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Background. Advances in 3D shape capture technology have made powerful shape analyses, such as

geometric morphometrics, more feasible. While the highly accurate micro-computed tomography (μCT)

scanners have been the “gold standard,” recent improvements in 3D surface scanner resolution may

make this technology a faster, portable, and cost-effective alternative. Several studies have already

compared the two devices but all use relatively large specimens such as human crania. Here we perform

shape analyses on Australia’s smallest rodent species to test whether a 3D scanner produces similar

results to a μCT scanner.

Methods. We captured 19 delicate mouse crania with a μCT scanner and a 3D scanner for geometric

morphometrics. We ran multiple Procrustes ANOVAs to understand how variation due to scan device

compared to other sources such as biologically relevant variation and operator error. We quantified

operator error as levels of variation and repeatability. Further, we tested if the different devices

performed differently at classifying individuals based on sexual dimorphism. Finally, we inspected

scatterplots of principal component analysis (PCA) scores for non-random patterns.

Results. In all Procrustes ANOVAs, regardless of factors included, differences between individuals

contributed the most to total variation. The PCA plots reflect this in how the individuals are dispersed.

Including only the symmetric component of shape increased the biological signal relative to variation due

to device and due to error. 3D scans showed a higher level of operator error as evidenced by a greater

spread of their replicates on the PCA, a higher level of multivariate variation, and a lower repeatability

score. However, the 3D scan and μCT scan datasets performed identically in classifying individuals based

on intra-specific patterns of sexual dimorphism.

Discussion. Compared to μCT scans, we find that even low resolution 3D scans of very small specimens

are sufficiently accurate to classify intra-specific differences. We also make three recommendations for

best use of low resolution data. First, we recommend that extreme caution should be taken when

analyzing the asymmetric component of shape variation. Second, using 3D scans generates more

random error due to increased landmarking difficulty, therefore be conservative in landmark choice and

avoid multiple operators. Third, using 3D scans introduces a source of systematic error relative to μCT

scans, therefore we recommend not to combine them when possible and especially in studies expecting

little biological variation. Our findings support increased use of low resolution 3D scans for most
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morphological studies; they are likely also applicable to low resolution scans of large specimens made in

a medical CT scanner. As most vertebrates are relatively small, we anticipate our results to bolster more

researchers designing affordable large scale studies on small specimens with 3D surface scanners.
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18 Abstract

19 Background. Advances in three-dimensional (3D) shape capture technology have made 

20 powerful shape analyses, such as geometric morphometrics, more feasible. While the highly 

21 accurate micro-computed tomography (μCT) scanners have been the “gold standard,” recent 

22 improvements in 3D surface scanner resolution may make this technology a faster, more 

23 portable, and cost-effective alternative. Several studies have already compared the two scanning 

24 devices but all use relatively large specimens such as human crania. Here we perform shape 

25 analyses on Australia’s smallest rodent species to test whether a 3D surface scanner produces 

26 similar results to a μCT scanner. 

27 Methods. We captured 19 delicate mouse crania with a μCT scanner and a 3D surface scanner 

28 for geometric morphometrics. We ran multiple Procrustes ANOVAs to understand how variation 

29 due to scan device compared to other sources of variation such as biologically relevant sources 

30 and operator error. We quantified operator error as levels of variation and repeatability. Further, 

31 we tested whether different devices performed differently at classifying individuals based on a 

32 biological source of variation (sexual dimorphism).Finally, we inspected scatterplots of principal 

33 component analysis (PCA) scores for non-random patterns. 

34 Results. In all Procrustes ANOVAs, regardless of factors included, differences between 

35 individuals contributed the most to total variation. This is also reflected in the way individuals 

36 disperse on the PCA plots. Including only the symmetric component of shape increased the 

37 biological signal relative to variation due to device and due to error. 3D scans showed a higher 

38 level of operator error as evidenced by a greater spread of their replicates on the PCA, a higher 

39 level of multivariate variation, and a lower repeatability score. However, the 3D scan and μCT 
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40 scan datasets performed identically in classifying individuals based on small intra-specific 

41 differences (sexual dimorphism). 

42 Discussion. Compared to μCT scans, we find that even very low resolution 3D scans of very 

43 small specimens are sufficiently accurate to capture variation at the level of interspecific 

44 differences for classification purposes. We also make three recommendations for best use of low 

45 resolution data. First, we recommend that extreme caution should be taken when analyzing the 

46 asymmetric component of shape variation. Second, using 3D scans generates more random error 

47 due to increased landmarking difficulty, therefore be conservative in landmark choice and avoid 

48 multiple operators. Third, using 3D scans introduces a source of systematic error relative to μCT 

49 scans, therefore we recommend not to combine them when possible and especially in studies 

50 where little biological variation is expected. Our findings support increased use of low resolution 

51 3D images for most morphological studies; they are likely applicable to low resolution scans of 

52 large specimens made in a medical CT scanner, for example. As most vertebrates are relatively 

53 small, we anticipate our results to bolster more researchers designing affordable large scale 

54 studies on small specimens with 3D surface scanners.

55

56 Introduction

57 An organism’s shape reveals many facets of its biology, including its evolution, ecology, and 

58 functional morphology. In the past three decades, geometric morphometrics has revolutionized 

59 the field of shape research with better analysis and visualization of shape complexity (Rohlf & 

60 Marcus 1993; Zelditch et al. 2012). As imaging technology continues to advance, three-

61 dimensional (3D) data have become extremely common in geometric morphometric studies, 

62 especially in the cases in which 2D data poorly represent the actual 3D object (Buser et al. 2017; 
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63 Cardini 2014; Fruciano 2016; Reig 1996). 3D capture methods include very high resolution yet 

64 high cost and time-intensive options like micro-computed tomography (μCT) scanning. In 

65 contrast, 3D surface scanning offers lower acquisition costs and faster scanning, but has the 

66 disadvantage of generally lower resolution, which limits its use on very small specimens (Fig. 1). 

67 For confident use of surface scans in small specimens, it is therefore important to assess the 

68 measurement error introduced by choosing a 3D surface scanner for geometric morphometrics.

