Comparison of cryptobenthic reef fish communities among microhabitats in the Red Sea (#21327)

First submission

Editor guidance

Please submit by **5 Dec 2017** for the benefit of the authors (and your \$200 publishing discount).

Structure and Criteria

Please read the 'Structure and Criteria' page for general guidance.

Custom checks

Make sure you include the custom checks shown below, in your review.

Raw data check

Review the raw data. Download from the materials page.

Image check

Check that figures and images have not been inappropriately manipulated.

Privacy reminder: If uploading an annotated PDF, remove identifiable information to remain anonymous.

Files

Download and review all files from the <u>materials page</u>.

- 4 Figure file(s)
- 6 Raw data file(s)
- 2 Other file(s)

Custom checks

DNA data checks

- Have you checked the authors data deposition statement?
- Can you access the deposited data?
- Has the data been deposited correctly?
- Is the deposition information noted in the manuscript?

Vertebrate animal usage checks

- Have you checked the authors ethical approval statement?
- Were the experiments necessary and ethical?
- Have you checked our <u>animal research policies</u>?

Field study

- Have you checked the authors <u>field study permits</u>?
- Are the field study permits appropriate?

Structure and Criteria

Structure your review

The review form is divided into 5 sections. Please consider these when composing your review:

- 1. BASIC REPORTING
- 2. EXPERIMENTAL DESIGN
- 3. VALIDITY OF THE FINDINGS
- 4. General comments
- 5. Confidential notes to the editor
- You can also annotate this PDF and upload it as part of your review

When ready <u>submit online</u>.

Editorial Criteria

Use these criteria points to structure your review. The full detailed editorial criteria is on your guidance page.

BASIC REPORTING

- Clear, unambiguous, professional English language used throughout.
- Intro & background to show context.
 Literature well referenced & relevant.
- Structure conforms to <u>PeerJ standards</u>, discipline norm, or improved for clarity.
- Figures are relevant, high quality, well labelled & described.
- Raw data supplied (see <u>Peerl policy</u>).

EXPERIMENTAL DESIGN

- Original primary research within Scope of the journal.
- Research question well defined, relevant & meaningful. It is stated how the research fills an identified knowledge gap.
- Rigorous investigation performed to a high technical & ethical standard.
- Methods described with sufficient detail & information to replicate.

VALIDITY OF THE FINDINGS

- Impact and novelty not assessed.
 Negative/inconclusive results accepted.
 Meaningful replication encouraged where rationale & benefit to literature is clearly stated.
- Data is robust, statistically sound, & controlled.
- Conclusions are well stated, linked to original research question & limited to supporting results.
- Speculation is welcome, but should be identified as such.

Standout reviewing tips

The best reviewers use these techniques

	p

Support criticisms with evidence from the text or from other sources

Give specific suggestions on how to improve the manuscript

Comment on language and grammar issues

Organize by importance of the issues, and number your points

Please provide constructive criticism, and avoid personal opinions

Comment on strengths (as well as weaknesses) of the manuscript

Example

Smith et al (J of Methodology, 2005, V3, pp 123) have shown that the analysis you use in Lines 241-250 is not the most appropriate for this situation. Please explain why you used this method.

Your introduction needs more detail. I suggest that you improve the description at lines 57-86 to provide more justification for your study (specifically, you should expand upon the knowledge gap being filled).

The English language should be improved to ensure that an international audience can clearly understand your text. Some examples where the language could be improved include lines 23, 77, 121, 128 - the current phrasing makes comprehension difficult.

- 1. Your most important issue
- 2. The next most important item
- 3. ...
- 4. The least important points

I thank you for providing the raw data, however your supplemental files need more descriptive metadata identifiers to be useful to future readers. Although your results are compelling, the data analysis should be improved in the following ways: AA, BB, CC

I commend the authors for their extensive data set, compiled over many years of detailed fieldwork. In addition, the manuscript is clearly written in professional, unambiguous language. If there is a weakness, it is in the statistical analysis (as I have noted above) which should be improved upon before Acceptance.

Comparison of cryptobenthic reef fish communities among microhabitats in the Red Sea

Emily M Troyer Corresp., 1, Darren J Coker 1, Michael L Berumen 1

¹ Red Sea Research Center, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia

Corresponding Author: Emily M Troyer Email address: emily.troyer@kaust.edu.sa

Knowledge of community structure within an ecosystem is essential when trying to understand the function and importance of the system as well as when making management decisions related to this system. Within the larger ecosystem, microhabitats play an important role by providing inhabitants with a subset of available resources. On coral reefs, cryptobenthic fishes encompass many groups and make up an important proportion of the biodiversity. However, these fishes are relatively small and extremely cryptic, either behaviorally or visually and therefore are often overlooked. The largest family of cryptobenthic fishes is Gobiidae, a family currently containing more than 1600 species, although new species are continuously discovered. Many goby species are associated with a very specific microhabitat type, however most of this knowledge is limited to coral-dependent species. We examined the differences in fish community structure within three common reef microhabitats (live hard coral, dead coral rubble, and sand) using rotenone stations in the central Red Sea. Using a combination of morphological and genetic (COI barcoding) techniques, we identified 326 individuals representing 73 species spread across 17 families from the collections. The largest group collected was gobies, representing 232 individuals and 31 species. Goby assemblages in the three microhabitats were significantly different from each other - rubble microhabitats hosted the majority of collected gobies (69% of individuals), followed by live hard coral (20.6%), then sand (9.9%). These results provide essential baseline information about the ecology of understudied cryptobenthic fishes that can be used in future large-scale studies in the Red Sea region. Future reef assessments should also incorporate cryptobenthic fishes, as they are often ignored despite their potential functional importance.

