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Background. Advances in three-dimensional (3D) shape capture technology have made powerful shape
analyses, such as geometric morphometrics, more feasible. While the highly accurate micro-computed
tomography (UCT) scanners have been the “gold standard,” recent improvements in 3D surface scanner
resolution may make this technology a faster, more portable, and cost-effective alternative. Several
studies have already compared the two scanning devices but all use relatively large specimens such as
human crania. Here we perform shape analyses on Australia’s smallest rodent species to test whether a
3D surface scanner produces similar results to a uCT scanner.

Methods. We captured 19 delicate mouse crania with a uCT scanner and a 3D surface scanner for
geometric morphometrics. We ran multiple Procrustes ANOVAs to understand how variation due to scan
device compared to other sources of variation such as biologically relevant sources and operator error.
We quantified operator error with morphological disparity and repeatability. Finally, we tested whether
the different scan datasets could detect intra-specific variation using cross-validation classification.
Shape patterns were visualized with Principal Component Analysis (PCA) plots.

Results. In all Procrustes ANOVAs, regardless of factors included, differences between individuals
contributed the most to total variation. This is also reflected in the way individuals disperse on the PCA
plots. Including only the symmetric component of shape increased the biological signal relative to
variation due to device and due to error. 3D scans create a higher level of operator error as evidenced by
a greater spread of their replicates on the PCA, a higher morphological disparity, and a lower
repeatability score. However, in the test for small intra-specific differences, the 3D scan and uCT scan
datasets performed identically.

Discussion. Compared to uCT scans, we find that even very low resolution 3D scans of very small
specimens are sufficiently accurate to capture variation at the level of interspecific differences. We also
make three recommendations for best use of low resolution data. First, we recommend analyzing the
symmetric component of shape to decrease signal from operator error. Second, using 3D scans
generates more random error due to increased landmarking difficulty, therefore be conservative in
landmark choice and avoid multiple operators. Third, using 3D scans introduces a source of systematic
error relative to uCT scans, therefore do not combine them when possible and especially in studies with
little variation. Our findings support increased use of low resolution 3D images for most morphological
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studies; they are likely applicable to low resolution scans of large specimens made in a medical CT
scanner, for example. As most vertebrates are relatively small, we anticipate our results to bolster more
researchers designing affordable large scale studies on small specimens with 3D surface scanners.

Peer] reviewing PDF | (2018:02:25642:0:1:NEW 9 Mar 2018)



Peer]

Low resolution scans provide a sufficiently accurate, cost- and time-effective alternative to
high resolution scans for interspecific 3D shape analyses

A WN =

Authors: Ariel E. Marcy!, Carmelo Fruciano?, Matthew J. Phillips3, Karine Mardon*?, Vera

5 Weisbecker!

7 1 School of Biological Sciences, University of Queensland, Brisbane, Australia

8 2 Institut de biologie de 1’Ecole normale supérieure (IBENS), Ecole normale supérieure,

9 CNRS, INSERM, PSL Université Paris, Paris, France

10 3 School of Earth, Environmental and Biological Sciences, Queensland University of

11 Technology, Brisbane, Australia
12 4 Centre for Advanced Imaging, University of Queensland, Brisbane, Australia
13 5 National Imaging Facility, University of Queensland, Brisbane, Australia

14
15 Corresponding Author:
16  Ariel E. Marcy

17 a.marcy@ug.edu.au

Peer] reviewing PDF | (2018:02:25642:0:1:NEW 9 Mar 2018)



Peer]

18 Abstract

19 Background. Advances in three-dimensional (3D) shape capture technology have made

20 powerful shape analyses, such as geometric morphometrics, more feasible. While the highly

21 accurate micro-computed tomography (LCT) scanners have been the “gold standard,” recent

22 improvements in 3D surface scanner resolution may make this technology a faster, more

23 portable, and cost-effective alternative. Several studies have already compared the two scanning
24 devices but all use relatively large specimens such as human crania. Here, we perform shape

25 analyses on Australia’s smallest rodent species to test whether a 3D surface scanner produces

26  similar results to a pCT scanner.

