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ABSTRACT
Low-cost phenotyping using proximal sensors is increasingly becoming popular in plant
breeding. As these techniques generate a large amount of data, analysis pipelines that
do not require expertise in computer programming can benefit a broader user base. In
this work, a new online tool Specalyzer is presented that allows interactive analysis of
the spectral reflectance data generated by proximal spectroradiometers. Specalyzer can
be operated from any web browser allowing data uploading, analysis, interactive plots
and exporting by point and click using a simple graphical user interface. Specalyzer is
evaluated with case study data from a winter wheat fertilizer trial with two fertilizer
treatments. Specalyzer can be accessed online at http://www.specalyzer.org.

Subjects Agricultural Science, Bioinformatics, Data Mining and Machine Learning, Data Science
Keywords Specalyzer, Spectroradiometer, Proximal phenotyping, Online tool,
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BACKGROUND
High-throughput plant phenotyping (HTPP) is becoming increasingly popular with the
development of new low-cost phenotyping technologies and sensors. HTPP can aid in
the detection of plant traits for applications in breeding and farming and for gaining
fundamental understanding of molecular mechanisms underlying the trait of interest
(Furbank & Tester, 2011). HTPP can be performed on individual plants, trial plots or big
farms. Sensors are available for estimating spectral reflectance in the leaves of individual
plants or small plots to large scale phenotyping of big farms with unmanned aerial vehicles
mounted with hyperspectral cameras or with satellite imaging (Muñoz Huerta et al., 2013;
Tattaris, Reynolds & Chapman, 2016).

Phenotyping by proximal spectroradiometers can be performed to estimate various traits
in several different crops. Canopy biomass and nitrogen status in wheat was estimated
with a proximal spectrometer with a wavelength range of 400–900 nm mounted on a
tractor (Hansen & Schjoerring, 2003), leaf area index in rice was measured with a handheld
spectrometer with a wavelength range of 250–2,500 nm (Wang et al., 2007), nitrogen uptake
in winter wheat was estimated with a handheld spectrometer with a wavelength range of
350–1,000 nm (Yao et al., 2013), grain yield and protein content in winter wheat was also
measured with a handheld spectroradiometer with a wavelength range of 447–1,752 nm
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(Xue, Cao & Yang, 2007) and wheat yield under irrigation was estimated with a portable
spectroradiometer with a wavelength range of 350–1,100 nm (Babar et al., 2006).

A large number of vegetation indices (VIs) have been developed using the visible
and near-infrared spectral wavelengths for estimation of various traits of interest in
plants (Agapiou, Hadjimitsis & Alexakis, 2012). These VIs can be estimated from the
spectral reflectance from the proximal spectroradiometers (Deery et al., 2014; Gizaw,
Garland-Campbell & Carter, 2016; Hansen & Schjoerring, 2003), and with the sensors
from unmanned aerial vehicles and satellites (Franke & Menz, 2007; Haghighattalab et
al., 2016; Tattaris, Reynolds & Chapman, 2016; Tucker & Sellers, 1986). As the VIs and
their association with a trait of interest is often known, the VIs estimated from the
new measurements can aid in detection of the associated traits. VIs have proven to
be effective in estimation of leaf area index (Tucker & Sellers, 1986; Wang et al., 2007),
radiation use efficiency (Peñuelas, Filella & Gamon, 1995), water status (Peñuelas et al.,
1993), leaf pigments (Sims & Gamon, 2002), grain yield (Babar et al., 2006; Cao et al., 2015;
Gizaw, Garland-Campbell & Carter, 2016; Xue, Cao & Yang, 2007) and diseases (Cao et al.,
2015; Mahlein, 2016; Odilbekov et al., 2018). VIs have also been used in conjunction with
multivariate and machine learning techniques to build advanced models for improved
detection of complex traits (Mahlein, 2016; Odilbekov et al., 2018; Singh et al., 2016). VIs
have been most successfully used for efficient application of fertilizers in the field. Leaching
of fertilizer leads to ground and water pollution and wastage of resources, and thus,
improving the nitrogen use efficiency of the crops and the efficient application of fertilizers
is important for sustainable agriculture (Chawade et al., 2018;Muñoz Huerta et al., 2013).

