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Background. Advances in 3D shape capture technology have made powerful shape analyses, such as
geometric morphometrics, more feasible. While the highly accurate micro-computed tomography (uCT)
scanners have been the “gold standard,” recent improvements in 3D surface scanner resolution may
make this technology a faster, portable, and cost-effective alternative. Several studies have already
compared the two devices but all use relatively large specimens such as human crania. Here we perform
shape analyses on Australia’s smallest rodent species to test whether a 3D scanner produces similar
results to a uCT scanner.

Methods. We captured 19 delicate mouse crania with a uCT scanner and a 3D scanner for geometric
morphometrics. We ran multiple Procrustes ANOVAs to understand how variation due to scan device
compared to other sources such as biologically relevant variation and operator error. We quantified
operator error as levels of variation and repeatability. Further, we tested if the different devices
performed differently at classifying individuals based on sexual dimorphism. Finally, we inspected
scatterplots of principal component analysis (PCA) scores for non-random patterns.

Results. In all Procrustes ANOVAs, regardless of factors included, differences between individuals
contributed the most to total variation. The PCA plots reflect this in how the individuals are dispersed.
Including only the symmetric component of shape increased the biological signal relative to variation due
to device and due to error. 3D scans showed a higher level of operator error as evidenced by a greater
spread of their replicates on the PCA, a higher level of multivariate variation, and a lower repeatability
score. However, the 3D scan and uCT scan datasets performed identically in classifying individuals based
on intra-specific patterns of sexual dimorphism.

Discussion. Compared to uCT scans, we find that even low resolution 3D scans of very small specimens
are sufficiently accurate to classify intra-specific differences. We also make three recommendations for
best use of low resolution data. First, we recommend that extreme caution should be taken when
analyzing the asymmetric component of shape variation. Second, using 3D scans generates more
random error due to increased landmarking difficulty, therefore be conservative in landmark choice and
avoid multiple operators. Third, using 3D scans introduces a source of systematic error relative to uCT
scans, therefore we recommend not to combine them when possible and especially in studies expecting
little biological variation. Our findings support increased use of low resolution 3D scans for most
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morphological studies; they are likely also applicable to low resolution scans of large specimens made in
a medical CT scanner. As most vertebrates are relatively small, we anticipate our results to bolster more
researchers designing affordable large scale studies on small specimens with 3D surface scanners.
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Abstract
Background. Advances in three-dimensional (3D) shape capture technology have made
powerful shape analyses, such as geometric morphometrics, more feasible. While the highly
accurate micro-computed tomography (LCT) scanners have been the “gold standard,” recent
improvements in 3D surface scanner resolution may make this technology a faster, more
portable, and cost-effective alternative. Several studies have already compared the two scanning
devices but all use relatively large specimens such as human crania. Here we perform shape
analyses on Australia’s smallest rodent species to test whether a 3D surface scanner produces

similar results to a pCT scanner.

Methods. We captured 19 delicate mouse crania with a uCT scanner and a 3D surface scanner
for geometric morphometrics. We ran multiple Procrustes ANOV As to understand how variation
due to scan device compared to other sources of variation such as biologically relevant sources
and operator error. We quantified operator error as levels of variation and repeatability. Further,
we tested whether different devices performed differently at classifying individuals based on a
biological source of variation (sexual dimorphism).Finally, we inspected scatterplots of principal

component analysis (PCA) scores for non-random patterns.

Results. In all Procrustes ANOV As, regardless of factors included, differences between
individuals contributed the most to total variation. This is also reflected in the way individuals
disperse on the PCA plots. Including only the symmetric component of shape increased the
biological signal relative to variation due to device and due to error. 3D scans showed a higher
level of operator error as evidenced by a greater spread of their replicates on the PCA, a higher

level of multivariate variation, and a lower repeatability score. However, the 3D scan and pCT
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scan datasets performed identically in classifying individuals based on small intra-specific

differences (sexual dimorphism).

Discussion. Compared to uCT scans, we find that even very low resolution 3D scans of very
small specimens are sufficiently accurate to capture variation at the level of interspecific
differences for classification purposes. We also make three recommendations for best use of low
resolution data. First, we recommend that extreme caution should be taken when analyzing the
asymmetric component of shape variation. Second, using 3D scans generates more random error
due to increased landmarking difficulty, therefore b@nsewative in landmark choice and avoid
multiple operators. Third, using 3D scans introduces a source of systematic error relative to pCT
scans, therefore we recommend not to comb@them when possible and especially in studies
where little biological variation is expected. Our findings support increased use of low resolution
3D images for most morphological studies; they are likely applicable to low resolution scans of
large specimens made in a medical CT scanner, for example. As most vertebrates are relatively
small, we anticipate our results to @os‘ter more researchers designing affordable large scale

studies on small specimens with 3D surface scanners.

Introduction
An organism’s shape reveals many facets of its biology, including its evolution, ecology, and
functional morphology. In the past three decades, geometric morphometrics has revolutionized
the field of shape research with better analysis and visualization of shape complexity (Rohlf &
Marcus 1993; Zelditch et al. 2012). As imaging technology continues to advance, three-
dimensional (3D) data have become extremely common in geometric morphometric studies,

especially in the cases in which 2D data poorly represent the actual 3D object (Buser et al. 2017;
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Cardini 2014; Fruciano 2016; Reig 1996). 3D capture methods include very high resolution yet
high cost and time-intensive options like micro-computed tomography (uCT) scanning. In
contrast, 3D surface scanning offers lower acquisition costs and faster scanning, but has the
disadvantage of generally lower resolution, which limits its use on very small specimens (Fig. 1).
For confident use of surface scans in small specimens, it is therefore important to assess the

measurement error introduced by choosing a 3D surface scanner for geometric morphometrics.