69

70 Most vertebrates would be considered small, for example about two thirds of mammals are 

71 below 10kg (Weisbecker & Goswami 2010), which would translate to small skeletal specimens. 

72 Therefore, morphometric studies proposing large sample sizes must be very well funded to use a 

73 μCT scanner or have a low-cost option, such as a 3D surface scanner. Previous studies have 

74 compared μCT scans to 3D surface scans, however, these were all done in large animals, 

75 primarily primates (Badawi-Fayad & Cabanis 2007; Fourie et al. 2011; Katz & Friess 2014; 

76 Robinson & Terhune 2017; Sholts et al. 2010; Slizewski et al. 2010). While these studies found 

77 low error and high repeatability in 3D surface scans similar to μCT scans, there was a suggestion 

78 that higher error occurred in the sample’s smaller specimens (Badawi-Fayad & Cabanis 2007; 

79 Fourie et al. 2011). Other recent studies have conducted 3D geometric morphometric studies on 

80 small vertebrate skulls but nearly all have relied exclusively on μCT scanning (Cornette et al. 

81 2013; Evin et al. 2011). The only exception we are aware of is (Munoz-Munoz et al. 2016), 

82 which successfully used photogrammetry – a technique combining 2D photographs into a 3D 

83 model – to analyze domestic mouse skulls, Mus musculus domesticus (Linnaeus, 1758). 

84 Photogrammetry, like 3D surface scanning, is a low-cost alternative to μCT and comes with its 

85 own trade-offs in time and scan resolution (Katz & Friess 2014). Compared to the new 
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86 generation of blue light surface scanners, photogrammetry requires more time for image 

87 acquisition and for file processing (Katz & Friess 2014). A previous study on a single macaque 

88 specimen reported inconsistent levels of error across operators and scanners, which contributed 

89 to the lack of general pattern for differences across scanners/resolutions (Shearer et al. 2017). 

90 However, using an interspecific dataset, (Fruciano et al. 2017) reported higher repeatability for 

91 the higher resolution scans and 2.07-11.26% of total variance due to scan type (depending on 

92 device, operator and landmark set combination). We expect that small specimens would 

93 exacerbate any variation due to device and the interaction of device with other factors, such as 

94 landmark choice and operator. More work comparing these different methods – μCT scanning, 

95 3D surface scanning, and photogrammetry – will allow researchers to make an informed 

96 decision. For example, for those with time constraints in museum collections, a fast 3D surface 

97 scanner may be the best option if the resolution is suitable for specimen size. 

98

99 The lower resolution of 3D surface scanners may increase both random and systematic 

100 measurement error, which is exacerbated by small specimens because operators may have more 

101 difficulty identifying landmark locations (Arnqvist & Martensson 1998; Fruciano 2016). 

102 Random error increases variance without changing the mean; this “noise” dilutes biologically 

103 informative patterns and, in principle, decreases statistical power (Arnqvist & Martensson 1998; 

104 Fruciano 2016). By contrast, systematic error is non-randomly distributed, thus changing the 

105 mean and introducing bias to the data (Arnqvist & Martensson 1998; Fruciano 2016). Error 

106 assessment can be done with repeated measures of the same individuals (e.g. (Fruciano et al. 

107 2017; Munoz-Munoz & Perpinan 2010; Robinson & Terhune 2017) or by comparison to a “gold 

108 standard” or ideal representation of the specimens (Fruciano 2016; Slizewski et al. 2010; 
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109 Williams & Richtsmeier 2003). Repeated measure designs can uncover this systematic error, for 

110 example, if one 3D capture method differs from another in a specific, non-random, pattern 

111 (Fruciano 2016; Fruciano et al. 2017). Furthermore, designs including repeated measures of the 

112 same individuals allow partitioning of variance into components, quantifying error due to scan 

113 device as compared to biologically-relevant sources of variation such as asymmetry (Fruciano 

114 2016; Klingenberg et al. 2002; Klingenberg & McIntyre 1998). 

115

116 In this study, we quantify the error introduced by studying specimens of a size at the very lower 

117 limits of commonly used portable surface scanners’ resolution. This situation could also arise 

118 when using relatively large specimens, which are nonetheless at the lower limit of a medical CT 

119 scanner’s resolution for example.  We test whether the complex shape of very small specimens 

120 can be adequately captured using an HDI109 3D surface scanner with a stated resolution of 80 

121 μm as compared to a μCT scanner with a resolution of 28 μm. To do so, we use the delicate 

122 mouse, Pseudomys delicatulus (Gould, 1842), one of the smallest rodents in the world with a 55-

123 75 mm head-and-body length (Breed & Ford 2007). The miniscule P. delicatulus crania 

124 (~20mm) are at the edge of the HDI109 3D surface scanner’s range thus providing an extreme 

125 test of this scanning device (Fig. 1, Fig. 2). First, we tested whether variation due to scanning 

126 device compared to other sources of variation (Fig. 2b). We also asked whether removing 

127 asymmetric variation, a common practice in morphological studies when asymmetry is not of 

128 interest, changed the results. Second, we tested whether the scanning devices differed in shape 

129 variance and in operator error (as measured by repeatability) (Fig. 2c). We also explored how 

130 including different types of landmarks impacted repeatability. Finally, we tested whether the 
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131 shape variation due to scanning device was large enough to impact a small study of intra-specific 

132 shape variation using the biologically relevant signal of sexual dimorphism (Fig. 2d).