1	Comparison of cryptobenthic reef fish communities among microhabitats in the Red Sea
2	
3	Short title: Red Sea cryptobenthic fishes
4	
5	Emily M. Troyer ^{1*} , Darren J. Coker ¹ , Michael L. Berumen ¹
6	
7	¹ Red Sea Research Center, Division of Biological and Environmental Sciences and Engineering,
8	King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
9	
10	*corresponding author: emily.troyer@kaust.edu.sa
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	

ABSTRACT

INTRODUCTION

46	Habitat has frequently been shown to influence species abundances and distribution patterns in a
47	range of ecosystems (Venier & Fahrig, 1996; Warren et al., 2001). Within global tropical
48	regions, coral reefs provide complex habitats that support around 25% of marine fish species,
49	despite occupying only 0.1% of ocean area (Spalding et al., 2001). On coral reefs, benthic
50	composition and coral cover may influence the associated fish assemblages (Messmer et al.,
51	2011; Chong-Seng et al., 2012; Komyakova, Munday, & Jones, 2013), with live coral habitats
52	having a direct effect on many species through the provision of shelter and food (Bell & Galzin,
53	1984; Buchheim & Hixon, 1992; Cole, Pratchett & Jones, 2008; Coker, Wilson & Pratchett,
54	2014). In addition to biotic habitats, the physical structure and internal complexity of the reef has
55	been shown to influence a number of reef fishes (Graham & Nash, 2013). Within coral reefs,
56	different types of microhabitats exist, such as areas dominated by living hard corals, soft corals,
57	rubble patches, macroalgae, or sandy areas. These habitats can offer a range of resources such as
58	food and shelter for small fishes (Beukers & Jones, 1997; Depczynski & Bellwood, 2004,
59	Brooker, Munday & Ainsworth, 2010). For example, corals provide refuge spaces within the
60	branches (Robertson & Sheldon, 1979), while the colony itself can provide shelter underneath
61	for larger fishes (Kerry & Bellwood, 2012). In addition, degraded and structurally deteriorated
62	reefs provide additional habitats that are inhabited by species that are better adapted to these
63	habitat features (Ahmadia, Pezold & Smith, 2012; Coker, Graham & Pratchett, 2012). It is
64	therefore expected that small and benthic-associated fishes would be influenced greatly by
65	available habitats, and therefore understanding microhabitat requirements is essential for reef
66	fishes.
67	On coral reefs, there are many groups of fishes (blennies, gobies, triplefins, etc.) that are

68	relatively small (< 50 mm), have a close association with the substrate, and have a cryptic nature
69	(Depczynski & Bellwood, 2003). These fishes, termed "cryptobenthic reef fishes", can be
70	behaviorally cryptic by seeking out cracks and crevices in the reef in which to hide, or they can
71	be visually cryptic, having coloration that matches the substrate where they live (Depczynski &
72	Bellwood, 2003). Fast-growing and with naturally short lifespans, these fishes are an important
73	functional group on coral reefs, contributing greatly to the transfer of energy through the food
74	chain. For example, in the Great Barrier Reef up to 8% of the cryptobenthic fish population are
75	consumed by predators every day (Depczynski & Bellwood, 2006). Despite their functional
76	importance, they are difficult to sample due to their cryptic nature and therefore vastly
77	understudied worldwide. Previous visual surveys have not been able to account for the majority
78	of cryptobenthic fishes on a reef (Ackerman & Bellwood, 2000; Robertson & Smith-Vaniz,
79	2008) and most surveys ignore them due to logistical and taxonomic difficulties. Thus, more
80	targeted surveying techniques have recently been employed in order to gain a more accurate
81	count of cryptobenthic reef fishes. Chemical ichthyocides, such as rotenone and clove oil, have
82	proven to be an effective tool to collect small fishes and have been shown to reveal more cryptic
83	species when compared to traditional visual surveys (Brock, 1982). Many groups of fish are
84	considered to be cryptobenthic but within this group the largest (most speciose) is the family
85	Gobiidae, which currently contains over 1600 species spread across 200 genera (Thacker, 2003;
86	Tornabene et al., 2013). Gobies occupy a variety of habitats including corals, seagrass, sand, and
87	rubble (Munday, Jones & Caley, 1997; Munday et al., 2002; Patzner et al., 2011). The majority
88	of gobies are epibenthic or cryptobenthic, living on or just above the substrate. Gobies are small
89	fish, with most attaining an adult size of less than 3 cm (Patzner et al., 2011). They will also have
90	small home ranges, often no more than 0.25 to 2 m² (Depczynski & Bellwood, 2004). Their

91	small size, coupled with a small home range, has enabled gobies to make use of a multitude of
92	different microhabitats. Many species of goby are habitat specialists and coral-obligate gobies
93	have been highly studied (e.g., Munday, Jones & Caley, 1997, 2001; Munday, 2002) Other
94	groups of cryptobenthic fishes should be studied to determine more broadly understand the
95	importance of various habitats.
96	Globally, knowledge of cryptobenthic fishes is still limited. A majority of studies have
97	arisen from well-studied areas, such as the Great Barrier Reef and the Caribbean (see Ackerman
98	& Bellwood, 2000, 2002; Harborne et al., 2012), but an important region that is greatly
99	understudied when it comes to cryptobenthic fishes as well as conspicuous ones (Berumen et al.,
100	2013), is the Red Sea. The Red Sea is a unique environment, with higher average temperatures
101	and salinity compared to other regions. It is recognized as a biodiversity hotspot with an
102	estimated 14% of fish species in the Red Sea endemic to the region (DiBattista et al., 2016).
103	Recent studies in this region show that cryptobenthic fish communities differ latitudinally and
104	with distance from shore, and that habitat may be a driving factor (Coker et al., 2017).
105	This study aims to examine differences among the community of cryptobenthic reef
106	fishes associated with three common reef microhabitats. Live hard corals, rubble patches, and
107	sandy areas all represent habitats that cryptobenthic fishes are known to utilize (Depczynski &
108	Bellwood, 2004; Ahmadia et al., 2013), and these habitats may also be representative of different
109	stages of reef degradation. It is hypothesized that cryptobenthic fish assemblages will
110	significantly differ between these three microhabitats. This information will help us better
111	understand abundance and distribution patterns within the region and provide baseline data about
112	understudied cryptobenthic fishes and their functional role in the Red Sea.
113	

MATERIALS AND METHODS

Stu	dv	site
\sim tu	u y	DILL

Fishes were sampled in May 2017 during daylight hours from the southern portion of a reef situated near the edge of the continental shelf (Al Fahal, 22° 13.6558 N, 38° 58.1853 E) (Fig. 1 A). The specific study site was located on the eastern side of the reef and thus is protected from the typical north-western wave patterns. Al Fahal was chosen as a sample site because it is a relatively large reef that hosts the variety of habitat types used in this study. This single reef (and wave exposure type) was selected to minimize any potential environmental variables, such as temperature, wave energy, current, and turbidity that could be introduced if sampling in varying parts of the reef (e.g., sides exposed to or sheltered from dominant wave action).