Most vertebrates would be considered small, for example about two thirds of mammals are
below 10kg (Weisbecker & Goswami 2010), which would translate to small skeletal specimens.
Therefore, morphometric studies proposing large sample sizes must be very well funded to use a
UCT scanner or have a low-cost option, such as a 3D surface scanner. Previous studies have
compared puCT scans to 3D surface scans, however, these were all done in large animals,
primarily primates (Badawi-Fayad & Cabanis 2007; Fourie et al. 2011; Katz & Friess 2014;
Robinson & Terhune 2017; Sholts et al. 2010; Slizewski et al. 2010). While these studies found
low error and high repeatability in 3D surface scans similar to uCT scans, there was a suggestion
that higher error occurred in the sample’s smaller specimens (Badawi-Fayad & Cabanis 2007;
Fourie et al. 2011). Other recent studies have conducted 3D geometric morphometric studies on
small vertebrate skulls but nearly all have relied exclusively on puCT scanning (Cornette et al.
2013; Evin et al. 2011). The only exception we are aware of is (Munoz-Munoz et al. 2016),
which successfully used photogrammetry — a technique combining 2D photographs into a 3D
model — to analyze domestic mouse skulls, Mus musculus domesticus (Linnaeus, 1758).
Photogrammetry, like 3D surface scanning, is a low-cost alternative to pCT and comes with its

own trade-offs in time and scan resolution (Katz & Friess 2014). Compared to the new
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generation of blue light surface scanners, photogrammetry requires more time for image
acquisition and for file processing (Katz & Friess 2014). A previous study on a single macaque
specimen reported inconsistent levels of error across operators and scanners, which contributed
to the lack of general pattern for differences across scanners/resolutions (Shearer et al. 2017).
However, using an interspecific dataset, (Fruciano et al. 2017) reported higher repeatability for
the higher resolution scans and 2.07-11.26% of total variance due to scan type (depending on
device, operator and landmark set combination). We expect that small specimens would
exacerbate any variation due to device and the interaction of device with other factors, such as
landmark choice and operator. More work comparing these different methods — uCT scanning,
3D surface scanning, and photogrammetry — will allow researchers to make an informed
decision. For example, for those with time constraints in museum collections, a fast 3D surface

scanner may be the best option if the resolution is suitable for specimen size.

The lower resolution of 3D surface scanners may increase both random and systematic
measurement error, which is exacerbated by small specimens because operators may have more
difficulty identifying landmark locations (Arnqvist & Martensson 1998; Fruciano 2016).
Random error increases variance without changing the mean; this “noise” dilutes biologically
informative patterns and, in principle, decreases statistical power (Arnqvist & Martensson 1998;
Fruciano 2016). By contrast, systematic error is non-randomly distributed, thus changing the
mean and introducing bias to the data (Arnqvist & Martensson 1998; Fruciano 2016). Error
assessment can be done with repeated measures of the same individuals (e.g. (Fruciano et al.
2017; Munoz-Munoz & Perpinan 2010; Robinson & Terhune 2017) or by comparison to a “gold

standard” or ideal representation of the specimens (Fruciano 2016; Slizewski et al. 2010;
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Williams & Richtsmeier 2003). Repeated measure designs can uncover this systematic error, for
example, if one 3D capture method differs from another in a specific, non-random, pattern
(Fruciano 2016; Fruciano et al. 2017). Furthermore, designs including repeated measures of the
same individuals allow partitioning of variance into components, quantifying error due to scan
device as compared to biologically-relevant sources of variation such as asymmetry (Fruciano

2016; Klingenberg et al. 2002; Klingenberg & Mclntyre 1998).

In this study, we quantify the error introduced by studying specimens of a size at the very lower
limits of commonly used portable surface scanners’ resolution. This situation could also arise
when using relatively large specimens, which are nonetheless at the lower limit of a medical CT
scanner’s resolution for example. We test whether the complex shape of very small specimens
can be adequately captured using an HDI109 3D surface scanner with a stated resolution of 80
um as compared to a uCT scanner with a resolution of 28 um. To do so, we use the delicate
mouse, Pseudomys delicatulus (Gould, 1842), one of the smallest rodents in the world with a 55-
75 mm head-and-body length (Breed & Ford 2007). The miniscule P. delicatulus crania
(~20mm) are at the edge of the HDI109 3D surface scanner’s range thus providing an extreme
test of this scanning device (Fig. 1, Fig. 2). First, we tested whether variation due to scanning
device compared to other sources of variation (Fig. 2b). We also asked whether removing
asymmetric variation, a common practice in morphological studies when asymmetry is not of
interest, changed the results. Second, we tested whether the scanning devices differed in shape
variance and in operator error (as measured by repeatability) (Fig. 2¢). We also explored how

including different types of landmarks impacted repeatability. Finally, we tested whether the
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shape variation due to scanning device was large enough to impact a small study of intra-specific

shape variation using the biologically relevant signal of sexual dimorphism (Fig. 2d).

Methods
Data collection
We selected 19 adult individuals, male and female, of Pseudomys delicatulus from the
Queensland Museum in Brisbane, Australia (specimen numbers and sexes in Additional File 1:
Table S1). The cranium from each individual was scanned at the Centre for Advanced Imaging at
the University of Queensland in a uCT scanner (Siemens Inveon PET/CT scanner). The scanner
was operated at 80 K@lergy, 250 pA intensity with 540 projections per 360°, a medium-high
magnification with bin 2 was applied, and 2000 ms exposure time. The samples were scanned at
a nominal isotropic resolution of 28 um. The data were reconstructed using a Feldkamp
conebeam back-projection algorithm provided by an Inveon Acquisition workstation from

Siemens (IAW version 2.1). Surface models were obtained using Mimics Research version 20.0.