27 Methods. We captured 19 delicate mouse crania with a uCT scanner and a 3D surface scanner
28  for geometric morphometrics. We ran multiple Procrustes ANOV As to understand how variation
29  due to scan device compared to other sources of variation such as biologically relevant sources
30 and operator error. We quantified operator error with morphological disparity and repeatability.
31 Finally, we tested whether the different scan datasets could detect intra-specific variation using
32 cross-validation classification. Shape patterns were visualized with Principal Component

33 Analysis (PCA) plots.

34 Results. In all Procrustes ANOV As, regardless of factors included, differences between

35 individuals contributed the most to total variation. This is also reflected in the way individuals
36 disperse on the PCA plots. Including only the symmetric component of shape increased the

37 biological signal relative to variation due to device and due to error. 3D scans create a higher
38 level of operator error as evidenced by a greater spread of their replicates on the PCA, a higher
39 morphological disparity, and a lower repeatability score. However, in the test for small intra-

40 specific differences, the 3D scan and pCT scan datasets performed identically.
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Discussion. Compared to uCT scans, we find that even very low resolution 3D scans of very
small specimens are sufficiently accurate to capture variation at the level of interspecific
differences. We also make three recommendations for best use of low resolution data. First, we
recommend analyzing the symmetric component of shape to decrease signal from operator error.
Second, using 3D scans generates more random error due to increased landmarking difficulty,
therefore be conservative in landmark choice and avoid multiple operators. Third, using 3D
scans introduces a source of systematic error relative to pCT scans, therefore do not combine
them when possible and especially in studies with little variation. Our findings support increased
use of low resolution 3D images for most morphological studies; they are likely applicable to
low resolution scans of large specimens made in a medical CT scanner, for example. As most
vertebrates are relatively small, we anticipate our results to bolster more researchers designing

affordable large scale studies on small specimens with 3D surface scanners.

Introduction
An organism’s shape reveals many facets of its biology, including its evolution, ecology, and
functional morphology. In the past three decades, geometric morphometrics has revolutionized
the field of shape research with better analysis and visualization of shape complexity (Rohlf &
Marcus 1993; Zelditch et al. 2012). As imaging technology continues to advance, three-
dimensional (3D) data have become extremely common in geometric morphometric studies,
especially in the cases in which 2D data poorly represent the actual 3D object (Buser et al. 2017;
Cardini 2014; Fruciano 2016; Reig 1996). 3D capture methods include very high resolution yet
high cost and time-intensive options like micro-computed tomography (uCT) scanning. In

contrast, 3D surface scanning offers lower acquisition costs and faster scanning, but has the
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disadvantage of generally lower resolution, which limits its use on very small specimens (Fig. 1).
For confident use of surface scans in small specimens, it is therefore important to assess the

measurement error introduced by choosing a 3D surface scanner for geometric morphometrics.

Most vertebrates would be considered small, for example about two thirds of mammals are
below 10kg (Weisbecker & Goswami 2010), which would translate to small skeletal specimens.
Therefore, morphometric studies proposing large sample sizes must be very well funded to use a
UCT scanner or have a low-cost option, such as a 3D surface scanner. Previous studies have
compared puCT scans to 3D surface scans, however, these were all done in large animals,
primarily primates (Badawi-Fayad & Cabanis 2007; Fourie et al. 2011; Katz & Friess 2014;
Robinson & Terhune 2017; Sholts et al. 2010; Slizewski et al. 2010). While these studies found
low error and high repeatability in 3D surface scans similar to uCT scans, there was a suggestion
that higher error occurred in the sample’s smaller specimens (Badawi-Fayad & Cabanis 2007;
Fourie et al. 2011). Other recent studies have conducted 3D geometric morphometric studies on
small vertebrate skulls but nearly all have relied exclusively on uCT scanning (Cornette et al.
2013; Evin et al. 2011). The only exception we are aware of is Munoz-Munoz et al. (2016),
which successfully used photogrammetry — a technique combining 2D photographs into a 3D
model — to analyze domestic mouse skulls (Mus musculus domesticus, C Linnaeus, 1758).
Photogrammetry, like 3D surface scanning, is a low-cost alternative to pCT and comes with its
own trade-offs in time and scan resolution (Katz & Friess 2014). Compared to the new
generation of blue light surface scanners, photogrammetry requires more time for image
acquisition and for file processing (Katz & Friess 2014). A previous study on a single macaque

specimen reported inconsistent levels of error across operators and scanners, which contributed
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to the lack of general pattern for differences across scanners/resolutions (Shearer et al. 2017).
However, using an interspecific dataset, Fruciano et al. (2017) reported higher repeatability for
the higher resolution scans and 2.07-11.26% of total variance due to scan type (depending on
device, operator and landmark set combination). We expect that small specimens would
exacerbate any variation due to device and the interaction of device with other factors, such as
landmark choice and operator. More work comparing these different methods — uCT scanning,
3D surface scanning, and photogrammetry — will allow researchers to make an informed
decision. For example, for those with time constraints in museum collections, a fast 3D surface

scanner may be the best option if the resolution is suitable for specimen size.

