advance new science, green chemistry, and environmental health. Environmental

Health Perspectives 117(8):1202–1209 DOI 10.1289/ehp.0800404.

Winterton N. 2016. Green chemistry: deliverance or distraction? Clean Technologies and

Environmental Policy 18(4):991–1001 DOI 10.1007/s10098-016-1118-y.

Yang LH, Miao L, Lee OO, Li X, Xiong H, Pang KL, Vrijmoed L, Qian PY. 2007. Effect of culture

conditions on antifouling compound production of a sponge-associated fungus. Applied

Microbiology and Biotechnology 74(6):1221–1231 DOI 10.1007/s00253-006-0780-0.

Yebra DM, Kiil S, Dam-Johansen K. 2004. Antifouling technology—past, present and future steps

towards efficient and environmentally friendly antifouling coatings. Progress in Organic

Coatings 50(2):75–104 DOI 10.1016/j.porgcoat.2003.06.001.

Zhang L, An R,Wang J, Sun N, Zhang S, Hu J, Kuai J. 2005. Exploring novel bioactive compounds

from marine microbes. Current Opinion in Microbiology 8(3):276–281

DOI 10.1016/j.mib.2005.04.008.

Zhang T, Wang NF, Zhang YQ, Liu HY, Yu LY. 2015. Diversity and distribution of fungal

communities in the marine sediments of Kongsfjorden, Svalbard (High Arctic). Scientific

Reports 5(1):14524 DOI 10.1038/srep14524.

Zhang XY, Xu XY, Peng J, Ma CF, Nong XH, Bao J, Zhang GZ, Qi SH. 2014. Antifouling

potentials of eight deep-sea-derived fungi from the South China Sea. Journal of Industrial

Microbiology & Biotechnology 41(4):741–748 DOI 10.1007/s10295-014-1412-9.

Zimmerman RC, Alberte RS, Todd JS, Crews P. 1997. Phenolic acid sulfate esters for prevention

of marine biofouling. Google Patents .

Adnan et al. (2018), PeerJ, DOI 10.7717/peerj.5049 18/18

http://dx.doi.org/10.1111/j.1365-2672.2010.04756.x
http://dx.doi.org/10.1111/j.1574-6968.2010.02000.x
http://dx.doi.org/10.1016/j.jacme.2015.02.004
http://dx.doi.org/10.1016/0022-0981(91)90005-h
http://dx.doi.org/10.3389/fmicb.2012.00292
http://dx.doi.org/10.3354/meps110045
http://dx.doi.org/10.3390/md15090266
http://dx.doi.org/10.1289/ehp.0800404
http://dx.doi.org/10.1007/s10098-016-1118-y
http://dx.doi.org/10.1007/s00253-006-0780-0
http://dx.doi.org/10.1016/j.porgcoat.2003.06.001
http://dx.doi.org/10.1016/j.mib.2005.04.008
http://dx.doi.org/10.1038/srep14524
http://dx.doi.org/10.1007/s10295-014-1412-9
http://dx.doi.org/10.7717/peerj.5049
https://peerj.com/

	Significance and potential of marine microbial natural bioactive compounds against biofilms/biofouling: necessity for green chemistry ...
	Introduction
	Survey Methodology
	Conclusions
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <>
    /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