Each cranium was also scanned by 3D LMI’s }@09 blue light surface scanner with a
resolution of 80 um. For brevity, we will refer to this method as 3D scanning. For this method,
the cranium was placed on a rotary table providing the scanner with 360 views. To capture the
entire shape, the cranium was scanned in three different orientations: one ventral view with the
cranium resting on the frontals and two dorsal views with the cranium tipped to each side, resting
on an incisor, auditory bulla, and zygomatic arch. To assist others in replicating our HDI109 3D
surface scanning on small specimens, we have included a Standard Operating Procedure with our

settings (Additional File 2: Supplementary Methods).
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After scanning every individual with both scan methods, we then replicated each 3D model three
times so that each individual was represented by 6 replicates, giving a total sample of 114 3D
models (Fig. 2a). Each 3D model was landmarked in Viewbox version 4.0 (dHAL software,
Kifissia, Greece; www.dhal.com; (Polychronis et al. 2013). To capture shape, we placed 58 fixed
landmarks, 145 semi-landmarks on curves, and 86 patch points (points that during sliding are
allowed to slide across a 3D surface defined by the 3D model and semi-landmark borders) for a
total of 289 points (Fig. 3, Additional File 3: Table S2). We used the template feature in
Viewbox to semi-automate the placement of semi-landmarks on curves and to fully automate the
placement of patch points. Our landmark design covered most important biological structures
except for the zygomatic arch (Fig. 3); we avoided this fine structure because dehydration and
loss of support from surrounding muscles during skeletonization almost certainly causes

specimen preparation error (Schmidt et al. 2010; Yezerinac et al. 1992).

Data analysis

The landmark coordinates for all 114 3D models were aligned using a generalized Procrustes
analysis followed by projection to the tangent space, as implemented in the R

package geomorph (v. 3.0.5) (Adams 2016; Adams & Otarola-Castillo 2013). Generalized
Procrustes analysis of each set of landmark coordinates removes differences in size, position, and
orientation, leaving only shape variation (Rohlf & Slice 1990). Semi-landmarks and patches
were permitted to slide along their tangent directions to minimize Procrustes distance between
3D models (Gunz et al. 2005). The resulting Procrustes tangent coordinates were used as shape

variables in all subsequent shape analyses. All our statistical analyses were performed either in R
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(v. 3.3.3) using the R packages geomorph (v. 3.0.5) (Adams 2016; Adams & Otarola-Castillo

2013) and Morpho (v. 2.5.1) (Schlager 2017) or using MorphoJ (v. 1.06d) (Klingenberg 2011).

First, asymmetry is a known source of variation within a sample (Klingenberg et al. 2002), so we
tested for it with Morphol’s Procrustes ANOVA function and subsequently removed it (Fig. 2b).
Isolating the symmetric component of shape has been do@n other 3D surface scanner studies
where operator and device error have been of the same magnitude as asymmetric error (Fruciano
et al. 2017). Variation due to asymmetry is more impacted by operator error because of its
smaller effect sizes compared to variation among individuals (Fruciano 2016; Fruciano et al.
2017; Klingenberg et al. 2010; Leamy & Klingenberg 2005). This suggests that low resolution
studies on asymmetry would be negatively impacted. For this reason, we performed most
subsequent analyses on the symmetric shape component, with a few exceptions performed for
comparison. We then performed a PCA on the symmetric shape variables to visualize the
variation between individuals, within scan method replicates, and between scan method
replicates. As an exploratory analysis, PCA can help intuitively visualize both random error
(greater spread of one scan method replicate compared to the other) and systematic error
(repeated pattern of one scan method shifting relative to another). However, further analyses are

necessary to quantify these sources of error.

Second, our replicate design allowed us to assess whether an operator digitizing scans from one
device was more variable in landmark placement than when digitizing scans from the other
device (Fig. 2¢). We did so by computing the Procrustes variance for each individual/device

combination. In geomorph, Procrustes variances are calculated for each set of observations (i.e.
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replicates) as the sum of the diagonal elements of the set’s covariance matrix divided by the
number of observations (Adams 2016; Zelditch et al. 2012). We computed Procrustes variance
for each combination of individual and device so that Procrustes variance reﬂenly variation
due to digitization. We then compared Procrustes variance between devices using a box plot and
the permutational procedure implemented in geomorph. Next we quantified digitization
consistency by computing repeatability for each device using the analogue of the intraclass
correlation coefficient computed with the Procrustes ANOVA mean squares, as suggested by
(Fruciano 2016). This value is normally cow@ed between 0 and 1, with values close to 1
indicating much larger variation due to the factor used in computing the Procrustes ANOVA (in
our case, variation among individuals) compared to residual variation (in our case, variation
among digitizations). In other words, comparing repeatability between devices gives @ﬁlar
information to the @ obtained by the box plots of Procrustes variance but on a more easily
interpretable scale from 0 to 1. We repeated our computations of repeatability for subsets of the
data to test whether introducing semi-landmarks on curves and surfaces (patch points) changed
the repeatability relative to a fixed landmark-only dataset. We did so for both 3D and uCT

datasets to see if these trends differed by scan device.