The lower resolution of 3D surface scanners may increase both random and systematic
measurement error, which is exacerbated by small specimens because operators may have more
difficulty identifying landmark locations (Arnqvist & Martensson 1998; Fruciano 2016).
Random error increases variance without changing the mean; this “noise” dilutes biologically
informative patterns and, in principle, decreases statistical power (Arnqvist & Martensson 1998;
Fruciano 2016). By contrast, systematic error is non-randomly distributed, thus changing the
mean and introducing bias to the data (Arnqvist & Martensson 1998; Fruciano 2016). Error
assessment can be done with repeated measures of the same individuals (e.g. Fruciano et al.
2017; Munoz-Munoz & Perpinan 2010; Robinson & Terhune 2017) or by comparison to a “gold
standard” or ideal representation of the specimens (Fruciano 2016; Slizewski et al. 2010;
Williams & Richtsmeier 2003) such as can be achieved with a high resolution uCT scan.
Repeated measure designs can uncover this systematic error, for example, if one 3D capture

method differs from another in a specific, non-random, pattern (Fruciano 2016; Fruciano et al.
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2017). Furthermore, designs including repeated measures of the same individuals allow
partitioning of variance into components, quantifying error due to scan type as compared to
biologically-relevant sources of variation such as asymmetry (Fruciano 2016; Klingenberg et al.

2002; Klingenberg & Mclntyre 1998).

In this study, we quantify the error introduced by studying specimens of a size at the very lower
limits of surface scanner resolution. This situation could also arise when using relatively large
specimens, which are nonetheless at the lower limit of a medical CT scanner’s resolution for
example. We test whether the complex shape of very small specimens can be adequately
captured using an HDI109 3D surface scanner with a stated resolution of 80 um as compared to a
UCT scanner with a resolution of 28 um. To do so, we use the delicate mouse (Pseudomys
delicatulus, ] Gould, 1842), one of the smallest rodents in the world with a 55-75 mm head-and-
body length (Breed & Ford 2007). The miniscule P. delicatulus crania (~20mm) are at the edge
of the HDI109 3D surface scanner’s range thus providing an extreme test of this scanning

method (Fig. 1, Fig. 2).

Methods
Data collection
We selected 19 adult individuals, male and female, of Pseudomys delicatulus from the
Queensland Museum in Brisbane, Australia (specimen numbers and sexes in Additional File 1:
Table S1). The cranium from each individual was scanned at the Centre for Advanced Imaging at
the University of Queensland in a pCT scanner (Siemens Inveon PET/CT scanner). The scanner

was operated at 80 KV energy, 250 pA intensity with 540 projections per 360°, a medium-high
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magnification with bin 2 was applied, and 2000 ms exposure time. The samples were scanned at
a nominal isotropic resolution of 28 um. The data were reconstructed using a Feldkamp
conebeam back-projection algorithm provided by an Inveon Acquisition workstation from

Siemens (IAW version 2.1). Surface models were obtained using Mimics Research version 20.0.

Each cranium was also scanned by 3D LMI’s HDI109 blue light surface scanner with a
resolution of 80 um. For brevity, we will refer to this method as 3D scanning. For this method,
the cranium was placed on a rotary table providing the scanner with 360 views. To capture the
entire shape, the cranium was scanned in three different orientations: one ventral view with the
cranium resting on the frontals and two dorsal views with the cranium tipped to each side, resting
on an incisor, auditory bulla, and zygomatic arch. To assist others in replicating our HDI109 3D
surface scanning on small specimens, we have included a Standard Operating Procedure with@

settings (Additional File 2: Supplementary Methods).

We duplicated the digital file for each unique individual-scan method combination three times
such that each individual was represented by 6 replicates, giving a total sample of 114 replicates
(Fig. 2a). Each replicate was landmarked in Viewbox version 4.0 (dHAL software, Kifissia,
Greece; www.dhal.com; Polychronis et al. 2013). To capture shape, we placed 58 fixed
landmarks, 145 sliding semi-landmarks, and 86 sliding patch points (3D meshes defined by
semi-landmark borders) for a total of 289 points (Fig. 3, Additional File 3: Table S2). We used
the template feature in Viewbox to semi-automate the placement of semi-landmark curves and to
fully automate the placement of patch points. Our landmark design covered most important

biological structures except for the zygomatic arch (Fig. 3); we avoided this fine structure
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because dehydration and loss of support from surrounding muscles during skeletonization almost

certainly causes specimen preparation error (Schmidt et al. 2010; Yezerinac et al. 1992).

Data analysis

The landmark coordinates for all 114 replicates were aligned using a generalized Procrustes
superimposition implemented in the R package geomorph (v. 3.0.5) (Adams 2016; Adams &
Otarola-Castillo 2013). Superimposition of each set of landmark coordinates removes differences
in size, position, and orientation, leaving only shape variation (Rohlf & Slice 1990). Semi-
landmarks and patches were permitted to slide along their tangent directions to minimize
Procrustes distance between replicates (Gunz et al. 2005). The resulting Procrustes tangent
coordinates were used as shape variables in all subsequent shape analyses. All our statistical
analyses were performed either in R (v. 3.3.3) using the R packages geomorph (v. 3.0.5) (Adams
2016; Adams & Otarola-Castillo 2013) and Morpho (v. 2.5.1) (Schlager 2017) or using MorphoJ

(v. 1.06d) (Klingenberg 2011).