Spectral data has to be processed upon acquisition and the steps involve pre-processing
to remove outlier samples, normalization, trimming of edges to remove low signal-to-noise
ratio wavelengths and estimation of VIs. The R packages hsdar (Lehnert, Meyer & B, 2017)
and pavo (Maia et al., 2013) provide most of the features required for analysis of the
collected spectral data in the R command line environment. The package pavo additionally
provides features for visualization of the data. While the two packages are efficient in
analyzing the data through a command line interface, they lack a graphical user interface
and require users to be familiar with the R environment. This can be challenging for users
unfamiliar with computer programming. The target users of spectral data analysis are
primarily biologists and plant breeders who are interested in studying the trait of interest
using spectral reflectance. Thus, a tool with a graphical user interface for spectra data
analysis will allow a broader user base to work with such data.

Analysis tools with graphical user interface independent of the operating system enable
ease of use and a broader acceptance of spectral reflectance techniques. Visualization tools
allow users with little or no skills in computer programming to analyze multidimensional
phenotypic data and identify dominant patterns relevant to their research question. Two
aspects are of fundamental importance for building a visualization tool, namely, data
analysis capabilities and user experience (UX). Data readability and interpretability can
be improved with graphical representation with several different types of plots including
boxplots, barplots, heatmaps, histograms and scatter plots (Calatroni & Wildfire, 2017;
Chawade, Alexandersson & Levander, 2014). Appropriate selection of colors and sizes of
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various data points in the plots connects the graphic to the real world (Yau, 2013b).
Although automation of data analysis is desired for high-throughput experiments, a
balance between automation and visualization based decision making is at times necessary.
The field of visual analytics allows the achievement of this goal and is the subject of
ongoing research (O’Donoghue et al., 2010). UX aspects necessitate developing a user
friendly graphical interface (Pavelin et al., 2012) which could be simplistic and web-
based (Chawade, Alexandersson & Levander, 2014) or require a local installation offering
advanced customization possibilities (Kerren et al., 2017; Shannon, 2003).

In this work, a new online tool Specalyzer is proposed which enables analysis and
visualization of the collected spectral data in a web browser and thus can be used on any
device with a web browser and an internet connection. Various features in Specalyzer are
described and evaluated with a case study on fertilizer treatment in winter wheat.

METHODS AND MATERIALS
Implementation
Specalyzer is a web application implemented in the statistical programming language
R v3.4.2 (R Development Core Team, 2016) and built using the Shiny v1.0.5 web
application framework (Chang et al., 2017). Specalyzer uses the the hsdar v0.5.1 package
(Lehnert, Meyer & B, 2017) and the included Speclib function for managing spectral
data and calculating VIs. Plotly v4.7.1 (Sievert et al., 2017) is used to generate interactive
visualizations shown in the web application. Specalyzer also uses dplyr v0.7.4 (Wickham
et al., 2017a) and reshape2 v1.4.2 (Wickham, 2007) for extracting and transforming
data, and asdreader v0.1-3 (Roudier, 2017) for reading binary ASD FieldSpec R© data
files. Together, these packages are used for data input, processing, and visualization
functionality for spectral data. The package shinyjs v1.0 (Attali, 2018) is used for additional
user-interface functionality, and readr v1.1.1 (Wickham, Hester & Francois, 2017b) for
reading data from disk and generating tables for export. Specalyzer code is available at
https://github.com/alkc/specalyzer.

Data input
The spectral data formats supported by Specalyzer are (a) ASD FieldSpec R© binary spectral
data files, (b) SpectraWiz R© data files and (c) data merged in a single generic text file.
Continuous and/or discrete attribute data in the form of a tab-delimited table can also be
uploaded. The attribute data should be organized so that each column is a trait and each of
the rows correspond to a spectral sample. The first column should be labelled ‘‘filename’’
in the header row and should include the filenames of the corresponding spectral data files.
Additionally, a comma-delimited matrix of filenames can be uploaded that includes the
spatial distribution of the samples in the field. The spatial matrix is used for visualization
of the VI or attributes of samples in the field.