Finally, we investigated whether there is a difference between devices in a common task: the
correct classification of sexual dimorphism (Fig. 2d). We began with a Procrustes ANOVA in R
on the symmetric component for the subset of individuals with sex information (n = 11 distinct
individuals; n = 66 3D models). This allowed us to gauge the magnitude of the effect of sexual
dimorphism compared to other sources of variation, including variation due to scan device. Then

with Morpho, we averaged the shape of each replicate triad for each device@formed a
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between-group PCA using sex as group (Boulesteix 2005). Between-group principal component
analysis is an ordination technique which is gaining popularity in geometric morphometrics (eg.
Firmat et al. 2012; Franchini et al. 2016; Franchini et al. 2014; Fruciano et al. 2016; Fruciano et
al. 2014; Mitteroecker & Bookstein 2011; Raffini et al. 2018; Schmieder et al. 2015; Seetah et al.
2012) However, it can be also tho as a classification tool, as in the Morpho implementation
which allows performing leave-one-out cross-validation. We, then used cross-validated

classification accuracy as a measure of performance in classifying individuals based on their sex.

Results
Analyses of shape variation
Our Procrustes ANOVA results indicate that variation among individuals (%Var = 48.3)
contributes the most to total variance, with asymmetry (directional and fluctuating), device, and
operator error contributing the remainder (Table 1a). The %Var values indicate that directional
asymmetry contributes a similar amount of variation as other sources of non-biological variation
and that fluctuating asymmetry accounts for much less than digitization error and variation
between devices (Table 1a). This means that using analyses of asymmetry with a combination of
UCT and 3D surface scans would likely be unreliable in specimens the size of delicate mice or
for specimens scanned at a similarly low resolution. The Procrustes ANOVA results for just the
3D data, confirms this observation in which digitization error is large compared to the
components of asymmetric variation (Table 1b). For the 3D dataset, the error term (Res/Rep)
contributes 17.8% of variation while asymmetry (Side) contributes 19.2%. In other words, for
our 3D scan dataset, error contributes almost as much variation as asymmetry (Table 1b). The

Procrustes ANOVA for just the uCT dataset, however, did not have this problem to the same
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246  degree. Here, the error term (Res/Rep) contributes only 8.52% of variation while asymmetry

247  (Side) contributes 20.8% (Table 1c). In other words, error contributes less than one half of Wl‘@
248 asymmetry contributes in the pCT dataset. Therefore, a low resolution study of asymmetry with
249 3D scans would likely be unreliable unless appropriate arrangements aade to reduce error
250  (Fruciano 2016), whereas pCT scans may be more suitable for these types of studies.

251

252  The Procrustes ANOVA on just the symmetric component of shape reports the individual shap@
253 representing biological variation, is 73.4% (Table 2). Differences between scan devices represent
254 14.6% and the residuals encompassing differences among replicates or operator error represent
255 12.0% of total variance (Table 2). Thus, our Procrustes ANOVA on the symmetric component
256  shows that most of the variation is due to biological sources but the significance of the variation
257  due to device may indicate systematic error.

258

259 The PCA on the symmetric component revealed that the first three principal components (PCs)
260 account for 47.0% of total variation (PC1 =26.4%, PC2 = 12.0%, PC3 = 8.81%, n = 114) (Fig.
261 4). Each of the remaining PCs accounted for 6% or less of total variation therefore we only

262  considered the first three for the exploration of patterns of variation. Positive values along PC1
263  correspond to a larger braincase relative to the rostrum (Fig. 5a). Positive values along PC2

264 correspond to a wider frontal bone (Fig. 5b). Finally, positive values along PC3 correspond to a
265 more convex, dorsally-curved ventral surface (Fig. 5c).

266

267 The plot of the scores on PC1 and PC2 supports the results from the Procrustes ANOVA on the

268 symmetric component of shape in that most of the visible variation is between individuals, i.e.
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clusters of each individual’s replicates (Fig. 4a). Indeed, regardless of scanning device, replicates
from the same individual cluster together (Fig. 4a). For most individuals, replicates occupy non-
overlapping regions of the plot except for those around the crowded mean shape near the origin
(Fig. 4a). Within each individual’s variation on PCA scores, uCT replicates usually form a
tighter cluster than the 3D replicates (Fig. 4a). This pattern suggests that using uCT scans
introduces less random error than using 3D scans. Furthermore, within an individual, 3D scan
replicates tend to cluster closer to other 3D replicates while pCT scan replicates tend to cluster
closer to other uCT replicates (Fig. 4a). Indeed, for most individuals, 3D scan replicates score
lower than the uCT scan replicates from the same individual on both PC1 and PC2. These results
suggest the systematic error may be driven by uCT scans overestimating both braincase volume

and frontal bone width relative to 3D scans (Fig. 4a, Fig. 5a,b).

Overall, the scores along the first two PCs complement and provide an intuitive visualization for
the patterns of higher error in 3D scans and of systematic error between the scan devices as
observed in the Procrustes ANOVAs (Tables 1 and 2). The scores along PC1 and PC3 highlight
another possible systematic difference between 3D and pCT scans (Fig. 4b). The PC3 axis
displaces nCT replicates from 3D replicates such that variation in PC3 scores within individuals
is often larger than variation in PC3 scores among individuals (Fig. 4b). On the PC3 axis, almost
all 3D scan replicates had higher scores, which correspond to a more dorsally curved ventral

surface relative to their corresponding uCT scan replicates (Fig. 4b, Fig. 5c¢).

Procrustes variance and repeatability

Peer] reviewing PDF | (2018:02:25642:1:1:NEW 10 May 2018)



Peer]

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

To compare the digitization error in each scanning device dataset, we calculated the Procrustes
variance among the replicate triads of each individual. We found that Procrustes variance is
significantly (p<0.001) higher in 3D scans (mean = 1.31x10%) than in uCT scans (mean =
4.76x107) (Fig. 6). This means that digitizations are more variable in 3D scans than in pCT
which is consistent with decreased clustering in 3D scans relative to pCT scans in the PCAs (Fig.