Microhabitat definitions

Three microhabitat types were sampled: live hard coral, dead coral rubble, and sand (Fig. 1 B-D). A hard coral microhabitat was defined as having at least 70% of the quadrat covered with hard coral; tabular *Acropora* corals were targeted. A rubble microhabitat was defined as a flat or gently sloping area (<10°) containing at least 50% coverage of dead hard coral rubble, rocks, or empty shells. A sand microhabitat was defined as a flat or gently sloping area (<10°) containing at least 90% sand coverage containing little or no rubble. For each of the three microhabitat types, five replicate quadrats were sampled, resulting in a total of 15 quadrats.

Percent cover of each microhabitat category was calculated using a grid point system. A 10 x10 grid (i.e., 100 total intercepting points) was overlaid onto a digital image of each quadrat. Each point in the image was categorized into the above microhabitat type. From these tallies, a total percent cover for each microhabitat type was estimated for each quadrat.

Rugosity of the sample quadrat was measured as a linear distance using a 1m chain (sensu Risk, 1972), wherein the chain is draped in a straight line through the quadrat following the vertical contour of the substrate. Subsequently, the 'overhead' view (i.e., two-dimensional horizontal length) of the chain is measured, and the rugosity value is calculated by dividing the length of the chain by the length of the 'overhead' view of the draped chain. A value of 1 would thus represent a flat surface, while higher values indicate a more three-dimensionally complex habitat. This method was repeated three times within each quadrat to provide a mean rugosity for each quadrat.

An ichthyocide (rotenone) was used to collect fish due to its high success rate in targeting

Fish community sampling

cryptic species (Robertson & Smith-Vaniz, 2008). A rotenone mixture was prepared by mixing 500g of 4% rotenone powder (Consolidated Chemical Company) with 100ml 96% ethanol, 250ml liquid dishwashing detergent, and 100ml water (adapted from Ackerman & Bellwood, 2000).

Quadrats (1 m²) constructed from PVC pipe (25mm diameter, see Fig. 1) were placed at 10-15m depth onto a flat or gently sloping surface (<10°) of the reef in one of the three targeted microhabitats. A 4mm mesh net weighted down with chain was placed around the quadrat, enclosing the whole area. The rotenone mixture was gently squirted into the netted area until the whole area was covered. After waiting about five minutes for the rotenone to take effect, the net was removed and fishes were collected using handnets and tweezers (following Ackerman & Bellwood, 2000). Because some fish were observed escaping the enclosed quadrat (through the reef matrix) while the rotenone took effect, all deceased fishes directly around the sample area

were collected for consistency. After collecting the visible fishes, three divers intensively searched within each quadrat by lifting up any rubble or debris where hidden fishes could have settled. The quadrats were searched until no new fishes were found for a period of five minutes. Larger predatory fishes that came too close to the quadrat were chased away before they could consume any of the asphyxiated fishes..

Immediately after the dive, collected fishes were placed into an ice slurry to preserve coloration for photography (within ~ 2 hrs). Once photographed, total body length and standard length_measurements (to the nearest mm) were taken. Fishes were then placed into individual labeled vials containing a solution of 96% ethanol for preservation. A tissue sample (pectoral or caudal fin) was collected from each individual for genetic analysis.

Fish sampling was done in accordance with the guidelines and procedures approved under the auspices of the King Abdullah University of Science and Technology (KAUST)

Institutional Animal Use and Care Committee (IACUC) under approval number 17-04-004.

Genetic fish identification

Tissue samples were cleaned with 96% ethanol and gently patted dry before placed into 96-well plates containing 100μl 50mM NaOH. DNA was extracted from the samples using the HotSHOT protocol (95°C for 20 minutes, 4°C for 10 minutes) (Meeker et al., 2007). After extraction, 10μl of 1M Tris-Hcl (10%) was added to each well and mixed with pipettes.

80μl from each sample was transferred to a new plate for DNA amplification. A polymerase chain reaction (PCR) Qiagen Multiplex Mastermix containing Taq polymerase, dNTPs, MgCl₂, and reaction buffers was added to each well. Primers COI Universal Fish R2 5' ACT TCA GGG TGA CCG AAG AAT CAG AA 3' and F2 5' TCG ACT AAT CAT AAA GAT

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

well contained 6.25µl MasterMix, 4.25µl nuclease free water, 0.5µl forward primer, 0.5µl reverse primer, and 1µl DNA, for a total volume of 12.5µl. Thermocycling occurred with an initial denaturation period of 15 minutes at 95 °C, followed by 35 cycles of 30 seconds at 94 °C, 60 seconds at the annealing temperature of 45 °C, and 60 seconds at 72 °C, followed by a final extension period of 10 minutes at 72 °C. PCR products were visualized using a QIAxcel system. Following PCR amplification, 2.14µl ExoStar was added to each well to clean the PCR product. The mixture was incubated in the thermocycler for 60 minutes at 37 °C, then 15 minutes at 85 °C. Cleaned PCR products were sequenced via Sanger sequencing via ABI 3730xl sequencers in the KAUST Bioscience Core Lab. In the event that a sample sequence did not yield a long enough strand of base pairs to be entered into a database (~500 bp), DNA was extracted again using a more precise Qiagen DNeasy Blood and Tissue kit. The PCR process was then repeated on those samples. After sequencing was completed, sample sequences were checked against several sequence databases for potential matches. The National Center for Biotechnology Information (NCBI) GenBank (https://www.ncbi.nlm.nih.gov/genbank/) and Barcode of Life Data System (BOLD) (http://www.boldsystems.org) were used as public databases. A custom (in-house) Red Sea fish sequence database was also checked (see Coker et al., 2017; DiBattista et al., 2017; Isari et al., 2017). A sequence was considered to be a good match for a species in the database if the matched sequence was 98% similar or higher. Sequence matches were then checked against visual guides and morphological keys to double-check identity. In the event of a non-matching sequence, a sample was identified to species level, or as close as possible, with the use of keys

that examined morphological features (see next section). When a species was unable to be

ATC GGC AC 3' (Ward et al., 2005) were used to amplify the COI region of DNA. Each PCR

206	identified using the aforementioned methods, it was assigned an operational taxonomic unit
207	(OTU) so as to still be included in the data analysis. OTUs were named for previous uploaded
208	sequences in the databases if there was a match. In the event a sequence did not match a
209	previously assigned OTU within one of the databases, a new OTU was assigned.
210	
211	Morphological fish identification
212	With the use of keys, fishes that could not be identified genetically were assigned to a species,
213	genus, or family level. The typical morphological characters that were useful in discriminating
214	taxa included: counts of fin spines and soft rays, pelvic fin structure, cephalic pore counts, lateral
215	line scale counts, as well as general meristics. Morphological characters were assessed using
216	light dissection microscopy and an online image analysis tool for measuring morphometrics
217	(Froese & Pauly, 2017). For a list of keys used, see Appendix S1.
218	
219	Community analysis
220	For each quadrat, several metrics were calculated. Species richness was defined as the number of
221	species or OTUs identified from each quadrat. Abundance was determined by the total number
222	of individuals collected in each quadrat. Diversity (Shannon's diversity index, H') was calculated
223	using the following formula: H' = $-\sum p_i \ln(p_i)$ (Shannon & Weaver, 1963), and then
224	subsequently averaged within each microhabitat type. The fish communities present at each
225	microhabitat type were plotted using non-metric multidimensional scaling (nMDS) using a Bray-
226	Curtis resemblance matrix. Analyses were conducted using R version 3.4.0 (R Core Team, 2017)
227	and the vegan package (Oksanen et al., 2017). Statistics used included analysis of variance

(ANOVA) and permutational analysis of variance (PERMANOVA).