133

134 Methods

135 Data collection

136 We selected 19 adult individuals, male and female, of Pseudomys delicatulus from the 

137 Queensland Museum in Brisbane, Australia (specimen numbers and sexes in Additional File 1: 

138 Table S1). The cranium from each individual was scanned at the Centre for Advanced Imaging at 

139 the University of Queensland in a μCT scanner (Siemens Inveon PET/CT scanner). The scanner 

140 was operated at 80 KV energy, 250 µA intensity with 540 projections per 360°, a medium-high 

141 magnification with bin 2 was applied, and 2000 ms exposure time. The samples were scanned at 

142 a nominal isotropic resolution of 28 μm. The data were reconstructed using a Feldkamp 

143 conebeam back-projection algorithm provided by an Inveon Acquisition workstation from 

144 Siemens (IAW version 2.1). Surface models were obtained using Mimics Research version 20.0. 

145

146 Each cranium was also scanned by 3D LMI’s HDI109 blue light surface scanner with a 

147 resolution of 80 μm. For brevity, we will refer to this method as 3D scanning. For this method, 

148 the cranium was placed on a rotary table providing the scanner with 360 views. To capture the 

149 entire shape, the cranium was scanned in three different orientations: one ventral view with the 

150 cranium resting on the frontals and two dorsal views with the cranium tipped to each side, resting 

151 on an incisor, auditory bulla, and zygomatic arch. To assist others in replicating our HDI109 3D 

152 surface scanning on small specimens, we have included a Standard Operating Procedure with our 

153 settings (Additional File 2: Supplementary Methods).
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154

155 After scanning every individual with both scan methods, we then replicated each 3D model three 

156 times so that each individual was represented by 6 replicates, giving a total sample of 114 3D 

157 models (Fig. 2a). Each 3D model was landmarked in Viewbox version 4.0 (dHAL software, 

158 Kifissia, Greece; www.dhal.com; (Polychronis et al. 2013). To capture shape, we placed 58 fixed 

159 landmarks, 145 semi-landmarks on curves, and 86 patch points (points that during sliding are 

160 allowed to slide across a 3D surface defined by the 3D model and semi-landmark borders) for a 

161 total of 289 points (Fig. 3, Additional File 3: Table S2). We used the template feature in 

162 Viewbox to semi-automate the placement of semi-landmarks on curves and to fully automate the 

163 placement of patch points. Our landmark design covered most important biological structures 

164 except for the zygomatic arch (Fig. 3); we avoided this fine structure because dehydration and 

165 loss of support from surrounding muscles during skeletonization almost certainly causes 

166 specimen preparation error (Schmidt et al. 2010; Yezerinac et al. 1992). 

167

168 Data analysis

169 The landmark coordinates for all 114 3D models were aligned using a generalized Procrustes 

170 analysis followed by projection to the tangent space, as implemented in the R 

171 package geomorph (v. 3.0.5) (Adams 2016; Adams & Otarola-Castillo 2013). Generalized 

172 Procrustes analysis of each set of landmark coordinates removes differences in size, position, and 

173 orientation, leaving only shape variation (Rohlf & Slice 1990). Semi-landmarks and patches 

174 were permitted to slide along their tangent directions to minimize Procrustes distance between 

175 3D models (Gunz et al. 2005). The resulting Procrustes tangent coordinates were used as shape 

176 variables in all subsequent shape analyses. All our statistical analyses were performed either in R 
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177 (v. 3.3.3) using the R packages geomorph (v. 3.0.5) (Adams 2016; Adams & Otarola-Castillo 

178 2013) and Morpho (v. 2.5.1) (Schlager 2017) or using MorphoJ (v. 1.06d) (Klingenberg 2011).

179

180 First, asymmetry is a known source of variation within a sample (Klingenberg et al. 2002), so we 

181 tested for it with MorphoJ’s Procrustes ANOVA function and subsequently removed it (Fig. 2b). 

182 Isolating the symmetric component of shape has been done in other 3D surface scanner studies 

183 where operator and device error have been of the same magnitude as asymmetric error (Fruciano 

184 et al. 2017). Variation due to asymmetry is more impacted by operator error because of its 

185 smaller effect sizes compared to variation among individuals (Fruciano 2016; Fruciano et al. 

186 2017; Klingenberg et al. 2010; Leamy & Klingenberg 2005). This suggests that low resolution 

187 studies on asymmetry would be negatively impacted. For this reason, we performed most 

188 subsequent analyses on the symmetric shape component, with a few exceptions performed for 

189 comparison. We then performed a PCA on the symmetric shape variables to visualize the 

190 variation between individuals, within scan method replicates, and between scan method 

191 replicates. As an exploratory analysis, PCA can help intuitively visualize both random error 

192 (greater spread of one scan method replicate compared to the other) and systematic error 

193 (repeated pattern of one scan method shifting relative to another). However, further analyses are 

194 necessary to quantify these sources of error. 

195

196 Second, our replicate design allowed us to assess whether an operator digitizing scans from one 

197 device was more variable in landmark placement than when digitizing scans from the other 

198 device (Fig. 2c). We did so by computing the Procrustes variance for each individual/device 

199 combination. In geomorph, Procrustes variances are calculated for each set of observations (i.e. 
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200 replicates) as the sum of the diagonal elements of the set’s covariance matrix divided by the 

201 number of observations (Adams 2016; Zelditch et al. 2012). We computed Procrustes variance 

202 for each combination of individual and device so that Procrustes variance reflects only variation 

203 due to digitization. We then compared Procrustes variance between devices using a box plot and 

204 the permutational procedure implemented in geomorph. Next we quantified digitization 

205 consistency by computing repeatability for each device using the analogue of the intraclass 

206 correlation coefficient computed with the Procrustes ANOVA mean squares, as suggested by 

207 (Fruciano 2016). This value is normally comprised between 0 and 1, with values close to 1 

208 indicating much larger variation due to the factor used in computing the Procrustes ANOVA (in 

209 our case, variation among individuals) compared to residual variation (in our case, variation 

210 among digitizations). In other words, comparing repeatability between devices gives a similar 

211 information to the one obtained by the box plots of Procrustes variance but on a more easily 

212 interpretable scale from 0 to 1. We repeated our computations of repeatability for subsets of the 

213 data to test whether introducing semi-landmarks on curves and surfaces (patch points) changed 

214 the repeatability relative to a fixed landmark-only dataset. We did so for both 3D and μCT 

215 datasets to see if these trends differed by scan device. 