4).

The repeatability for each scan dataset mirrored the Procrustes variance results. We found that
the uCT scan dataset had a repeatability of 0.896 and the 3D scan data had a repeatability of
0.750 (Table 3a,d). This means operators have an easier time repeating their digitizations (i.e.,

landmark placements) with uCT scans than with 3D scans.

To test how different types of landmarks impacted repeatability, we calculated repeatability for
combinations of landmark types for 3D and pCT datasets consisting of only the symmetric
component of shape (Table 3). Because sliding landmarks depend on the placement of fixed
landmarks (and patch points depend on both fixed and semi-landlandmark curves), we could not
isolate each type of landmark’s repeatability. The analyses restricted to completely manually
placed fixed landmarks always had the lowest repeatability of the three types of landmarks
(Table 3c,f). Repeatability was always highest for the datasets including all three types of
landmarks including the semi-automated semi-landmarks and the completely automated patch
points (Table 3a,d). Higher repeatability in datasets with the sliding landmarks may result

because the sliding smooths out user placement error across replicates.
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Analyses with a biological example: sexual dimorphism

A small subset of our dataset had sex information (n=11; f=7, m = 4), allowing us to perform a
test or@ether using different scan devices classify males and females according to shape with
the same level of accuracy. Our Procrustes ANOVA on the symmetric component of shape
variation using sex and device as factors found that shape differences due to device (Rsq =
0.0646) and sex (Rsq = 0.0952) are both significant (p < 0.001). Both factors have relatively
small effect sizes, however, sex captures slightly more shape variation than device (Table 4).
However, the between-group PCAs do not suggest marked sexual dimorphism to begin with
(Fig. 7). Therefore, the subtlety of this biological signal could be the main reason for the small
contribution of sex to total variation. Finally, we performed a cross-validation test on the
between-group PCAs to assess which scan dataset can more reliably classify sexes based on
shape (Table 5). The results show that in this case, 3D scans and pCT scans perform identically

(overall classification accuracy = 63.6%).

Discussion
In this study, we contrasted very high resolution uCT scans with their extreme opposite: 3D
surface scans of very small specimens. Our low versus high resolution datasets allowed us to
assess whether the low resolution scans still allow defensible investigations of biological shape
variation. We found that despite the low quality of the 3D scans, sufficient amounts of biological
variation are present to perform, at the very least, typical interspecific comparisons. In datasets
with only very slight intra-specific differences, more difficulties in distinguishing biological
signal from error’@oise” may occur. For example, the subtle sexual dimorphism in our small

sample was only just distinguished. However, we present three considerations to make before
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using low resolution datasets. First, we found that variation due to scan device and digitizations
santial relative to asymmetric variation. This makes low resolution datasets a poor choice for
studies on asymmetry. Second, using 3D scans creates more random error due to increased
landmarking difficulty, therefore care should be taken in landmark choice, and possibly
landmarking software and operator choice. Digitization error may also be reduced by taking
averages of repeated measurements (Arnqvist & Martensson 1998; Fruciano 2016). Third, using
3D scans also introduces a source of systematic error relative to pCT scans, therefore we
recommend not combining them whenever possible (see also Fruciano et al. 2017), and
especially in studies on small intra-specific variation. In summary, with a few precautions listed
above, we expect that for studies with similarly sized skulls or similarly low resolution scans, the
variation due to error will be sufficiently low for successful detection of interspecific shape

differences.

Measurement error and 3D scan reliability

Systematic error between the two scan devices is shown by consistent displacement patterns in
the PCA. Indeed, across all three PC axes, the scans differ in how they measure concavity around
the braincase, frontal, and ventral surface. This systematic pattern could suggest that the 3D
scanner technology errs (@dding volume to the digital specimen relative to the pCT scan but it
could also be the other way around with the uCT scan distorting the images to reduce volume.
Furthermore, even when using the symmetric component of shape, the percent of variation
contributed by scan device is quite substantial at about 14.5%. Because scan device contributes

this much to variation and because systematic error between scan device exists, researchers
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expecting very small variation due to biological sources would be advised not to combine 3D

scan and uCT scan datasets.

While the two scan devices are usually comparable, using the low resolution 3D scans introduces
more digitization error than the higher resolution pCT scans, which likely reflects increased user
error due to lower resolution in 3D scans. This increased random error is reflected in both the
larger point clouds of 3D replicates relative to uCT replicates in the PCAs, the higher Procrustes
variance, and the lower repeatability score of 3D scans, particularly of manually-placed fixed
landmarks. As expected, we found that the low resolution 3D scans were more difficult to
landmark because key cranial features such as sutures and smaller processes were less distinct
(Fig. 1). Nevertheless, our overall 3D scan repeatability score of 0.75 with symmetric data
appears consistent with the literature: it is much lower than 3D scanned human-sized skulls —
above 0.95 (Badawi-Fayad & Cabanis 2007; Fourie et al. 2011) but it is approaching the range of
3D scanned macropodoids (e.g., kangaroos) — 0.78-0.98, depending on device and landmark
choice (Fruciano et al. 2017). This trend of decreasing repeatability with decreasing body size
may reflect measurement error becoming a larger percentage of overall size (Robinson &
Terhune 2017). Relatedly, recent work has shown that excluding a few unreliable landmarks, or
those with greater variability in placement, can significantly increase repeatability (Fruciano et
al. 2017). This may be especially true for small specimens, for which small variations from the

landmark location represent a larger percentage of their overall size.