229	RESULTS
230	Fish communities
231	A total of 326 individuals representing 73 species and 17 families were collected from three
232	microhabitat types (Appendix S2). The total number of all fishes collected at each quadrat
233	ranged from 1 (Quadrat sand_4) to 65 (Quadrat rubble_3). Rubble quadrats had the highest
234	average numbers of fish abundances (one-way ANOVA F _{2,12} =11.59, p=0.002), species richness
235	$(F_{2,12}=6.78, p=0.011)$, and diversity $(F_{2,12}=2.80, p=0.100)$, followed by coral quadrats, and then
236	sand quadrats (Fig. 2) and fish communities in all unree microhabitats differed significantly
237	(PERMANOVA $F_{2,12}$ =2.61, p<0.001) (Fig. 3). Out of the 326 fish collected, the family
238	Gobiidae comprised the majority, with a total of 232 individuals (71.1%) collected representing
239	31 species. The next most common families were Pseudochromidae, with 33 individuals (10.1%)
240	collected representing 12 species, and Pomacentridae with 16 individuals (4.9%) representing 7
241	species.
242	
243	Goby communities
244	The number of individual gobies collected at each microhabitat type followed patterns similar to
245	that of all collected fishes. Abundance ranged from 0 gobies (Quadrat sand_4) to 46 gobies
246	(Quadrat rubble_3). The most abundant goby was <i>Trimma avidori</i> , with a total of 44 individuals.
247	This goby was collected in greatest abundance in both coral and rubble microhabitats. The
248	second most abundant goby collected was Callogobius bifasciatus with 29 individuals collected
249	in mainly rubble quadrats (Fig. 4). Of 31 species of goby collected, 11 species (35.4%) were
250	represented by only a single individual, and the majority of collected species (64.5%) had less
251	than 5 individuals collected.

252	Out of the coral quadrats, the most abundant goby collected was <i>T. avidori</i> . Both <i>C</i> .
253	bifasciatus and A. semipunctata were the most abundant species found in rubble, and Istigobius
254	decoratus was the most abundant species found in the sand microhabitat quadrats.
255	On average, rubble communities had the highest levels of goby abundance (one way
256	ANOVA $F_{2,12}$ =24.61, p<0.001), species richness ($F_{2,12}$ =14.95, p<0.001), and diversity
257	$(F_{2,12}=5.10, p=0.025)$, followed by coral communities, and then sand communities (Fig. 2).
258	Overall, goby community composition significantly differed among microhabitats
259	(PERMANOVA F _{2,12} =3.67, p<0.001) (Fig. 3).
260	Of all the fish collected, 25.7% could not be confidently assigned to a species using either
261	morphological or genetic techniques, so they were given an OTU. Several candidates for new
262	species were identified from these OTUs; some of these are possibly Red Sea endemics. COI
263	sequences for new OTUs have been deposited to GenBank under accession numbers MG583518-
264	MG583524, as well as sequences from Bryaninops natans, Gobiodon reticulatus, and Trimma
265	flavicaudatum, all which currently have no COI sequence information on GenBank.
266	
267	Habitat composition
268	Rugosity was highest on average in coral microhabitats (Fig. 1 E). Rubble and sand
269	microhabitats were less rugose, with rubble quadrats having higher rugosity, on average, than
270	sand (one-way ANOVA, $F_{2,10} = 19.86$, p<0.001). Percent cover of each microhabitat type was
271	highest for sand quadrats, with sand quadrats averaging 97.6% (\pm 0.66 SE) cover of sand. Coral
272	microhabitat quadrats averaged 85.3% (\pm 4.83 SE) cover of all hard corals, with tabular
273	Acropora averaging 56.2% cover (± 9.56 SE) within the coral microhabitat quadrats. Rubble
274	microhabitat quadrats averaged 65.6% cover (\pm 4.43 SE) of rubble (Fig. 1 F).

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

DISCUSSION

Cryptobenthic fish communities, including gobies, are vastly understudied compared to other, more conspicuous groups, especially in the Red Sea. Fish communities from live hard coral, rubble, and sand microhabitats differed from each other by having differing levels of abundance, species richness, and diversity. Research is still just scratching the surface of cryptobenthic fish ecology and this study found that habitat is a strong indicator of what kind of cryptobenthic fish assemblages will be present on a reef in the Red Sea. Importantly, these results provide a framework for future studies in the region to examine additional microhabitats in additional locations. The rubble microhabitats sampled yielded the highest levels of fish abundance, richness, and diversity. A possible explanation for this preference is the sediment load that is deposited onto the rubble. Runoff and detritus from more productive areas on a reef will eventually settle onto the substrate below, delivering more nutrients to the benthos (Crossman et al., 2001; Wilson et al., 2003; Depczynski & Bellwood, 2004; Goatley, González-Cabello & Bellwood, 2016). Cryptobenthic fishes will primarily feed upon microscopic prey such as epibenthic invertebrates, algae, or detritus (Depczynski & Bellwood, 2003), and this food is readily available on the substrate. Indeed, in the rubble microhabitats sampled, there was a presence of epilithic algae on many of the large pieces of rubble. Asterropteryx semipunctata, one of the most abundant species collected from the rubble microhabitats, is a known detritivore (Depczynski & Bellwood, 2003). Because cryptobenthic fishes are sedentary and will not forage far from their home areas (Depczynski & Bellwood, 2004), they must live in places that have a steady supply of food. Coral microhabitats also yielded high levels of fish abundance, richness, and diversity.