216

217 Finally, we investigated whether there is a difference between devices in a common task: the 

218 correct classification of sexual dimorphism (Fig. 2d). We began with a Procrustes ANOVA in R 

219 on the symmetric component for the subset of individuals with sex information (n = 11 distinct 

220 individuals; n = 66 3D models). This allowed us to gauge the magnitude of the effect of sexual 

221 dimorphism compared to other sources of variation, including variation due to scan device. Then 

222 with Morpho, we averaged the shape of each replicate triad for each device, performed a 
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223 between-group PCA using sex as group (Boulesteix 2005). Between-group principal component 

224 analysis is an ordination technique which is gaining popularity in geometric morphometrics (eg. 

225 Firmat et al. 2012; Franchini et al. 2016; Franchini et al. 2014; Fruciano et al. 2016; Fruciano et 

226 al. 2014; Mitteroecker & Bookstein 2011; Raffini et al. 2018; Schmieder et al. 2015; Seetah et al. 

227 2012) However, it can be also thought as a classification tool, as in the Morpho implementation 

228 which allows performing leave-one-out cross-validation. We, then used cross-validated 

229 classification accuracy as a measure of performance in classifying individuals based on their sex.

230

231 Results

232 Analyses of shape variation

233 Our Procrustes ANOVA results indicate that variation among individuals (%Var = 48.3) 

234 contributes the most to total variance, with asymmetry (directional and fluctuating), device, and 

235 operator error contributing the remainder (Table 1a).  The %Var values indicate that directional 

236 asymmetry contributes a similar amount of variation as other sources of non-biological variation 

237 and that fluctuating asymmetry accounts for much less than digitization error and variation 

238 between devices (Table 1a). This means that using analyses of asymmetry with a combination of 

239 μCT and 3D surface scans would likely be unreliable in specimens the size of delicate mice or 

240 for specimens scanned at a similarly low resolution. The Procrustes ANOVA results for just the 

241 3D data, confirms this observation in which digitization error is large compared to the 

242 components of asymmetric variation (Table 1b). For the 3D dataset, the error term (Res/Rep) 

243 contributes 17.8% of variation while asymmetry (Side) contributes 19.2%. In other words, for 

244 our 3D scan dataset, error contributes almost as much variation as asymmetry (Table 1b). The 

245 Procrustes ANOVA for just the μCT dataset, however, did not have this problem to the same 
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246 degree. Here, the error term (Res/Rep) contributes only 8.52% of variation while asymmetry 

247 (Side) contributes 20.8% (Table 1c). In other words, error contributes less than one half of what 

248 asymmetry contributes in the μCT dataset. Therefore, a low resolution study of asymmetry with 

249 3D scans would likely be unreliable unless appropriate arrangements are made to reduce error 

250 (Fruciano 2016), whereas μCT scans may be more suitable for these types of studies. 

251

252 The Procrustes ANOVA on just the symmetric component of shape reports the individual shape, 

253 representing biological variation, is 73.4% (Table 2). Differences between scan devices represent 

254 14.6% and the residuals encompassing differences among replicates or operator error represent 

255 12.0% of total variance (Table 2). Thus, our Procrustes ANOVA on the symmetric component 

256 shows that most of the variation is due to biological sources but the significance of the variation 

257 due to device may indicate systematic error. 

258

259 The PCA on the symmetric component revealed that the first three principal components (PCs) 

260 account for 47.0% of total variation (PC1 = 26.4%, PC2 = 12.0%, PC3 = 8.81%, n = 114) (Fig. 

261 4). Each of the remaining PCs accounted for 6% or less of total variation therefore we only 

262 considered the first three for the exploration of patterns of variation. Positive values along PC1 

263 correspond to a larger braincase relative to the rostrum (Fig. 5a). Positive values along PC2 

264 correspond to a wider frontal bone (Fig. 5b). Finally, positive values along PC3 correspond to a 

265 more convex, dorsally-curved ventral surface (Fig. 5c). 

266

267 The plot of the scores on PC1 and PC2 supports the results from the Procrustes ANOVA on the 

268 symmetric component of shape in that most of the visible variation is between individuals, i.e. 
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269 clusters of each individual’s replicates (Fig. 4a). Indeed, regardless of scanning device, replicates 

270 from the same individual cluster together (Fig. 4a). For most individuals, replicates occupy non-

271 overlapping regions of the plot except for those around the crowded mean shape near the origin 

272 (Fig. 4a). Within each individual’s variation on PCA scores, μCT replicates usually form a 

273 tighter cluster than the 3D replicates (Fig. 4a). This pattern suggests that using μCT scans 

274 introduces less random error than using 3D scans. Furthermore, within an individual, 3D scan 

275 replicates tend to cluster closer to other 3D replicates while μCT scan replicates tend to cluster 

276 closer to other μCT replicates (Fig. 4a). Indeed, for most individuals, 3D scan replicates score 

277 lower than the μCT scan replicates from the same individual on both PC1 and PC2. These results 

278 suggest the systematic error may be driven by μCT scans overestimating both braincase volume 

279 and frontal bone width relative to 3D scans (Fig. 4a, Fig. 5a,b). 

280

281 Overall, the scores along the first two PCs complement and provide an intuitive visualization for 

282 the patterns of higher error in 3D scans and of systematic error between the scan devices as 

283 observed in the Procrustes ANOVAs (Tables 1 and 2). The scores along PC1 and PC3 highlight 

284 another possible systematic difference between 3D and μCT scans (Fig. 4b). The PC3 axis 

285 displaces μCT replicates from 3D replicates such that variation in PC3 scores within individuals 

286 is often larger than variation in PC3 scores among individuals (Fig. 4b). On the PC3 axis, almost 

287 all 3D scan replicates had higher scores, which correspond to a more dorsally curved ventral 

288 surface relative to their corresponding μCT scan replicates (Fig. 4b, Fig. 5c). 

289

290 Procrustes variance and repeatability
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291 To compare the digitization error in each scanning device dataset, we calculated the Procrustes 

292 variance among the replicate triads of each individual. We found that Procrustes variance is 

293 significantly (p<0.001) higher in 3D scans (mean = 1.31x10-4) than in μCT scans (mean = 

294 4.76x10-5) (Fig. 6). This means that digitizations are more variable in 3D scans than in μCT 

295 which is consistent with decreased clustering in 3D scans relative to μCT scans in the PCAs (Fig. 

296 4). 