Our repeatability tests on different combinations of landmark types suggest that fixed landmarks

suffer the most from decreased resolution and the associated increased user error while patch
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382 points suffer the least. We interpret these results to mean that the (semi-) automatic placement of
383 semi-landmark curves and patches is more consistent in placing points compared to a human
384  operator placing fixed landmarks, regardless of whether the automatic placement is "correct" or
385 not. It is important to note that while semi-landmarks were “semi-automated”, the user still

386 manually defined the curve they slid along for each specimen. Furthermore, this curve is

387 bounded by user-placed fixed landmarks. Therefore, the increased repeatability with increasing
388 automation could also be due to the increased degrees of freedom afforded to landmarks during
389 sliding: fixed with zero degrees, semi-landmarks with one degree, and patch points with two.
390 The sliding, by removing variation tangential to a certain direction, will reduce the variance in
391 those points which will appear to vary less so it would be expected that these points will

392  contribute less overall variation when combined with the fixed landmarks.

393

394  This study did not look at multiple operator error which can be considerable, particularly if
395 difficult landmarks are included (Fruciano et al. 2017). If inter-operator error were combined
396 with the resolution-driven measurement error found here, it is possible that biological signal
397 would diminish to a degree that could not support even interspecific comparisons.

398

399 Measurement error introduced by scanning device compared to biological variation

400 The challenge of any quantitative measurement study is to minimize measurement error

401 introduced from various sources (in our case, device, resolution, and observer) relative to the
402  “true” signal of biological variation. In the case of inter-observer error, which is one

403 measurement error source, several studies suggest that interspecific variation can overwhelm
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inter-observer such that this does not pose an issue with the correct interpretation of results

(Robinson & Terhune 2017).

In our test on the ability of different scan devices to classify according to sexual dimorphism, we
showed that while variation contributed by each source was similar (and that from scan device
slightly lower), both scan datasets presented a small sexually dimorphic pattern and supported
the same classification performance. This suggests that 3D scans may even be acceptable for
detecting some intra-specific patterns. However, this was a small sample (n = 11) and further
studies with larger datasets would improve confidence for using 3D scans for intra-specific
studies. Studies based on larger datasets might also be able to better highlight differences in
classification performance between devices, if any. Nevertheless, it is promising that 3D scans
and pCT scans performed equally even at such a small sample size for such a subtle intra-

specific signal.

Choosing a digitization device: 3D surface scanning versus pCT versus photogrammetry
With many options for digitizing 3D specimens available, decisions on the acquisition mode
must consider price, scanning time, processing time, portability, and scan resolution. The one-off
investment of a relatively high resolution 3D surface scanner such as the HDI109 provided a
model portable enough to take on airplanes and with fast scanning and processing times. Our
model took 10 minutes from starting the scan to the finished surface file, but note that larger
specimens requiring multiple sub-scans will take longer. These fast acquisition times are an asset
in collection efforts that rely on expensive and time-limited museum travel. For example, one of

us (AEM) digitized over 100 individuals in one week using the same scanning protocol.
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However, the quality and speed of scanning varies by model; for example, other 3D surface
scanners could take over 45 minutes to capture one specimen and may also require more effort to

process scans (Katz & Friess 2014).

Compared to 3D surface scanners, LCT scanners provide much higher resolution, which in this
study translated into less measurement error. However, uCT facilities are not widely accessible,
not mobile, and tend to be more expensive. Depending on the facility, uCT scanning involves
transport to the facility, scanning either by the operator, processing scans into image stacks, and
finally loading scans into specialized (and frequently high-cost) software to do the 3D
reconstruction. These reconstructions can be time consuming especially if the cranium needs to
be separated from the mandibles. Finally, specimens need to be loaned from their collections for
L@ acquisition, which requires specimen transport and curator permission and is particularly

difficult when large numbers of specimens from distant locations need to be scanned.

This study did not investigate photogrammetry, which is another and increasingly popular
method for digitizing 3D shape. This method uses software to align 2D photographs taken from
many different views into a 3D file. Photogrammetry is much cheaper and more portable than 3D
surface scanning since it only requires a camera of suitable resolution and very affordable photo-
alignment software like Agisoft PhotoScan (Agisoft LLC, St. Petersburg, Russia;
www.agisoft.com). The trade-offs are that in our experience, photogrammetry takes at least three
times longer to acquire the photos, it involves higher risk of human error or inconsistency during
photography, and it requires an order of magnitude more time to align the photos into a 3D

digital file. While photo-alignment can be done at convenience after photography, the greater
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time required to capture enough photos may be a deciding factor for researchers with time
limitations in museum collections. As for scan resolution, photogrammetry may perform better
than 3D surface scanners in some cases (Fourie et al. 2011) or at least provide an acceptable

alternative (Katz & Friess 2014; Mufioz-Muioz et al. 2016).

Scan resolution is not the only consideration when choosing a scan device as its unique
requirements for 3D model processing may increase image noise and therefore landmarking
difficulty. Compared to L@ scanning, 3D scans tend to be both noisier and require more model
processing before 3D model export. Specifically, artificial smoothing and hole-filling may
change the topography of the 3D mesh. Therefore, the comparison we have presented here is not
just a comparison of resolutions but also a comparison of 3D model generation. The methods we
provide in the supplementary files (Additional File 2: Supplementary Methods) represent the
settings we found to decrease noise, however, the software also required some model smoothing
and hole-filling before export. We recommend that researchers take these additional sources of

image modification into account during their landmark choice and study design.