Coral quadrats sampled were characterized by a large percentage of live hard coral cover, with a

majority of the coral cover represented by tabular *Acropora*. These coral habitats also exhibited the highest measures of rugosity. There is a positive correlation between habitat complexity and fish abundance in both conspicuous fishes (Caley & St John, 1996; Friedlander & Parrish, 1998) as well as cryptobenthic fishes (Depczynski & Bellwood, 2004). Complexity offers shelter from predators as well as lowered mortality rates for juveniles (Beukers & Jones, 1997). One of the most abundant fish collected from coral microhabitats was *Trimma avidori*. This goby is known to inhabit small overhangs or caves underneath coral structures (Herler & Hilgers, 2005), and it is likely that the large tabular *Acropora* present in the coral quadrats provided adequate shelter for these fishes.

Sand microhabitats exhibited the lowest levels of fish abundance, richness, and diversity. These areas were characterized by a lack of biotic structures and were overall quite barren. The sand quadrats were extremely flat with low rugosity and no complexity, and this may have been a contributing factor to the low levels of abundance, species richness, and diversity found within. Structural complexity has long been shown to influence fish abundance and diversity (Risk, 1972; Luckhurst & Luckhurst, 1978). Cryptic fishes rely on hiding places to avoid being preyed upon and unlike the coral habitats, the sand microhabitats had little, if any, areas to hide. However, sand habitats are not completely devoid of life. Many cryptobenthic specialists are able to thrive in sandy habitats due to less competition from other fishes and the ability to form internal tunnels within the substrate. Flatfish, such as flounders and soles, are able to blend in perfectly with the coloration and the extreme flatness of sand, and many wrasses are known to burrow underneath it to escape predation. These microhabitats may be further used by cryptobenthic fishes for foraging at night. Our daytime sampling regime precludes us for assessing this possibility.

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

The microhabitat types used in this study represent microhabitats nearly universal to coral reefs that are important to fish assemblages. However, it is important to note that the hard coral, rubble, and sand microhabitats in the Red Sea may not be functionally equivalent to those worldwide. For instance, coral species will vary from region to region, rubble size and detrital material can vary, and sand sediment grain size and composition may vary as well. Because the three microhabitats used in this study were found to be different from each other, it provides a good foundation for future research in this region. Future studies may address the coarseness of sand grains across multiple sand microhabitats or the size of rubble across multiple rubble microhabitats to determine if there are finer-scale differences that may determine microhabitat use among cryptobenthic fishes. Additional factors not considered here, such as exposure to wave action or distance from shore (Depczynski & Bellwood, 2005; Goatley, González-Cabello & Bellwood, 2016) may also warrant further investigation in the Red Sea. Cryptobenthic fishes are an understudied group; hence there is a lack of public sequence information available for many species, especially gobies. For 232 collected gobies, using the 98% similarity threshold, only 128 (55.2%) gobies were able to be identified genetically using COI barcoding. The remaining 104 (44.8%) could not be identified using genetic methods, and were either identified using morphological characteristics or given an OTU. This gap in publicly available cryptobenthic fish sequences is a hindrance for identification that relies on genetic data. These difficulties with identifying cryptobenthic fishes highlight the need for a comprehensive sequence library that includes reference images. The Red Sea is a known biological hotspot with high rates of endemism for many groups of species. An estimated 14% of Red Sea fishes are endemic (DiBattista et al., 2016), however

these estimates may under-represent cryptic species. Out of 73 fish species, a total of 17 (23.2%)

endemic species from the Red Sea and Arabian Peninsula were found in this study. Four of those endemic species were gobies (see DiBattista et al., 2016 for checklist). It is also extremely likely that some of the unnamed goby OTUs are undescribed species, and these could possibly be endemic to the region. However, endemic status could only be more confidently asserted if supported by more sampling in adjacent regions. With the potential number of undiscovered cryptobenthic fishes in the region, the number of known endemics can be expected to increase in time.

CONCLUSIONS

This study provides baseline information on cryptobenthic fish communities in the central Red Sea and their microhabitat preferences. Three distinct microhabitats were found to host different communities of fishes, with different abundance, richness, and diversity levels. Rubble microhabitats were found to have the highest levels of abundance, richness, and diversity overall, followed by hard coral microhabitats, and finally sand microhabitats. We are only just beginning to understand the ecology of cryptobenthic fishes and such fine-scale habitat partitioning is likely to contribute to the high diversity found on a reef. On a single reef, there can be distinct microhabitat communities that are within meters of each other, yet support different fish assemblages. More data is needed to accurately quantify the cryptobenthic biodiversity of the region. Future larger-scale projects may find more evidence of microhabitat associations in the Red Sea. Because cryptobenthic fishes are estimated to compose up to half of all fishes on a reef and previous studies have found only a fraction of that proportion, more microhabitat types, reef parts, and depths should be sampled. By expanding the parameters of a cryptobenthic fish study, it is likely that knowledge of these cryptic fishes in the region will increase.

370

371

367	ACKNOWLEDGEMENTS
368	The authors would like to thank Michael Campbell for his

mapmaking expertise, as well as

Calder Atta, Royale Hardenstine, Alison Monroe, Tullia Terraneo, Matthew Tietbohl, and Sara

Wilson for their assistance collecting fishes. We are also grateful to Calder Atta, Simon Brandl,

and Luke Tornabene for their help in identifying several fish species. Fieldwork was supported