Estimation of vegetation indices
Specalyzer estimates 140 VIs within the spectral range of 400–1,000 nm and are summarized
in File S1. If the reflectance measurements of the wavelengths required for estimating a
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VI is unavailable, missing values are reported for the given index. Thus, to estimate all
indices provided by Specalyzer, data acquisition with spectroradiometers with a resolution
of one nanometer is recommended. Specalyzer does not perform any data interpolation
and thus such data transformation can be necessary when the data is collected with spectral
instruments with lower resolutions. Such data transformation should be performed prior
to using Specalyzer.

Case study data
A winter wheat field trial was conducted in Svalöv, in Southern Sweden in 2015–2016
with two fertilizer treatments (140 and 180 kg ha−1). The spectral reflectance from 10
breeding lines was measured with the handheld Apogee PS-100 spectroradiometer (Apogee
Instruments Inc., Logan, UT, USA). The spectroradiometer was calibrated against the
white reference at every tenth reading and the measurements were made in the range of
339–1,100 nm. Due to a low signal-to-noise ratio in the areas around the edges of the
measured spectral interval, the data in the range of 400–1,000 nm was considered for
further analysis. The measurements were made in June 2016 around midday under a clear
sky at the post-anthesis growth stage (Zadoks 71–77). The spectroradiometer was held
approximately 1 m above the canopies for reflectance measurements.

RESULTS
Features available in Specalyzer
The aim of Specalyzer is to aid in the quality control, pre-processing, estimation of VIs and
visualization of the spectral reflectance data (Fig. 1). This is achieved with a web application
with an interactive user interface capable of processing and visualizing raw and processed
data (Fig. 2). Specalyzer is platform independent and can be used in a web browser on
any computer or mobile device. The available pre-processing features are removing outlier
samples, trimming the spectral range and calculation of 140 VIs. Information about the
replicates can be optionally included in the attribute file and various plots can be created
by grouping the samples by the provided attribute(s). VIs relevant to a trait of interest can
be identified by performing correlation analysis (quantitative trait) or one-way ANOVA
analysis (quantitative trait).

The available plotting features for the spectral data are scatterplots for individual samples,
mean and median of all samples, and the variance component. For the VIs, boxplots can
be created for ordinal attributes and scatterplots for continuous attributes. Optionally, the
data points (samples) can be overlaid over the boxplots. Additionally, a custom VI can also
be manually added to the list of VIs. Samples can be grouped by any provided attribute for
further analysis and plotting. PCA plots can be created from the spectral data to analyze
sample grouping, data structure and outliers. In the PCA plot, automatic sample outlier
detection is available and is based on standard deviation of a sample from the mean of the
loadings of principal components 1 and 2. Fieldmaps can be created to visualize the spatial
distribution of samples in the field and the spatial variation in the intensities of a given
VI. All plots in Specalyzer are interactive providing further information on each datapoint
in the plot by hovering the mouse pointer over it. Finally, various plots can be saved in
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Figure 1 Specalyzer workflow. Specalyzer workflow for data input, different aspects of data processing
and analysis, and output visualization.

Full-size DOI: 10.7717/peerj.5031/fig-1

portable network graphics (PNG) format and the spectral and the VI data can be exported
for further analysis. While exporting, samples can also be averaged based on any provided
attributes.

Evaluation of Specalyzer
The features in Specalyzer were evaluated in a case study from a fertilizer field trial with
two treatments of fertilizer levels.

Case study
A field trial was conducted with replications and two fertilizer treatments (140 and 180 kg
ha−1). Spectral data was collected as described in the Methods section. Figure 3A illustrates
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Figure 2 Specalyzer web application screenshot. A screenshot of the Specalyzer web-application display-
ing the menu for generating spectral plots from spectral reflectance data.

Full-size DOI: 10.7717/peerj.5031/fig-2

spectral plots from Specalyzer where regions between 300–400 nm and 1,000–1,200 nm
have low signal-to-noise ratio. These regions can be filtered away by masking unwanted
regions and new plots can be generated for further analysis (Fig. 3B). Another important
quality control (QC) feature in Specalyzer is outlier detection with PCA plots (Fig. 4). For
the case study data, an outlier is detected in the PCA plot (Fig. 4B), and the sample label is
identified by hovering the mouse over the outlier sample. A spectral plot with the outlier
sample together with another randomly chosen sample shows drastically different spectral
reflectance profiles (Fig. 4A). The outlier sample in this case study was a control sample
of dry leaves. The new PCA plot after filtering away the outlier sample shows uniform
distribution of samples (Fig. 4C).