First, asymmetry is a known source of variation within a sample (Klingenberg et al. 2002), so we
tested for it with MorphoJ’s general Procrustes ANOVA function and subsequently removed it
(Fig. 2b). Isolating symmetric shape has been done in other 3D surface scanner studies where
operator and device error have been of the same magnitude as asymmetric error (Fruciano et al.
2017). Variation due to asymmetry is more impacted by operator error because of its smaller
effect sizes compared to variation among individuals (Fruciano 2016; Fruciano et al. 2017;
Klingenberg et al. 2010; Leamy & Klingenberg 2005). This suggests that low resolution studies

on asymmetry would be negatively impacted. For this reason, we performed all subsequent
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analyses on the symmetric shape component. We then performed a PCA on the symmetric shape
variables to visualize the variation between individuals, within scan method replicates, and
between scan method replicates. As an exploratory analysis, PCA can help intuitively visualize
both random error (greater spread of one scan method replicate compared to the other) and
systematic error (repeated pattern of one scan method shifting relative to another). However,

further analyses are necessary to quantify these sources of error.

Second, our replicate design allowed us to assess whether an operator digitizing one type of scan
was more variable in landmark placement than when digitizing scans from the other device (Fig.
2¢). We did so by computing the Procrustes variance for each individual/device combination. In
geomorph, Procrustes variances are calculated for each set of observations (i.e. replicates) as the
sum of the diagonal elements of the set’s covariance matrix divided by the number of
observations (Adams 2016; Zelditch et al. 2012). We computed Procrustes variance for each
combination of individual and device so that Procrustes variance reflects only variation due to
digitization. We then compared Procrustes variance between devices using a box plot and the
permutational procedure implemented in geomorph. Next we quantified digitization consistency
by computing repeatability (i.e. the intraclass correlation coefficient using the Procrustes
ANOVA mean squares) for each device as suggested by Fruciano (2016). This value is normally
comprised between 0 and 1, with values close to 1 indicating much larger variation due to the
factor used in computing the Procrustes ANOVA (in our case, variation among individuals)
compared to residual variation (in our case, variation among digitizations). In other words,
comparing repeatability between devices gives a similar information to the one obtained by the

box plots of Procrustes variance but on a more easily interpretable scale from 0 to 1.
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Finally, we investigated whether there is a difference between devices in a commonly used shape
analysis: the detection and correct classification of sexual dimorphism (Fig. 2¢). We began with
a Procrustes ANOVA in R on the symmetric component for the subset of individuals with sex
information (n = 11 distinct individuals; n = 66 replicates). This allowed us to gauge the
magnitude of the effect of sexual dimorphism compared to other sources of variation, as well as
test for significant differences in mean shape between males and females. Then with Morpho, we
averaged the shape of each replicate triad for each device, performed a between group PCA

using sex as group and then a cross-validation of classification accuracy (Schlager 2017).

Results
Analyses of shape variation
Our Procrustes ANOVA results indicate that variation among individuals (% Var = 47.4)
contributes the most, with asymmetry (fluctuating and directional), device, and operator error
contributing the remainder, in order of greatest to least (Table 1). The %Var values indicate that
directional asymmetry contributes a similar amount of variation as other sources of non-
biological variation and that fluctuating asymmetry accounts for much less than digitization error
and variation between devices (Table 1). This means that using analyses of asymmetry using a
combination of uCT and 3D surface scans would likely be unreliable in specimens the size of
delicate mice or for specimens scanned at a similarly low resolution. Furthermore, since
digitization error is large compared to the components of asymmetric variation, even a single
device yet low resolution study of asymmetry would likely be unreliable unless appropriate

arrangements are made to reduce error (Fruciano 2016).
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The Procrustes ANOVA on the symmetric component of shape reports the individual shape
representing biological variation is 73.3% (Table 2). Differences between scan devices represent
14.5% and the residuals encompassing differences among replicates or operator error represent
12.2% of total variance (Table 2). Thus, our Procrustes ANOVA shows that most of the variation
is represented by biological variation but the significance of the variation due to device may

indicate systematic error.

The PCA of our symmetric dataset revealed that the first 3 principal components (PCs) account
for 47.1% of total variation (PC1 = 26.4%, PC2 = 11.9%, PC3 = 8.9%, n = 114) (Fig. 4). Each of
the remaining PCs accounted for 5% or less of total variation therefore we only considered the
first three. Positive values along PC1 correspond to a larger braincase relative to the rostrum
(Fig. 5a). Positive values along PC2 correspond to a wider frontal bone (Fig. 5b). Finally,
positive values along PC3 correspond to a more convex, dorsally-curved ventral surface (Fig.