297

298 The repeatability for each scan dataset mirrored the Procrustes variance results. We found that 

299 the μCT scan dataset had a repeatability of 0.896 and the 3D scan data had a repeatability of 

300 0.750 (Table 3a,d). This means operators have an easier time repeating their digitizations (i.e., 

301 landmark placements) with μCT scans than with 3D scans. 

302

303 To test how different types of landmarks impacted repeatability, we calculated repeatability for 

304 combinations of landmark types for 3D and μCT datasets consisting of only the symmetric 

305 component of shape (Table 3). Because sliding landmarks depend on the placement of fixed 

306 landmarks (and patch points depend on both fixed and semi-landlandmark curves), we could not 

307 isolate each type of landmark’s repeatability. The analyses restricted to completely manually 

308 placed fixed landmarks always had the lowest repeatability of the three types of landmarks 

309 (Table 3c,f). Repeatability was always highest for the datasets including all three types of 

310 landmarks including the semi-automated semi-landmarks and the completely automated patch 

311 points (Table 3a,d). Higher repeatability in datasets with the sliding landmarks may result 

312 because the sliding smooths out user placement error across replicates. 

313
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314 Analyses with a biological example: sexual dimorphism

315 A small subset of our dataset had sex information (n = 11; f = 7, m = 4), allowing us to perform a 

316 test on whether using different scan devices classify males and females according to shape with 

317 the same level of accuracy. Our Procrustes ANOVA on the symmetric component of shape 

318 variation using sex and device as factors found that shape differences due to device (Rsq = 

319 0.0646) and sex (Rsq = 0.0952) are both significant (p < 0.001). Both factors have relatively 

320 small effect sizes, however, sex captures slightly more shape variation than device (Table 4). 

321 However, the between-group PCAs do not suggest marked sexual dimorphism to begin with 

322 (Fig. 7). Therefore, the subtlety of this biological signal could be the main reason for the small 

323 contribution of sex to total variation. Finally, we performed a cross-validation test on the 

324 between-group PCAs to assess which scan dataset can more reliably classify sexes based on 

325 shape (Table 5). The results show that in this case, 3D scans and μCT scans perform identically 

326 (overall classification accuracy = 63.6%). 

327  

328 Discussion

329 In this study, we contrasted very high resolution μCT scans with their extreme opposite: 3D 

330 surface scans of very small specimens. Our low versus high resolution datasets allowed us to 

331 assess whether the low resolution scans still allow defensible investigations of biological shape 

332 variation. We found that despite the low quality of the 3D scans, sufficient amounts of biological 

333 variation are present to perform, at the very least, typical interspecific comparisons. In datasets 

334 with only very slight intra-specific differences, more difficulties in distinguishing biological 

335 signal from error’s “noise” may occur. For example, the subtle sexual dimorphism in our small 

336 sample was only just distinguished. However, we present three considerations to make before 
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337 using low resolution datasets. First, we found that variation due to scan device and digitizations 

338 substantial relative to asymmetric variation. This makes low resolution datasets a poor choice for 

339 studies on asymmetry. Second, using 3D scans creates more random error due to increased 

340 landmarking difficulty, therefore care should be taken in landmark choice, and possibly 

341 landmarking software and operator choice. Digitization error may also be reduced by taking 

342 averages of repeated measurements (Arnqvist & Martensson 1998; Fruciano 2016). Third, using 

343 3D scans also introduces a source of systematic error relative to μCT scans, therefore we 

344 recommend not combining them whenever possible (see also Fruciano et al. 2017), and 

345 especially in studies on small intra-specific variation. In summary, with a few precautions listed 

346 above, we expect that for studies with similarly sized skulls or similarly low resolution scans, the 

347 variation due to error will be sufficiently low for successful detection of interspecific shape 

348 differences.

349

350 Measurement error and 3D scan reliability

351 Systematic error between the two scan devices is shown by consistent displacement patterns in 

352 the PCA. Indeed, across all three PC axes, the scans differ in how they measure concavity around 

353 the braincase, frontal, and ventral surface. This systematic pattern could suggest that the 3D 

354 scanner technology errs on adding volume to the digital specimen relative to the μCT scan but it 

355 could also be the other way around with the μCT scan distorting the images to reduce volume. 

356 Furthermore, even when using the symmetric component of shape, the percent of variation 

357 contributed by scan device is quite substantial at about 14.5%. Because scan device contributes 

358 this much to variation and because systematic error between scan device exists, researchers 
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359 expecting very small variation due to biological sources would be advised not to combine 3D 

360 scan and μCT scan datasets. 

361

362 While the two scan devices are usually comparable, using the low resolution 3D scans introduces 

363 more digitization error than the higher resolution μCT scans, which likely reflects increased user 

364 error due to lower resolution in 3D scans. This increased random error is reflected in both the 

365 larger point clouds of 3D replicates relative to μCT replicates in the PCAs, the higher Procrustes 

366 variance, and the lower repeatability score of 3D scans, particularly of manually-placed fixed 

367 landmarks. As expected, we found that the low resolution 3D scans were more difficult to 

368 landmark because key cranial features such as sutures and smaller processes were less distinct 

369 (Fig. 1). Nevertheless, our overall 3D scan repeatability score of 0.75 with symmetric data 

370 appears consistent with the literature: it is much lower than 3D scanned human-sized skulls – 

371 above 0.95 (Badawi-Fayad & Cabanis 2007; Fourie et al. 2011) but it is approaching the range of 

372 3D scanned macropodoids (e.g., kangaroos) – 0.78-0.98, depending on device and landmark 

373 choice (Fruciano et al. 2017). This trend of decreasing repeatability with decreasing body size 

374 may reflect measurement error becoming a larger percentage of overall size (Robinson & 

375 Terhune 2017). Relatedly, recent work has shown that excluding a few unreliable landmarks, or 

376 those with greater variability in placement, can significantly increase repeatability (Fruciano et 

377 al. 2017). This may be especially true for small specimens, for which small variations from the 

378 landmark location represent a larger percentage of their overall size. 