by the KAUST Coastal and Marine Resources Core Laboratory. 372

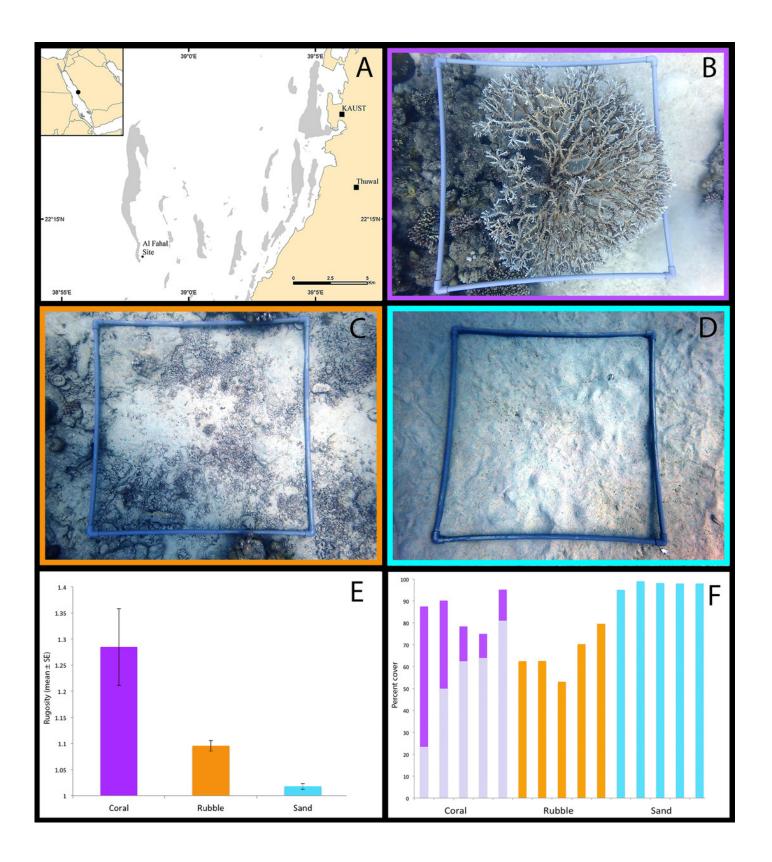
REFERENCES
Ackerman JL, Bellwood DR (2000) Reef fish assemblages: a re-evaluation using enclosed
rotenone stations. Mar Ecol Prog Ser 206:227-237
Ackerman JL, Bellwood DR (2002) Comparative efficiency of clove oil vs rotenone for
sampling tropical reef fish assemblages. J Fish Biol 60:893-901
Ahmadia, GN, Pezold FL, Smith DJ (2012) Cryptobenthic fish biodiversity and microhabitat use
in healthy and degraded coral reefs in SE Sulawesi, Indonesia. Mar Biodivers 42:433-442
Ahmadia GN, Sheard LJ, Pezold FL, Smith DJ (2012) Cryptobenthic fish assemblages across the
coral reef-seagrass continuum in SE Sulawesi, Indonesia. Aquat Biol 16:125-135
Bell JD, Galzin R (1984) Influence of live coral cover on coral-reef fish communities. Mar Ecol
Prog Ser 15: 265-274
Berumen ML, Hoey A, Bass W, Bouwmeester J, Catania D, Cochran JE, Khalil MT, Miyake S,
Mughal MR, Spaet J (2013) The status of coral reef ecology research in the Red Sea.
Coral Reefs 32:737-748
Beukers JS, Jones GP (1997) Habitat complexity modifies the impact of piscivores on a coral
reef fish population. Oecologia 114:50-59.
Brock RE (1982) A critique of the visual census method for assessing coral reef fish populations.
B Mar Sci 32:269-276
Brooker RM, Munday PL, Ainsworth TD (2010) Diets of coral-dwelling fishes of the genus
Gobiodon with evidence of corallivory. J Fish Biol 76:2578-2583
Buchheim JR, Hixon MA (1992) Competition for shelter holes in the coral-reef fish
Acanthemblemaria spinosa Metzelaar. J Exp Mar Biol Ecol 164:45-54

396	Caley JM, St John J (1996) Refuge availability structures assemblages of tropical reef fishes. J
397	Anim Ecol 65:414-428
398	Chong-Seng KM, Mannering TD, Pratchett MS, Bellwood DR, Graham NAJ (2012) The
399	influence of coral reef benthic condition on associated fish assemblages. PLoS ONE 7(8):
400	e42167
401	Coker DJ, DiBattista JD, Sinclair-Taylor TH, Berumen ML (2017) Spatial patterns of
402	cryptobenthic coral-reef fishes in the Red Sea. Coral Reefs DOI:10.1007/s00338-017-
403	1647-9
404	Coker DJ, Graham NAJ, Pratchett MS (2012) Interactive effects of live coral and structural
405	complexity on the recruitment of reef fishes. Coral Reefs 31:919-927
406	Coker DJ, Wilson SK, Pratchett MS (2014) Importance of live coral habitats for reef fishes. Rev
407	Fish Biol Fisher 24:89-126
408	Cole AJ, Pratchett MS, Jones GP (2008) Diversity and functional importance of coral-feeding
409	fishes on tropical coral reefs. Fish and Fisheries 9:286-307
410	Crossman DJ, Choat JH, Clements KD, Hardy T, McConochie J (2001) Detritus as food for
411	grazing fishes on coral reefs. Limnol Oceanogr 46:1596-1605
412	Depczynski M, Bellwood DR (2003) The role of cryptobenthic reef fishes in coral reef
413	trophodynamics. Mar Ecol Prog Ser 256:183–191
414	Depczynski M, Bellwood DR (2004) Microhabitat utilisation patterns in cryptobenthic coral reef
415	fish communities. Mar Biol 145:455-463
416	Depczynski M, Bellwood DR (2005) Wave energy and spatial variability in community structure
417	of small cryptic coral reef fishes. Mar Ecol Prog Ser 303:283-293
418	Depczynski M, Bellwood DR (2006) Extremes, plasticity, and invariance in vertebrate life

119	history traits: insights from coral reef fishes. Ecology 87: 3119-3127
120	DiBattista JD, Roberts MB, Bouwmeester J, Bowen BW, Coker DJ, Lozano-Cortes DF, Choat
121	JH, Gaither MR, Hobbs JPA, Khalil MT, Kochzius M, Myers RF, Paulay G, Robizch
122	VSN, Saenz-Agudelo P, Salas E, Sinclair-Taylor TH, Toonen RJ, Westneat MW,
123	Williams ST, Berumen ML (2016) A review of contemporary patterns of endemism for
124	shallow water reef fauna in the Red Sea. J Biogeogr 43:423-439
125	DiBattista JD, Coker DJ, Sinclair-Taylor TH, Stat M, Berumen ML, Bunce M (2017) Assessing
126	the utility of eDNA as a tool to survey reef-fish communities in the Red Sea. Coral Reefs
127	DOI:10.1007/s00338-017-1618-1
128	Friedlander AM, Parrish JD (1998) Habitat characteristics affecting fish assemblages on a
129	Hawaiian reef. J Exp Mar Biol Ecol 224:1-30
130	Froese R, Pauly D (2017) FishBase. World Wide Web electronic publication. www.fishbase.org,
131	version (06/2017)
132	Goatley CHR, González-Cabello A, Bellwood DR (2016) Reef-scale partitioning of
133	cryptobenthic fish assemblages across the Great Barrier Reef, Australia. Mar Ecol Prog
134	Ser 544:271-280
135	Graham NAJ, Nash KL (2013) The importance of structural complexity in coral reef ecosystems
136	Coral Reefs 32:315-326
137	Harborne AR, Jelks HL, Smith-Vaniz WF, Rocha LA (2012) Abiotic and biotic controls of
138	cryptobenthic fish assemblages across a Caribbean seascape. Coral Reefs 31:977-990
139	Herler J, Hilgers H (2005) A synopsis of coral and coral-rock associated gobies (Pisces:
140	Gobiidae) in the Gulf of Aqaba, northern Red Sea. Aqua 10:103-132
141	Isari S, Pearman JK, Casas L, Michell CT, Curdia J, Berumen ML, Irigoien X (2017) Exploring