5¢).

The plot of PC1 and PC2 supports the results from the symmetric Procrustes ANOVA in that
most of the visible variation is between clusters of each individual’s replicates. Indeed,
regardless of scanning device, replicates from the same individual cluster together (Fig. 4a). For
most individuals, replicates occupy non-overlapping morphospaces except for those around the
crowded mean shape (Fig. 4a). Within each individual’s morphospace, uCT replicates usually
form a tighter cluster than the 3D replicates (Fig. 4a). This pattern suggests that using pCT scans

introduces less random error than using 3D scans. Furthermore, within an individual, 3D scan
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replicates tend to cluster closer to other 3D replicates while pCT scan replicates tend to cluster
closer to other nCT replicates (Fig. 4a). This supports the interpretation for a systematic
difference between scan method shape means reported the Procrustes ANOVA’s significant scan
variation component (Table TK). Indeed, for most individuals, 3D scan replicates score higher
than their pCT scan replicates on both PC1 and PC2. This suggests the systematic error may be
driven by 3D scans overestimating both braincase volume and frontal bone width relative to pCT

scans (Fig. 4a, Fig. 5a,b).

Overall, plots of the scores along the first two components mirror and provide intuitive
visualization to the patterns observed in the analyses using Procrustes ANOVA. The plot of PC1
and PC3 highlights another possible systematic difference between 3D and uCT scans (Fig. 4b).
The PC3 axis displaces pCT replicates from 3D replicates such that individuals no longer occupy
distinct morphospaces (Fig. 4b). On the PC3 axis, uCT scan replicates consistently score higher,
which corresponds to a more dorsally curved ventral surface relative to 3D scan replicates (Fig.
4b, Fig. 5¢). Along with PC1 and PC2, PC3’s result strengthens the signal for a general pattern
of a difference in the degree of surface curvature captured by 3D and uCT scanners, which could
be contributing to the systematic error reported by the Procrustes ANOVA (Table 2). In
summary, despite a small but morphologically significant source systematic error, both the
Procrustes ANOVA and the PCA report that most variation comes from a biological signal, the

differences between individuals.

Analyses of variance and error
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To compare the digitization error in each scanning device dataset, we calculated the Procrustes
variance among the replicate triads of each individual. We found that Procrustes variance is
significantly (p<0.001) higher in 3D scans (1.34x10%) than uCT (4.81x10-) scans (Fig. 6). This
means that digitizations are more variable in 3D scans than in pCT which is consistent with

decreased clustering in 3D scans relative to uCT scans in the PCAs (Fig. 4).

The repeatability scores for each scan dataset mirrored the Procrustes variance results but with a
more intuitive number on a 0-1 scale. We found that the uCT scan dataset had a repeatability of
0.927 and the 3D scan data had a repeatability of 0.814 (Table 3). This means operators have an
easier time repeating their digitizations (i.e. landmark placements) with uCT scans than with 3D

scans.

Analyses with a biological example: sexual dimorphism

A subset of our dataset had sex information (n=11; f=7, m = 4), allowing us to perform a test
on whether using different scan devices to detect a very subtle intra-specific signal produces
different results. Our symmetric Procrustes ANOVA on individuals, sex, and device found that
differences between individuals is still the largest component (Table 4; Rsq = 0.691) with
variation due to device (Rsq = 0.172) and sex/residuals (Rsq = 0.137) contributing similar
amounts. Variation due to device is larger than variation due to sex, which suggests that 3D
scans and pCT scans should not be combined for similar analyses. However, the between group
PCAs do not suggest marked sexual dimorphism to begin with plots (Fig. 7). Therefore, the
subtly of this biological signal could be the main reason for the relatively low contribution of sex

to total variation. Finally, we performed a cross-validation test on the between group PCAs to
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assess which scan dataset can more reliably identify sexes based on shape (Table 5). The results
show that in this case, 3D scans and pCT scans perform identically (overall classification

accuracy = 64%).

Discussion
In this study, we contrasted very high resolution uCT scans with their extreme opposite: 3D
surface scans of very small specimens. Our low versus high resolution datasets allowed us to
assess whether the low resolution scans still allow defensible investigations of biological shape
variation. We found that despite the low quality of the 3D scans, sufficient amounts of biological
variation are present to perform, at the very least, interspecific comparisons. In datasets with
only very slight intra-specific differences does the ability to distinguish biological signal from
error’s “noise” occur. For example, the subtle sexual dimorphism in our small sample was only
just detected. However, we present three considerations to make before using low resolution
datasets. First, we found that we needed to remove the signal from asymmetry to investigate
shape variation more confidently. This makes low resolution datasets a poor choice for studies
on asymmetry. Second, using 3D scans creates more random error due to increased landmarking
difficulty, therefore care should be taken in landmark choice, and possibly landmarking software
and operator choice. Digitization error may also be reduced by taking averages of repeated
measurements (Arnqvist & Martensson 1998; Fruciano 2016). Third, using 3D scans also
introduces a source of systematic error relative to pCT scans, therefore we recommend not
combining them whenever possible (see also Fruciano et al. 2017), and especially in studies on

small intra-specific variation. In summary, with a few precautions listed above, we expect that