379

380 Our repeatability tests on different combinations of landmark types suggest that fixed landmarks 

381 suffer the most from decreased resolution and the associated increased user error while patch 
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382 points suffer the least. We interpret these results to mean that the (semi-) automatic placement of 

383 semi-landmark curves and patches is more consistent in placing points compared to a human 

384 operator placing fixed landmarks, regardless of whether the automatic placement is "correct" or 

385 not. It is important to note that while semi-landmarks were “semi-automated”, the user still 

386 manually defined the curve they slid along for each specimen. Furthermore, this curve is 

387 bounded by user-placed fixed landmarks. Therefore, the increased repeatability with increasing 

388 automation could also be due to the increased degrees of freedom afforded to landmarks during 

389 sliding: fixed with zero degrees, semi-landmarks with one degree, and patch points with two. 

390 The sliding, by removing variation tangential to a certain direction, will reduce the variance in 

391 those points which will appear to vary less so it would be expected that these points will 

392 contribute less overall variation when combined with the fixed landmarks.

393

394 This study did not look at multiple operator error which can be considerable, particularly if 

395 difficult landmarks are included (Fruciano et al. 2017). If inter-operator error were combined 

396 with the resolution-driven measurement error found here, it is possible that biological signal 

397 would diminish to a degree that could not support even interspecific comparisons.

398

399 Measurement error introduced by scanning device compared to biological variation

400 The challenge of any quantitative measurement study is to minimize measurement error 

401 introduced from various sources (in our case, device, resolution, and observer) relative to the 

402 “true” signal of biological variation. In the case of inter-observer error, which is one 

403 measurement error source, several studies suggest that interspecific variation can overwhelm 
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404 inter-observer such that this does not pose an issue with the correct interpretation of results 

405 (Robinson & Terhune 2017).

406

407 In our test on the ability of different scan devices to classify according to sexual dimorphism, we 

408 showed that while variation contributed by each source was similar (and that from scan device 

409 slightly lower), both scan datasets presented a small sexually dimorphic pattern and supported 

410 the same classification performance. This suggests that 3D scans may even be acceptable for 

411 detecting some intra-specific patterns. However, this was a small sample (n = 11) and further 

412 studies with larger datasets would improve confidence for using 3D scans for intra-specific 

413 studies. Studies based on larger datasets might also be able to better highlight differences in 

414 classification performance between devices, if any. Nevertheless, it is promising that 3D scans 

415 and μCT scans performed equally even at such a small sample size for such a subtle intra-

416 specific signal. 

417

418 Choosing a digitization device: 3D surface scanning versus μCT versus photogrammetry

419 With many options for digitizing 3D specimens available, decisions on the acquisition mode 

420 must consider price, scanning time, processing time, portability, and scan resolution. The one-off 

421 investment of a relatively high resolution 3D surface scanner such as the HDI109 provided a 

422 model portable enough to take on airplanes and with fast scanning and processing times. Our 

423 model took 10 minutes from starting the scan to the finished surface file, but note that larger 

424 specimens requiring multiple sub-scans will take longer. These fast acquisition times are an asset 

425 in collection efforts that rely on expensive and time-limited museum travel. For example, one of 

426 us (AEM) digitized over 100 individuals in one week using the same scanning protocol. 
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427 However, the quality and speed of scanning varies by model; for example, other 3D surface 

428 scanners could take over 45 minutes to capture one specimen and may also require more effort to 

429 process scans (Katz & Friess 2014). 

430

431 Compared to 3D surface scanners, μCT scanners provide much higher resolution, which in this 

432 study translated into less measurement error. However, uCT facilities are not widely accessible, 

433 not mobile, and tend to be more expensive. Depending on the facility, μCT scanning involves 

434 transport to the facility, scanning either by the operator, processing scans into image stacks, and 

435 finally loading scans into specialized (and frequently high-cost) software to do the 3D 

436 reconstruction. These reconstructions can be time consuming especially if the cranium needs to 

437 be separated from the mandibles. Finally, specimens need to be loaned from their collections for 

438 uCT acquisition, which requires specimen transport and curator permission and is particularly 

439 difficult when large numbers of specimens from distant locations need to be scanned.  

440

441 This study did not investigate photogrammetry, which is another and increasingly popular 

442 method for digitizing 3D shape. This method uses software to align 2D photographs taken from 

443 many different views into a 3D file. Photogrammetry is much cheaper and more portable than 3D 

444 surface scanning since it only requires a camera of suitable resolution and very affordable photo-

445 alignment software like Agisoft PhotoScan (Agisoft LLC, St. Petersburg, Russia; 

446 www.agisoft.com). The trade-offs are that in our experience, photogrammetry takes at least three 

447 times longer to acquire the photos, it involves higher risk of human error or inconsistency during 

448 photography, and it requires an order of magnitude more time to align the photos into a 3D 

449 digital file. While photo-alignment can be done at convenience after photography, the greater 
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450 time required to capture enough photos may be a deciding factor for researchers with time 

451 limitations in museum collections. As for scan resolution, photogrammetry may perform better 

452 than 3D surface scanners in some cases (Fourie et al. 2011) or at least provide an acceptable 

453 alternative (Katz & Friess 2014; Muñoz‐Muñoz et al. 2016). 

454

455 Scan resolution is not the only consideration when choosing a scan device as its unique 

456 requirements for 3D model processing may increase image noise and therefore landmarking 

457 difficulty. Compared to uCT scanning, 3D scans tend to be both noisier and require more model 

458 processing before 3D model export. Specifically, artificial smoothing and hole-filling may 

459 change the topography of the 3D mesh. Therefore, the comparison we have presented here is not 

460 just a comparison of resolutions but also a comparison of 3D model generation. The methods we 

461 provide in the supplementary files (Additional File 2: Supplementary Methods) represent the 

462 settings we found to decrease noise, however, the software also required some model smoothing 

463 and hole-filling before export. We recommend that researchers take these additional sources of 

464 image modification into account during their landmark choice and study design. 