442	the larval fish community of the central Red Sea with an integrated morphological and
443	molecular approach. PloS ONE 12:e0182503
444	Kerry JT, Bellwood DR (2012) The effect of coral morphology on shelter selection by coral reef
445	fishes. Coral Reefs 31:415-424
446	Komyakova V, Munday PL, Jones GP (2013) Relative importance of coral cover, habitat
447	complexity and diversity in determining the structure of reef fish communities. PloS
448	ONE 8:e83178
449	Luckhurst BE, Luckhurst K (1978) Analysis of the influence of substrate variables on coral reef
450	fish communities. Mar Biol 49:317-323
451	Meeker ND, Hutchinson SA, Ho L, Trede NS (2007) Method for isolation of PCR-ready
452	genomic DNA from zebrafish tissues. Biotechniques 43:610
453	Messmer V, Jones GP, Munday PL, Holbrook SJ, Schmitt RJ, Brooks AJ (2011) Habitat
454	biodiversity as a determinant of fish community structure on coral reefs. Ecology
455	92:2285-2298
456	Munday PL (2002) Does habitat availability determine geographical-scale abundance of coral-
457	dwelling fishes? Coral Reefs 21:105-116
458	Munday PL, Jones GP, Caley MJ (1997) Habitat specialisation and the distribution and
459	abundance of coral-dwelling gobies. Mar Ecol Prog Ser 152:227–239
460	Munday PL, Jones GP, Caley MJ (2001) Interspecific competition and coexistance in a guild of
461	coral-dwelling fishes. Ecology 82:2177-2189
462	Munday PL, Pierce SJ, Jones GP, Larson HK (2002) Habitat use, social organization and
463	reproductive biology of the seawhip goby, Bryaninops youngei. Mar Freshwater Res

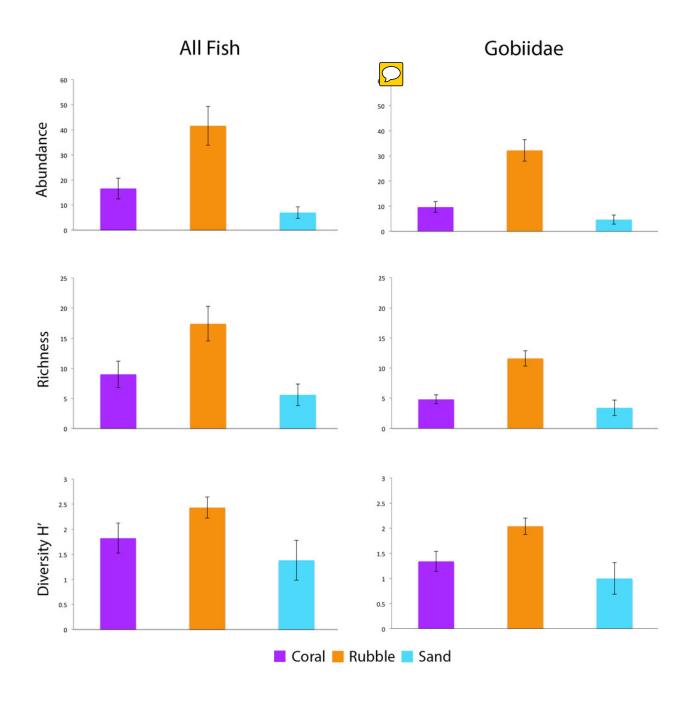
164	53:769-775
165	Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O'Hara
166	RB, Simpson GL, Solymos P, Stevens MHH, Szoecs E, Wagner H (2017) vegan:
167	Community Ecology Package. R package version 2.4-3.
168	https://CRAN.R-project.org/package=vegan
169	Patzner RA, Van Tassell JL, Kovačić M, Kapoor BG. Eds. (2011) The Biology of Gobies.
170	Enfield, NH: Science Publishers
171	R Core Team (2017) R: A language and environment for statistical computing. R Foundation for
172	Statistical Computing, Vienna, Austria. URL https://www.R-project.org/
173	Risk MJ (1972) Fish diversity on a coral reef in the Virgin Islands. Atoll Res Bull 153:1-7
174	Robertson DR, Sheldon JM (1979) Competitive interactions and the availability of sleeping sites
175	for a diurnal coral reef fish. J Exp Mar Biol Ecol 40:285-298
176	Robertson DR, Smith-Vaniz WF (2008) Rotenone: an essential but demonized tool for assessing
177	marine fish diversity. Bioscience 58:165-170
178	Shannon CW, Weaver W (1963) Mathematical theory of communication. University Illinois
179	Press
180	Spalding MD, Ravilious C, Green EP (2001) World atlas of coral reefs. Univ. of California
181	Press, Berkeley, USA
182	Thacker CE (2003) Molecular phylogeny of the gobioid fishes (Teleostei: Perciformes:
183	Gobioidei). Mol Phylogenet Evol 26:354-368
184	Tornabene L, Ahmadia GN, Berumen ML, Smith DJ, Jompa J, Pezold F (2013) Evolution of
185	microhabitat association and morphology in a diverse group of cryptobenthic coral reef
186	fishes (Teleostei: Gobiidae: Eviota). Mol Phylogenet Evol 66:391-400



487	Venier LA, Fahrig L (1996) Habitat availability causes the species abundance-distribution
488	relationship. Oikos 76: 564-570
489	Ward RD, Zemlak TS, Innes BH, Last PR (2005) DNA barcoding Australia's fish species. Philos
490	Trans R Soc Lond B Biol Sci 360:1847-1857
491	Warren MS, Hill JK, Thomas JA, Asher J, Fox R, Huntley B, Roy DB, Telfer MG, Jeffcoate S,
492	Harding P, Jeffcoate G, Willis SG, Greatorex-Davies JN, Moss D, Thomas CD (2001)
493	Rapid responses of British butterflies to opposing forces of climate and habitat change.
494	Nature 414:65-69
495	Wilson SK, Bellwood DR, Choat JH, Furnas MJ (2003) Detritus in the epilithic algal matrix and
496	its use by coral reef fishes. Oceanogr Mar Biol Annu Rev 41:279-309
497	
498	
499	
500	
501	
502	
503	
504	
505	