Peer] reviewing PDF | (2018:02:25642:0:1:NEW 9 Mar 2018)



Peer]

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

for studies with similarly sized skulls or similarly low resolution scans, the variation due to error

will be sufficiently low for successful detection of interspecific shape differences.

Measurement error and 3D scan reliability

Systematic error between the two scan devices is shown by consistent displacement patterns in
the PCA. Indeed, across all three PC axes, the scans differ in how they measure concavity around
the braincase, frontal, and ventral surface. This systematic pattern could suggest that the 3D
scanner technology errs on adding volume to the digital specimen relative to the uCT scan but it
could also be the other way around with the uCT scan distorting the images. Furthermore, even
when using the symmetric component of shape, the percent of variation contributed by scan
device is quite substantial at about 14.5%. Because scan device contributes this much to variation
and because systematic error between scan device exists, researchers expecting very small
variation due to biological sources would be advised not to combine 3D scan and pCT scan
datasets. However, overall each individual’s 3D and pCT replicates almost always occupied

distinct areas of the morphospace, supporting their comparability for most morphometric studies.

While the two scan methods are usually comparable, using the low resolution 3D scans
introduces more digitization error than the higher resolution pCT scans, which likely reflects
increased user error due to lower resolution in 3D scans. This increased random error is reflected
in both the larger point clouds of 3D replicates relative to pCT replicates in the PCAs as well as
the higher morphological disparity and lower repeatability score of 3D scans. As expected, we
found that the low resolution 3D scans were more difficult to landmark because key cranial

features such as sutures and smaller processes were less distinct (Fig. 1 versus Fig. 3).
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Nevertheless, our 3D scan repeatability score of 0.82 appears consistent with the literature: it is
much lower than 3D scanned human-sized skulls — above 0.95 (Badawi-Fayad & Cabanis 2007;
Fourie et al. 2011) but it is within the range of 3D scanned macropodoids (e.g., kangaroos) —
0.78-0.98, depending on device and landmark choice (Fruciano et al. 2017). This trend of
decreasing repeatability with decreasing body size may reflect measurement error becoming a
larger percentage of overall size (Robinson & Terhune 2017). Relatedly, recent work has shown
that unreliable landmarks, or those with greater variability in placement, significantly decrease
repeatability (Fruciano et al. 2017). This may be especially true for small specimens, for which

small variations from the landmark location represent a larger percentage of their overall size.

This study did not look at multiple operator error which can be considerable, particularly if
difficult landmarks are included (Fruciano et al. 2017). If inter-operator error were combined
with the resolution-driven measurement error found here, it is possible that biological signal

would diminish to a degree that could not support even interspecific comparisons.

Measurement error compared to biological variation

The challenge of any quantitative measurement study is to minimize measurement error
introduced from various sources (in our case, device, resolution, and observer) relative to the
“true” signal of biological variation. In the case of inter-observer error, which is one
measurement error source, several studies suggest that interspecific variation overwhelms inter-
observer such that it does not pose an issue with the correct interpretation of results (Robinson &

Terhune 2017).
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In our test on the detectability of sexual dimorphism relative to scan device, we showed that
while variation contributed by each was similar (and that from scan device slightly higher), both
scan datasets detected a small sexually dimorphic pattern and they performed equally. This
suggests that 3D scans may even be acceptable for detecting some intra-specific patterns. This
was a small sample (n = 11) therefore further study with larger datasets would improve
confidence for using 3D scans for intra-specific studies. Nevertheless, it is promising that 3D

scans and pCT scans performed similarly even at such a small sample size.

Choosing a digitization method: 3D surface scanning versus pCT versus photogrammetry
With many options for digitizing 3D specimens available, decisions on the acquisition mode
must consider price, scanning time, processing time, portability, and scan resolution. The one-off
investment of a relatively high resolution 3D surface scanner such as the HDI109 provided a
model portable enough to take on airplanes and has fast scanning and processing times. Our
model took 10 minutes from starting the scan to the finished surface file, but note that larger
specimens requiring multiple sub-scans will take longer. These fast acquisition times are an asset
in collection efforts that rely on expensive and time-limited museum travel. For example, one of
us (AEM) digitized over 100 individuals in one week using the same scanning protocol.
However, the quality and speed of scanning varies by model; for example, other 3D surface
scanners could take over 45 minutes to capture one specimen and may also require more effort to

process scans (Katz & Friess 2014).