465

466 Conclusions

467 Here, we have shown that a 3D surface scanner can provide an acceptable alternative to a μCT 

468 scanner for assessing biological signal of 3D shape even in small specimens that are at the limits 

469 of 3D scanner resolution. Our analyses specifically showed that first, error contributes to a higher 

470 percentage of variation in 3D scan datasets than in μCT scan datasets of the same small 

471 specimens. As a result, we conclude that 3D scans are usually not appropriate for studies on very 

472 small sources of variation like fluctuating asymmetry. Second, we show that 3D scan datasets 
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473 have a lower repeatability of landmark placement, especially for fixed landmarks, as compared 

474 to μCT scans. Relatedly, our comparisons of repeatability on data with asymmetry to the same 

475 data without asymmetry – i.e. having bilateral symmetry – support analyzing the bilaterally 

476 symmetrical data of landmarks from low resolution scans. Finally, we use a preliminary study of 

477 sexual dimorphism to suggest that despite elevated error and shape variance, bilaterally 

478 symmetrical datasets from 3D scans can support male versus female classification based on 

479 small biological differences as well as μCT datasets can. In summary, while 3D scans are a 

480 promising alternative, exploratory pilot studies of measurement error like this one are advisable 

481 when practically possible (see also (Fruciano 2016). 

482

483 Furthermore, the best 3D capture method will vary based on the study’s design, expected effect 

484 size for the biological variation of interest, and the researcher’s limitations on time, money, and 

485 travel. In addition to image resolution requirements, it is wise to assess the time it will take to 

486 capture and process each specimen as well as portability needs. We recommend a preliminary 

487 test on multiple devices – including surface scanners – to determine how levels of error compare 

488 to biological signal and whether there is substantial systematic error. Doing so may provide a 

489 defensible alternative to an expensive and time consuming large-scale acquisition of μCT scans 

490 including for studies on very small specimens. 

491
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496 Abbreviations

497 Landmark (LM)

498 Micro-computed tomography (μCT) 

499 Principal component analysis (PCA) 

500 Principal component (PC) 

501 Three-dimensional (3D)
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Figure 1

Low resolution 3D surface scans compared to μCT scans of the same delicate mouse

crania.

3D scans of (A) dorsal view (B) lateral view and (C) ventral view compared to μCT scans of

(D) dorsal view (E) lateral view and (F) ventral view. All crania are rendered in Viewbox v. 4.0.
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Figure 2(on next page)

Methods flow diagram highlighting the relationship between our questions and our

analyses.

(A) All delicate mouse (Pseudomys delicatulus) crania were sourced from the Queensland

Museum in Brisbane, Australia. Landmarks (LMs) capture homologous points, semi-landmarks

(semi-LMs) capture curves between landmarks, and patch points capture surfaces between

landmarks and semi-landmarks. (B - D) These sections of questions and associated figure and

table numbers summarize how we organize the paper, particularly the Results, into three

sets of related analyses.
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Data Collection (n = 19)

̀CT scan and 3D scan

Replicate each scan x3

A

Landmark (n = 114)

Table S1

Add’l
File 2

58 LMs, 145 semi-LMs, 86 patch pts

B Analyses of shape variation

Fig. 1

How does variation due to scan 
device compare to other sources?

Table 1 

. . . and when variation due to 
bilateral asymmetry is removed?

Table 2 

How does variation for the sym-
metric shape component look?

Figs. 4 & 5

C Analyses of variance and error

Does variation among replicates
differ by scan device?

Fig. 6

Does repeatability (i.e. operator 
error) differ by scan device?

Table 3

Does repeatability differ if 
fewer landmark types are used?

Table 3

D Analyses of intra-specific variation

How much sexual dimorphism
appears to exist in our sample?

Table 4
Fig. 7

Does one scan device provide a 
better basis of sex identification?

Table 5 

Fig. 3
Table S2
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Figure 3

Positions of landmarks for geometric morphometric analyses.

Locations of fixed landmarks (black points), sliding semi-landmarks (red points) and sliding

surface patches (purple points) on a μCT scanned individual. (A) Dorsal view of the cranium.

(B) Lateral view. (C) Ventral view. Definitions are given in Table S2.
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Figure 4

Exploratory PCA plots of shape variation showing differences among individuals, scan

devices, and replicates of the same scan device.

(A) PC1 versus PC2 and (B) PC1 versus PC3. Each individual has a unique color shared by all

of its 6 replicates. Each individual has 3 triangles to represent the 3D scanned replicates and

3 circles to represent the μCT scanned replicates. Each axis reports the total variance

explained by that principal component.
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Figure 5

3D warp-grids for the three most important principal components, showing minimum

and maximum shapes for each PC.

The right hand cranium shows the maximum positive shape for the principle component (PC) and the left

hand cranium shows the minimum negative value. Compared to negative values (A), positive values along

PC1 (26.4% variance) correspond to a larger braincase relative to the rostrum (B). Compared to negative

values (C), positive values along PC2 (11.9% variance) correspond to a wider frontal bone compared to

negative values (D). Compared to negative values (E), positive values along PC3 (8.9% variance) correspond

to a more dorsally-curved ventral surface compared to negative values (F).
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Figure 6

Morphological disparity -- as measured by shape variation among replicate scan triads --

by scanning device reflects operator error.

This box plot summarizes the morphological disparity (also known as the Procrustes

variance) among the three replicates of an individual for each scan type. The mean

Procrustes variance for 3D scans was 1.34x10-4 and 4.81x10-5 for μCT scans. This is a

significant difference (p<0.001).
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Figure 7

Intra-specific variation as shown by PCAs of 3D and μCT scan datasets colored by sex.

PCA provides an exploratory visualization of shape variation between males and females in

our subsample with sex information (n=11). Males (n=4) are plotted in light blue and females

(n=7) are plotted in dark red. Results from the cross-validation test can be found in Table 5.
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Table 1(on next page)

General Procrustes ANOVA on sources of shape variation including asymmetry.