Conclusions

Here, we have shown that a 3D surface scanner can provide an acceptable alternative to a pCT
scanner for assessing biological signal of 3D shape even in small specimens that are at the limits
of 3D scanner resolution. Our analyses specifically showed that first, error contributes to a higher
percentage of variation in 3D scan datasets than in uCT scan datasets of the same small
specimens. As a result, we conclude that 3D scans are usually not appropriate for studies on very

small sources of variation like fluctuating asymmetry. Second, we show that 3D scan datasets
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have a lower repeatability of landmark placement, especially for fixed landmarks, as compared
to uCT scans. Relatedly, our comparisons of repeatability on data with asymmetry to the same
data without asymmetry — i.e. having bilateral symmetry — support analyzing the bilaterally
symmetrical data of landmarks from low resolution scans. Finally, we use a preliminary study of
sexual dimorphism to suggest that despite elevated error and shape variance, bilaterally
symmetrical datasets from 3D scans can support male versus female classification based on
small biological differences as well as pCT datasets can. In summary, while 3D scans are a
promising alternative, exploratory pilot studies of measurement error like this one are advisable

when practically possible (see also (Fruciano 2016).

Furthermore, the best 3D capture method will vary based on the study’s design, expected effect
size for the biological variation of interest, and the researcher’s limitations on time, money, and
travel. In addition to image resolution requirements, it is wise to assess the time it will take to
capture and process each specimen as well as portability needs. We recommend a preliminary
test on multiple devices — including surface scanners — to determine how levels of error compare
to biological signal and whether there is substantial systematic error. Doing so may provide a
defensible alternative to an expensive and time consuming large-scale acquisition of pCT scans

including for studies on very small specimens.
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Micro-computed tomography (LCT)
Principal component analysis (PCA)
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Figure 1

Low resolution 3D surface scans compared to uCT scans of the same delicate mouse
crania.

3D scans of (A) dorsal view (B) lateral view and (C) ventral view compared to uCT scans of

(D) dorsal view (E) lateral view and (F) ventral view. All crania are rendered in Viewbox v. 4.0.
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Figure 2 (on next page)

Methods flow diagram highlighting the relationship between our questions and our
analyses.

(A) All delicate mouse (Pseudomys delicatulus) crania were sourced from the Queensland
Museum in Brisbane, Australia. Landmarks (LMs) capture homologous points, semi-landmarks
(semi-LMs) capture curves between landmarks, and patch points capture surfaces between
landmarks and semi-landmarks. (B - D) These sections of questions and associated figure and
table numbers summarize how we organize the paper, particularly the Results, into three

sets of related analyses.
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Figure 3

Positions of landmarks for geometric morphometric analyses.

Locations of fixed landmarks (black points), sliding semi-landmarks (red points) and sliding
surface patches (purple points) on a UCT scanned individual. (A) Dorsal view of the cranium.

(B) Lateral view. (C) Ventral view. Definitions are given in Table S2.
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Figure 4

Exploratory PCA plots of shape variation showing differences among individuals, scan
devices, and replicates of the same scan device.

(A) PC1 versus PC2 and (B) PC1 versus PC3. Each individual has a unique color shared by all
of its 6 replicates. Each individual has 3 triangles to represent the 3D scanned replicates and
3 circles to represent the uCT scanned replicates. Each axis reports the total variance

explained by that principal component.
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Figure 5

3D warp-grids for the three most important principal components, showing minimum
and maximum shapes for each PC.

The right hand cranium shows the maximum positive shape for the principle component (PC) and the left
hand cranium shows the minimum negative value. Compared to negative values (A), positive values along
PC1 (26.4% variance) correspond to a larger braincase relative to the rostrum (B). Compared to negative
values (C), positive values along PC2 (11.9% variance) correspond to a wider frontal bone compared to
negative values (D). Compared to negative values (E), positive values along PC3 (8.9% variance) correspond
to a more dorsally-curved ventral surface compared to negative values (F).

A PC 1 negalive B PC 1 positive

C PC 2 negative D PC 2 positive
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Figure 6

Morphological disparity -- as measured by shape variation among replicate scan triads --
by scanning device reflects operator error.

This box plot summarizes the morphological disparity (also known as the Procrustes
variance) among the three replicates of an individual for each scan type. The mean
Procrustes variance for 3D scans was 1.34x10*and 4.81x10®for uCT scans. This is a

significant difference (p<0.001).
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= Device
5 El 3D
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3D CT
Device
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Figure 7

Intra-specific variation as shown by PCAs of 3D and uCT scan datasets colored by sex.

PCA provides an exploratory visualization of shape variation between males and females in
our subsample with sex information (n=11). Males (n=4) are plotted in light blue and females

(n=7) are plotted in dark red. Results from the cross-validation test can be found in Table 5.
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Table 1(on next page)

General Procrustes ANOVA on sources of shape variation including asymmetry.

The %Var column of this Procrustes ANOVA demonstrates the relative contribution of each
factor to overall variation. It is calculated from the sum of squares for each factor divided by

the total sum of squares for all factors.
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1 A) All Specimens
Df SS MS %Var F Pr(>F)
Individual | 8010 6.21E-02 | 7.76E-06 48.3 11.2
<.0001
Side 415 2.37E-02 | 5.70E-05 18.4 82.4
<.0001
Ind * Side | 7470 5.17E-03 | 6.93E-07 4.02 0.54 |1
Device 16340 2.08E-02 | 1.27E-06 16.1 4.90
<.0001
Res /Rep | 65360 1.70E-02 | 2.59E-07 13.2
2
3 B) Only 3D Specimens
Df SS MS %Var F Pr(>F)
Individual | 8010 3.52E-02 | 4.40E-06 51.6 4.24 | <.0001
Side 415 1.31E-02 | 3.15E-05 19.2 30.4 | <.0001
Ind * Side | 7470 7.75E-03 1.04E-06 11.4 2.79 | <.0001
Res / Rep | 32680 1.22E-02 | 3.72E-07 17.8
4
5 C) Only CT Specimens
Df SS MS %Var F Pr(>F)
Individual | 8010 3.45E-02 | 4.31E-06 61.7 6.41 | <.0001
Side 415 1.17E-02 | 2.81E-05 20.8 41.8 | <.0001
Ind * Side | 7470 5.02E-03 | 6.72E-07 8.97 4.61 | <.0001
Res / Rep | 32680 4.76E-03 1.46E-07 8.52
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Table 2(on next page)

Procrustes ANOVA on the sources of shape variation using the symmetric component of
shape.