Compared to 3D surface scanners, pCT scanners provide much higher resolution, which in this

study translated into less measurement error. However, uCT facilities are not widely accessible,
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not mobile, and tend to be more expensive. Depending on the facility, pCT scanning involves
transport to the facility, scanning either by the operator, processing scans into image stacks, and
finally loading scans into specialized (and frequently high-cost) software to do the 3D
reconstruction. These reconstructions can be time consuming especially if the cranium needs to
be separated from the mandibles. Finally, specimens need to be loaned from their collections for
uCT acquisition, which requires specimen transport and curator permission and is particularly

difficult when large numbers of specimens from distant locations need to be scanned.

This study did not investigate photogrammetry, which is another and increasingly popular
method for digitizing 3D shape. This method uses software to align 2D photographs taken from
many different views into a 3D file. Photogrammetry is much cheaper and more portable than 3D
surface scanning since it only requires a camera of suitable resolution and very affordable photo-
alignment software like Agisoft PhotoScan (Agisoft LLC, St. Petersburg, Russia;
www.agisoft.com). The trade-offs are that in our experience, photogrammetry takes at least three
times longer to acquire the photos, it involves higher risk of human error or inconsistency during
photography, and it requires an order of magnitude more time to align the photos into a 3D
digital file. While photo-alignment can be done at convenience after photography, the greater
time required to capture enough photos may be a deciding factor for researchers with time
limitations in museum collections. As for scan resolution, photogrammetry may perform better
than 3D surface scanners in some cases (Fourie et al. 2011) or at least provide an acceptable

alternative (Katz & Friess 2014; Muioz-Muiioz et al. 2016).
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Conclusions

In summary, the best 3D capture method will vary based on the study’s design, expected effect
size for the biological variation of interest, and the researcher’s limitations on time, money, and
travel. In addition to image resolution requirements, it is wise to assess the time it will take to
capture and process each specimen as well as portability needs. Here, we have shown that a 3D
surface scanner can provide an acceptable alternative to a uCT scanner for assessing biological
signal of 3D shape even in small specimens that are at the limits of 3D scanner resolution.
Furthermore, as previously suggested (e.g., Fruciano 2016), exploratory pilot studies of
measurement error are advisable when practically possible. We recommend a preliminary test on
multiple devices — including surface scanners — of how levels of error compare to biological
signal and whether there is substantial systematic error. Doing so may provide a defensible

alternative to an expensive and time consuming large-scale acquisition of uCT scans.
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Figure 1

Low resolution 3D surface scans of delicate mouse crania.

(A) Dorsal view. (B) Lateral view. (C) Ventral view. See Figure 3 to compare with the much

higher resolution of uCT scans. All crania are rendered in Viewbox v. 4.0.
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Figure 2

Methods flow diagram highlighting the relationship between our questions and our
analyses.

(A) All delicate mouse (Pseudomys delicatulus) crania were sourced from the Queensland
Museum in Brisbane, Australia. Landmarks (LMs) capture homologous points, semi-landmarks
(semi-LMs) capture curves between landmarks, and patch points capture surfaces between
landmarks and semi-landmarks. (B - D) These sections of questions and associated figure and
table numbers summarize how we organize the paper, particularly the Results, into three

sets of related analyses.
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Figure 3

Positions of landmarks for geometric morphometric analyses.

Locations of fixed landmarks (black points), sliding semi-landmarks (red points) and sliding
surface patches (purple points) on a UCT scanned individual. (A) Dorsal view of the cranium.

(B) Lateral view. (C) Ventral view. Definitions are given in Table S2.
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Figure 4

Exploratory PCA plots of shape variation showing differences among individuals, scan
devices, and replicates of the same scan device.

A) PC1 versus PC2 and B) PC1 versus PC3. Each individual has a unique color shared by all of
its 6 replicates. Each replicate’s point is labeled for its scan device, either “CT” for uCT
scanned or “3D” for 3D surface scanned. Each axis reports the total variance explained by

that principal component: 26.4% for PC1, 11.9% for PC2, and 8.9% for PC3.
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Figure 5

3D warp-grids for the three most important principal components, showing minimum
and maximum shapes for each PC.

The left hand cranium shows the minimum negative value for the PC and the right hand cranium shows the
maximum positive value. (A) Positive values along PC1 (26.4% variance) correspond to a larger braincase
relative to the rostrum. (B) Positive values along PC2 (11.9% variance) correspond to a wider frontal bone.
(C) Positive values along PC3 (8.9% variance) correspond to a more dorsally-curved ventral surface.
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Figure 6

Morphological disparity -- as measured by shape variation among replicate scan triads --
by scanning device reflects operator error.