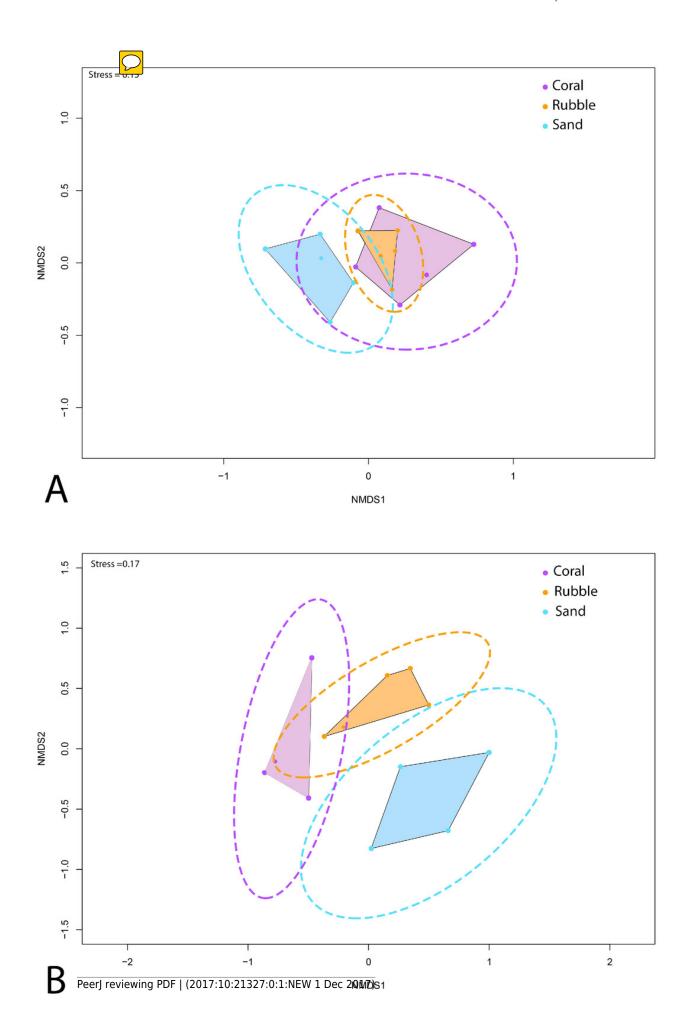
Microhabitat characteristics of sampled quadrats

Examples of 1m² quadrats sampled in the central Saudi Arabian Red Sea to assess cryptobenthic fish assemblages in each of three microhabitat types: coral (indicated by purple), rubble (orange), and sand (teal). Quadrats were sampled using rotenone at 10-15m depth. (A) Map of study site, with reef habitat indicated in grey. (B) Coral quadrat. (C) Rubble quadrat. (D) Sand quadrat. (E) Average rugosity for each microhabitat type. A value of 1 indicates a completely flat surface while higher values represent greater vertical complexity. (F) Percent cover of the target substrate for each quadrat for each microhabitat type. Lighter colors in the coral quadrats represent the proportion of the coral cover comprised by tabular *Acropora* (visible in panel B). (Photographs taken by EMT. Map created in ArcMap, version 10.3, by Michael Campbell using various mapping sources freely available through ESRL)

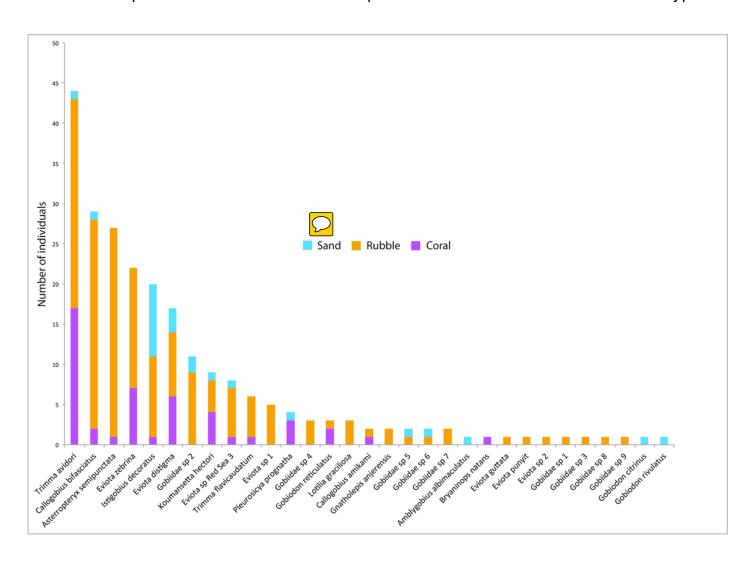


Bar chart of community indices

Abundance (mean number of individuals per $m^2 \pm SE$), species richness (mean number of species per $m^2 \pm SE$), and diversity (H') (mean value per $m^2 \pm SE$) for all collected fish species and for family Gobiidae for each of the three microhabitat types sampled using rotenone stations ($1m^2$ quadrats, n = 5 quadrats per microhabitat type) in the central Saudi Arabian Red Sea.



nMDS plots of community similarities


nMDS plots using Bray-Curtis similarity of (A) all fish communities (i.e., relative abundances of all collected species) and (B) goby communities (i.e., relative abundances of individuals from the family Gobiidae) sampled using rotenone stations in each of the three microhabitat types in the central Saudi Arabian Red Sea. Solid points represent individual quadrats from each microhabitat type, which define the shaded minimum convex polygons for each habitat type. (Note that one quadrat from coral microhabitat and one quadrat from sand microhabitat were excluded from the goby nMDS due to an absence of gobies in these quadrats.) Ellipse size represents 95% confidence limits for each microhabitat type. Overall, total fish community composition significantly differs for each microhabitat (PERMANOVA $F_{2,12}$ =2.61, p<0.001) and goby community composition significantly differs for each microhabitat (PERMANOVA $F_{2,12}$ =3.67, p<0.001).

Goby species abundances

Rank-abundance plot of goby species sampled in the central Saudi Arabian Red Sea using 1m² rotenone stations in three microhabitat types (color coded). Vertical bars represent the total combined number of individuals sampled in all quadrats (n = 5 quadrats per microhabitat type) for all 31 goby species found in this study. Coloration of the vertical bars indicates the portion of individuals of each species found in the three microhabitat types.