The R-squared column of this Procrustes ANOVA demonstrates the relative contribution of

each factor to overall variation. The shape variation of this dataset is visualized in Figures 4
and 5.
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Df SS MsS Rsq F Z Pr(>F)
ind 18 6.23E-02 | 3.46E-03 | 0.734 25.8 214 0.001
ind:Dev 19 1.24E-02 | 6.52E-04 | 0.146 4.86 23.7 0.001
Residuals | 76 1.02E-02 | 1.34E-04 | 0.120
Total 113 8.49E-02
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Table 3(on next page)

Comparison of operator error in 3D scan and uCT scan datasets using Procrustes
ANOVAs and repeatability scores.

The repeatability score (R) is a value that reflects the ease of digitizing in a repeated
measure study design. It is calculated from the Procrustes ANOVA using formulas for the
intra-class correlation coefficient. The Procrustes ANOVAs were found by subsetting the
dataset by scan device and by landmark types and then performing separate generalized
Procrustes and bilateral symmetry alignments. (A-C) Results from the 3D-only dataset. (D-F)
Results from the uCT-only dataset. (A) and (D) show the repeatabilites from the entire
landmark datasets of each scan device. (B) and (E) remove patch points. (C) and (F) contain

only fixed landmarks.
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A) 3D Scan All Landmarks Including Patches (n = 289)
Df | SS MS Rsq F Z Pr(>F) | R
Ind 18 | 3.53E- | 1.96E- | 0.826 | 10.0 | 16.0 | 0.001 | 0.75
02 03 0
Residuals | 38 | 7.46E- | 1.96E- | 0.174
03 04
Total 56 | 4.28E-
02
1
B) 3D Scan Fixed Landmarks and Semilandmarks (n = 203)
Df | SS MS Rsq F Z Pr(>F) | R
Ind 18 | 4.37E- | 2.43E- | 0.807 | 8.826 | 16.7 | 0.001 | 0.723
02 03
Residuals | 38 | 1.04E- | 2.75E- | 0.193
02 04
Total 56 | 5.41E-
02
2
C) 3D Scan Fixed Landmarks Only (n = 58)
Df | SS MS Rsq |F z Pr(>F) | R
Ind 18 | 6.90E- | 3.83E- | 0.749 | 6.30 | 16.6 | 0.001 0.639
02 03
Residuals | 38 | 2.31E- | 6.09E- | 0.251
02 04
Total 56 | 9.21E-
02
3
D) CT Scan All Landmarks Including Patches (n = 289)
Df | SS MS Rsq F Z Pr(>F) R
Ind 18 | 3.46E- | 1.92E- | 0.927 | 26.9 | 18.4 | 0.001 0.896
02 03
Residuals | 38 | 2.72E- | 7.15E- | 0.073
03 05
Total 56 | 3.73E-
02
4
E) CT Scan Fixed Landmarks and Semilandmarks (n = 203)
Df | SS MS Rsq |F Z Pr(>F) | R
Ind 18 | 4.33E- | 2.41E- | 0.921|24.7 | 19.0 | 0.001 | 0.888
02 03
Residuals | 38 | 3.71E- | 9.76E- | 0.079
03 05
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Total 56 | 4.70E-
02
5
F) CT Scan Fixed Landmarks Only (n = 58)
Df | SS MS Rsq |F z Pr(>F) | R
Ind 18 | 6.28E- | 3.49E- |0.893 | 17.6 | 20.2 | 0.001 | 0.847
02 03
Residual | 38 | 7.54E- | 1.98E- 0.107
s 03 04
Total 56 | 7.03E-
02
6
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Table 4(on next page)

Symmetric Procrustes ANOVA with device and sex as factors to assess relative
contribution of intra-specific variation to overall shape variation.

This Procrustes ANOVA allows comparison of the relative contribution to total variation from

scan device and sex (R-squared column).
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Df SS MS Rsq F z Pr(>F)
device 1 2.99E-03 | 2.99E-03 | 0.0646 4.84 4.06 0.001
sex 1 4.40E-03 | 4.40E-03 | 0.0952 7.14 4.96 0.001
Residuals | 63 3.88E-02 | 6.16E-04
Total 65 4.62E-02
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Table 5(on next page)

Between group PCA classification test to assess whether one scan device dataset
performs better at identifying sexes based on shape.

This analysis averages shape among replicates, computes a between-group PCA separately
for 3D and uCT datasets, and runs a cross-validation classification test. The results indicate
whether one type of scan dataset is more successful at classifying males versus females
based on the shape variation present in the dataset. It also returns a kappa statistic; a kappa
value over 0.20 indicates “fair” agreement between the two datasets. Shape variation

visualized by sex can be seen in Figure 7.
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Cross-validated classification results in frequencies

3D f m
f(n=7) 5 2
m(n=4) 2 2
CcT f m
f(n=7) 5 2
m(n=4) 2 2
Cross-validated classification results in %
3D f m

f 714 28.6
m 50.0 50.0
CT f m

f 714 28.6
m 50.0 50.0
Overall classification accuracy (%)

3D 63.6

CcT 63.6

Kappa statistic

3D 0.214

CcT 0.214
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