The %Var column of this Procrustes ANOVA demonstrates the relative contribution of each

factor to overall variation. It is calculated from the sum of squares for each factor divided by

the total sum of squares for all factors.
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1 A) All Specimens

Df SS MS %Var F Pr(>F)

Individual   8010 6.21E-02 7.76E-06 48.3 11.2     

<.0001

Side       415 2.37E-02 5.70E-05 18.4 82.4    

<.0001

Ind * Side   7470 5.17E-03 6.93E-07 4.02 0.54 1

Device   16340 2.08E-02 1.27E-06 16.1 4.90     

<.0001

Res / Rep    65360 1.70E-02 2.59E-07 13.2

2

3 B) Only 3D Specimens

Df SS MS %Var F Pr(>F)

Individual   8010 3.52E-02 4.40E-06 51.6 4.24

    

<.0001

Side       415 1.31E-02 3.15E-05 19.2 30.4

    

<.0001

Ind * Side   7470 7.75E-03 1.04E-06 11.4 2.79

    

<.0001

Res / Rep    32680 1.22E-02 3.72E-07 17.8

4

5 C) Only CT Specimens

Df SS MS %Var F Pr(>F)

Individual   8010 3.45E-02 4.31E-06 61.7 6.41

    

<.0001

Side       415 1.17E-02 2.81E-05 20.8 41.8

    

<.0001

Ind * Side   7470 5.02E-03 6.72E-07 8.97 4.61

    

<.0001

Res / Rep    32680 4.76E-03 1.46E-07 8.52

6
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Table 2(on next page)

Procrustes ANOVA on the sources of shape variation using the symmetric component of

shape.

The R-squared column of this Procrustes ANOVA demonstrates the relative contribution of

each factor to overall variation. The shape variation of this dataset is visualized in Figures 4

and 5.
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Df SS MS Rsq F Z Pr(>F)

ind 18 6.23E-02 3.46E-03 0.734 25.8 21.4 0.001

ind:Dev 19 1.24E-02 6.52E-04 0.146 4.86 23.7 0.001

Residuals 76 1.02E-02 1.34E-04 0.120

Total 113 8.49E-02

1
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Table 3(on next page)

Comparison of operator error in 3D scan and μCT scan datasets using Procrustes

ANOVAs and repeatability scores.

The repeatability score (R) is a value that reflects the ease of digitizing in a repeated

measure study design. It is calculated from the Procrustes ANOVA using formulas for the

intra-class correlation coefficient. The Procrustes ANOVAs were found by subsetting the

dataset by scan device and by landmark types and then performing separate generalized

Procrustes and bilateral symmetry alignments. (A-C) Results from the 3D-only dataset. (D-F)

Results from the μCT-only dataset. (A) and (D) show the repeatabilites from the entire

landmark datasets of each scan device. (B) and (E) remove patch points. (C) and (F) contain

only fixed landmarks.
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A) 3D Scan All Landmarks Including Patches (n = 289)

 Df SS MS Rsq F Z Pr(>F) R

Ind 18 3.53E-

02

1.96E-

03

0.826 10.0 16.0 0.001 0.75

0

Residuals 38 7.46E-

03

1.96E-

04

0.174

Total 56 4.28E-

02

1

B) 3D Scan Fixed Landmarks and Semilandmarks (n = 203)

Df SS MS Rsq F Z Pr(>F) R

Ind 18 4.37E-

02

2.43E-

03

0.807 8.826 16.7 0.001 0.723

Residuals 38 1.04E-

02

2.75E-

04

0.193

Total 56 5.41E-

02

2

C) 3D Scan Fixed Landmarks Only (n = 58)

Df SS MS Rsq F Z Pr(>F) R

Ind 18 6.90E-

02

3.83E-

03

0.749 6.30 16.6 0.001 0.639

Residuals 38 2.31E-

02

6.09E-

04

0.251

Total 56 9.21E-

02

3

D) CT Scan All Landmarks Including Patches (n = 289)

Df SS MS Rsq F Z Pr(>F) R

Ind 18 3.46E-

02

1.92E-

03

0.927 26.9 18.4 0.001 0.896

Residuals 38 2.72E-

03

7.15E-

05

0.073

Total 56 3.73E-

02

4

E) CT Scan Fixed Landmarks and Semilandmarks (n = 203)

Df SS MS Rsq F Z Pr(>F) R

Ind 18 4.33E-

02

2.41E-

03

0.921 24.7 19.0 0.001 0.888

Residuals 38 3.71E-

03

9.76E-

05

0.079
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Total 56 4.70E-

02

5

F) CT Scan Fixed Landmarks Only (n = 58)

Df SS MS Rsq F Z Pr(>F) R

Ind 18 6.28E-

02

3.49E-

03

0.893 17.6 20.2 0.001 0.847

Residual

s

38 7.54E-

03

1.98E-

04

0.107

Total 56 7.03E-

02
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Table 4(on next page)

Symmetric Procrustes ANOVA with device and sex as factors to assess relative

contribution of intra-specific variation to overall shape variation.

This Procrustes ANOVA allows comparison of the relative contribution to total variation from

scan device and sex (R-squared column).
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Df SS MS Rsq F Z Pr(>F)

device 1 2.99E-03 2.99E-03 0.0646 4.84 4.06 0.001

sex 1 4.40E-03 4.40E-03 0.0952 7.14 4.96 0.001

Residuals 63 3.88E-02 6.16E-04

Total 65 4.62E-02

1
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Table 5(on next page)

Between group PCA classification test to assess whether one scan device dataset

performs better at identifying sexes based on shape.

This analysis averages shape among replicates, computes a between-group PCA separately

for 3D and μCT datasets, and runs a cross-validation classification test. The results indicate

whether one type of scan dataset is more successful at classifying males versus females

based on the shape variation present in the dataset. It also returns a kappa statistic; a kappa

value over 0.20 indicates “fair” agreement between the two datasets. Shape variation

visualized by sex can be seen in Figure 7.
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Cross-validated classification results in frequencies

3D f m

f (n = 7) 5 2

m (n = 4) 2 2

CT f m

f (n = 7) 5 2

m (n = 4) 2 2

Cross-validated classification results in %

3D f m

f 71.4 28.6

m 50.0 50.0

CT f m

f 71.4 28.6

m 50.0 50.0

Overall classification accuracy (%)

3D 63.6

CT 63.6

Kappa statistic 

3D 0.214

CT 0.214

1
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