This box plot summarizes the morphological disparity (also known as the Procrustes
variance) among the three replicates of an individual for each scan type. The mean
Procrustes variance for 3D scans was 1.34x10*and 4.81x10®for uCT scans. This is a

significant difference (p<0.001)
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Figure 7

Intra-specific variation as shown by PCAs of 3D and uCT scan datasets colored by sex.

PCA provides an exploratory visualization of shape variation between males and females in
our subsample with sex information (n=11). Males (n=4) are plotted in light silver and

females (n=7) are plotted in dark gold. Results from the cross-validation test can be found in

Table 5.
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Table 1(on next page)

General Procrustes ANOVA on sources of shape variation including asymmetry.

The %Var column of this Procrustes ANOVA demonstrates the relative contribution of each
factor to overall variation. It is calculated from the sum of squares for each factor divided by

the total sum of squares for all factors.
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Df SS MS %Var Pr(>F)

Individual 7740 | 0.06188221 7.9951E- 474 | 11.12

06 <.0001
Side 400 | 0.0255547 | 6.38868E- 19.6 | 88.89

05 <.0001
Ind * Side 7200 | 0.00517466 | 7.187E-07 4.0 0.55 1
Device 15770 | 0.02065404 1.3097E- 15.8 4.79

06 <.0001
Res / Rep 63080 | 0.01723758 | 2.733E-07 13.2
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Table 2(on next page)

Procrustes ANOVA on the sources of shape variation using the symmetric component of
shape.

The R-squared column of this Procrustes ANOVA demonstrates the relative contribution of

each factor to overall variation. The shape variation of this dataset is visualized in Figures 4
and 5.
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Pr

Df |SS MS Rsq F z (>F)
ind 18 | 0.062014315 | 0.00344524 | 0.73269356 | 25.31699532 | 21.2972812 | 0.001
ind:
dev 19 | 0.01228211 | 0.00064643 | 0.14511204 | 4.75020269 23.624144 | 0.001
Resi-
duals | 76 | 0.010342389 | 0.000136084
Total | 113 | 0.084638816
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Table 3(on next page)

Comparison of operator error in 3D scan and uCT scan datasets using Procrustes
ANOVAs and repeatability scores.

The repeatability score is a value that reflects the ease of digitizing in a repeated measure
study design. It is calculated from the Procrustes ANOVA using formulas for the intra-class
correlation coefficient. The Procrustes ANOVAs were found by subsetting the dataset by scan
device and performing separate generalized Procrustes and bilateral symmetry alignments.

(A) Results from the uCT-only dataset. (B) Results from the 3D-only dataset.
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A

Df SS MS Rsq F Z Pr(>F) | Repeatability
MCT_ind 18 | 0.034310829 | 0.001906157 | 0.92599563 | 26.41573276 | 18.27750829 | 0.001 0.927
Residuals 38 | 0.002742077 7.22E-05
Total 56 | 0.037052906
B

Df SS Ms Rsq F z Pr(>F) | Repeatability
3D_ind 18 | 0.035295179 | 0.001960843 | 0.822025177 | 9.750741438 | 15.83823468 | 0.001 0.814
Residuals 38 | 0.00764168 | 0.000201097
Total 56 | 0.042936859
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Table 4(on next page)

Symmetric Procrustes ANOVA with sex as a factor to assess relative contribution of
intra-specific variation to overall shape variation.

This Procrustes ANOVA allows comparison of the relative contribution to total variation from

sex and from scan device (R-squared column).

Peer] reviewing PDF | (2018:02:25642:0:1:NEW 9 Mar 2018)



PeerJ

Manuscript to be reviewed

df SS MsS Rsq P
Ind 8600 | 0.03179244 | 3.6968E-06 0.6914 4.43 <.0001
Device 9460 | 0.00790042 | 8.351E-07 0.1718 5.03 | <.0001
Sex/Res 37840 | 0.00628842 | 1.662E-07 0.1368
Total 55900 | 0.04598128
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Table 5(on next page)

Between group PCA classification test to assess whether one scan device dataset
performs better at identifying sexes based on shape.

This analysis averages shape among replicates, computes a between-group PCA separately
for uCT and 3D datasets, and runs a cross-validation classification test. The results indicate
whether one type of scan dataset is more successful at classifying males versus females
based on the shape variation present in the dataset. It also returns a kappa statistic; a kappa
value over 0.20 indicates “fair” agreement between the two datasets. Shape variation

visualized by sex can be seen in Figure 7.
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Cross-validated classification results in
frequencies
CT f m 3D f m

f 5 2
m 2 2 m 2 2

-
(52}
N

Cross-validated classification results in %
CcT f m 3D f m

f 71 29 71 29

m 50 50 m 50 50

-

Overall classification
accuracy (%)
CcT 64
3D 64

Kappa statistic
CcT 0.214
3D 0.214
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