The plots shown in Figs. 3 and 4 can also be used to compare samples by attributes
for investigating the spectral reflectance in response to different attributes. For example,
in the case study, the spectral plots in Fig. 3B shows the difference in mean reflectance in
samples from two fertilizer treatments. The mean reflectance of samples vary for the two
treatments with the samples receiving more fertilizer showing increased reflectance in the
near-infrared spectrum. Samples can also be colored by attributes in the PCA plot (Fig. 4C).

Specalyzer also calculates 140 previously known VIs from the spectral data. These
indices can be calculated for individual spectral samples, or can be aggregated by attribute
for scatterplots and boxplots (Fig. 5). Boxplots for a few selected indices are shown for
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Figure 3 Filtering regions with low signal-to-noise ratio.Demonstration of the effect of removing
regions with low signal-to-noise ratio in spectral data within Specalyzer. (A) Aggregated spectral data
showing low signal-to-noise ratio in the intervals 300–400 and 1,000–1,200 nm (B) Aggregated spectral
data after trimming away noisy regions.

Full-size DOI: 10.7717/peerj.5031/fig-3

Figure 4 Outlier detection in Specalyzer.Outlier detection and removal in spectral data using
Specalyzer. (A) Reflectance data collected from a winter wheat canopy (blue) compared to reflectance
data collected from dry leaves (orange) (B) PCA clustering analysis of the same spectral data set with
spectral samples from several wheat canopies clustering to the right and the dry leaf sample appearing to
the left as an outlier (C) Recalculated PCA plot with outlier dry leaf spectral sample removed, and with the
remaining wheat canopy spectral samples colored by fertilizer treatment (140 and 180 kg ha−1).

Full-size DOI: 10.7717/peerj.5031/fig-4

the case study data where treatment differences are observed for the indices such as NDVI
and TCARI while no differences in the treatment can be seen for the indices EVI and
WI (Fig. 5). Boxplots can also be created for individual samples or for sample groupings.
In a boxplot with samples grouped by replication, variation in NDVI can be seen in the
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Figure 5 Boxplots of vegetation indices.Vegetation index boxplots from spectral data collected from
winter wheat canopies aggregated by two fertilizer treatments (140 and 180 kg ha−1). (A) Normalized Dif-
ference Vegetation Index (NDVI) (B) Pigment Specific Normalized Difference (PSND) (C) Transformed
Chlorophyll Absorption Reflectance Index (TCARI) (D) BGI (E) Gitelson Index (F) Enhanced Vegetation
Index (EVI) (G) Vogelmann index (H) Water Index (WI).

Full-size DOI: 10.7717/peerj.5031/fig-5

breeding lines with breeding line 5 having the highest NDVI in the treatment group with
180 kg fertilizer ha−1 (Fig. 6). Similar plots can be created for over 140 VIs allowing detailed
analysis of the VIs and the treatments. Specalyzer also supports visualizing indices against
continuous traits in scatterplots. Furthermore, fieldmaps can be created to visualize the
spatial distribution of the measurements in the field and the corresponding intensities of
the indices. In Fig. 7, the sample number 5 can be identified with higher NDVI levels in
the treatment group with 180 kg fertilizer ha−1 and from the fieldmap it can be seen that
higher NDVI is specific for sample 5 indicating that this sample might have higher nutrient
use efficiency. The processed spectral and the VI data can be exported for further analysis
in a statistical software.

DISCUSSION
Effectiveness of data visualization can be estimated based on user interactivity, ability to
integrate data from different sources and ease of access to the tool (Yau, 2013a; Zhu, Hoon
& Teow, 2015). Visualization allows ease of use and greater insight into the data in away that
is not obvious from descriptive statistics (Calatroni & Wildfire, 2017). Interactivity in data
visualization facilitates overview of data followed by zooming and filtering the plots when
required for greater details (Shneiderman, 1996). The graphical user interface of Specalyzer
makes it an easy-to-use web application for exploring spectral reflectance, attributes and
spatial information of datasets in any web browser, without requiring programming skills
or having to install a software. The data visualization functions in Specalyzer are useful
for both QC and for analyzing spectral data in relation to the attribute data. The plots
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Figure 6 NDVI of the winter wheat cultivars. Comparison of NDVI values between 10 different winter
wheat cultivars for two fertilizer treatments (140 and 180 kg ha−1).

Full-size DOI: 10.7717/peerj.5031/fig-6

in Specalyzer are interactive, allowing users to explore the data interactively to identify
dominant patterns, new insights and decision making for the underlying traits of interest.
Specalyzer currently accepts data from two spectroradiometer vendors, ASD FieldSpec R©

(Malvern Panalytical, Malvern, Worcestershire, UK) and Apogee SpectraWiz R© (Apogee
Instruments Inc., Logan, UT, USA) format. Additionally, it also accepts tabulated data in
a generic text file format. This allows broader application of Specalyzer for data obtained
from various spectroradiometer devices.

Large data sets have hundreds of variables increasing the data complexity and thus
making them difficult to visualize. Dimensionality reduction methods such as PCA allow
visualizing data in a two-dimensional planewhere sampleswith similar profiles are clustered
closer together while dissimilar samples are separated in space which allows visualization of
the clustering patterns and the underlying similarity matrices (Calatroni & Wildfire, 2017).
In Specalyzer, the interactive PCA plot has the features to zoom and modify color and size
of the data points based on user provided attributes, enabling analysis of trait of interest
and detecting outliers.

Specalyzer is implemented as an online tool and thus can be used with any mobile
platform with a web browser and access to internet. It is built with the R programming
language with an interactive graphical user interface using the Shiny web application. The
zooming, panning and tooltips features in charts are provided by plotly R package which
is a high-level interface to the JavaScript plotting library plotly.js. This allows interactive
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Figure 7 Fieldmap with NDVI.NDVI intensities visualized as a spatial grid corresponding to plots in a
field trial. Each rectangle corresponds to an NDVI intensity from a specific wheat cultivar plot in a field
trial where the cultivars were subjected to two different fertilizer treatments (140 and 180 kg fertilizer
ha−1).

Full-size DOI: 10.7717/peerj.5031/fig-7

data analysis where the output is continuously updated based on changes to the parameters
by the user. There are several advantages to using Shiny and plotly in Specalyzer, (a)
User-friendliness for analyzing big datasets; (b) Platform independence allowing flexibility
in using devices; (c) Customized charts allowing greater control; (d) Interactivity to easily
identify outliers and data points of interest and (e) Publication-quality figures. This enables,
for example, analysis of the collected data with a mobile phone while in the field which
can facilitate identifying individual plots using Specalyzer for further manual inspection
in the field. This can save time for germplasm evaluation in the field thus reducing costs.
Phenotyping carts are mounted with proximal sensors such as RGB and hyperspectral
cameras, infrared thermometers and spectroradiometers which are being developed and
are operated from a computer (Deery et al., 2014). Specalyzer can be further modified to be
used with spectroradiometers on these carts enabling instantaneous analysis of the acquired
data in the field.

Future work on Specalyzer will involve expanding the data visualization toolkit
and improving existing data visualization functionality. For example, an important
improvement is to enable users to aggregate spectral measurements by more than one
attribute. Another important improvement in the data visualizationmenuswould be adding
plot layout and output controls for users to get customized publication-ready figures out of
the application. Currently, VIs estimated by Specalyzer can be exported for further analysis.
In a parallel project on wheat, we estimated VIs in Specalyzer and thereafter using machine
learning, identified key VIs to detect the fungal disease Septoria tritici blotch of wheat
(Odilbekov et al., 2018). Thus, another beneficial feature in Specalyzer would be to include
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variousmachine learningmethods to classify samples and identify key VIs underlying a trait
of interest. Based on the case study presented here and the previous work (Odilbekov et al.,
2018) we suggest that Specalyzer can be a useful tool for analyzing spectral reflectance data.

CONCLUSION
Efficient management and analysis of the phenotypic data is crucial and thus there is a clear
need for development of new tools that allow users with broader expertise to analyze and
interpret the acquired data. As this work demonstrated, Specalyzer provides an interactive
graphical user interface for spectral data analysis and for estimation of several previously
known VIs. Analyzing big datasets is a challenging task and thus Specalyzer can help
facilitate this process. Further work is required to introduce additional features such as
machine learning for variable selection and spatial analysis.
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