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Abstract 20 

Candidemia and other forms of invasive candidiasis caused by Candida glabrata and to a lesser 21 

extent Saccharomyces cerevisiae are a serious health problem, especially if their steadily rising 22 

resistance to the limited range of antifungal drugs is taken into consideration. Various drug 23 

combinations are an attractive solution to the resistance problem, and some drug combinations 24 

are already common in the clinical environment due to the nature of diseases or therapies. We 25 

tested a few of the common antifungal-immunomodulatory drug combinations and evaluated 26 

their effect on selected strains of C. glabrata and S. cerevisiae. The combinations were 27 

performed using the checkerboard microdilution assay and interpreted using the Loewe 28 

additivity model and a model based on the Bliss independence criterion. A synergistic 29 

interaction was confirmed between calcineurin inhibitors (Fk506 and cyclosporine A) and 30 

antifungals (fluconazole, itraconazole, and amphotericin B). A new antagonistic interaction 31 

between mycophenolic acid (MPA) and azole antifungals was discovered in non-resistant 32 

strains. A possible mechanism that explains this is induction of the Cdr1 efflux pump by MPA 33 

in C. glabrata ATCC 2001. The Pdr1 regulatory cascade plays a role in overall resistance to 34 

fluconazole, but it is not essential for the antagonistic interaction. This was confirmed by the 35 

Cgpdr1D mutant still displaying the antagonistic interaction between the drugs, although at 36 

lower concentrations of FLC. This antagonism calls into question the use of simultaneous 37 

therapy with MPA and azoles in the clinical environment. 38 

 39 

Introduction 40 

 The frequency and associated mortality of candidemia and other forms of invasive 41 

candidiasis have not decreased over the past two decades despite the introduction of several 42 

extended-spectrum triazole and echinocandin antifungal drugs for use in prophylaxis, empiric 43 

therapy, and targeted therapy (Pfaller & Diekema, 2007; Pfaller & Castanheira, 2016). Candida 44 
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albicans is the dominant pathogen, but the incidence of invasive infections caused by Candida 47 

glabrata has been steadily rising (Pfaller et al., 2012b, 2014). The most vulnerable populations 48 

include transplant patients, patients with AIDS or cancer, those on immunosuppressive therapy, 49 

patients receiving total parenteral nutrition, and premature infants (Pfaller & Diekema, 2010; 50 

Whaley & Rogers, 2016). In certain populations, C. glabrata even surpasses C. albicans as the 51 

leading pathogen; these include patients with hematologic malignancies, diabetes mellitus, and 52 

patients with an abdominal source of infection (Hachem et al., 2008; Segireddy et al., 2011; 53 

Khatib et al., 2016; Whaley & Rogers, 2016). The reasons for the rise of C. glabrata infections 54 

include the introduction of fluconazole in 1990 and its widespread prophylactic use against 55 

fungal infections (Berrouane, Herwaldt & Pfaller, 1999), a higher rate of antifungal use and 56 

intrinsic or acquired resistance of C. glabrata to both fluconazole and echinocandins (Silva et 57 

al., 2012; Pfaller et al., 2012a; Alexander et al., 2013; Pfaller & Castanheira, 2016; Colombo, 58 

Júnior & Guinea, 2017), and better identification of non-albicans species in the clinic (Liguori 59 

et al., 2009). 60 

 One of the main problems when dealing with C. glabrata is its intrinsically low 61 

susceptibility to azole antifungals (Vermitsky & Edlind, 2004) and its ability to develop 62 

resistance to several antifungal drug classes (Pfaller, 2012; Glöckner & Cornely, 2015). For 63 

example, resistance to azole antifungals in clinical isolates is mostly connected to mutations in 64 

the gene PDR1, which encodes the transcription factor for the pleiotropic drug response 65 

(Vermitsky & Edlind, 2004). Activating mutations in PDR1 lead to distinct patterns of altered 66 

gene expression among Pdr1 targets, commonly leading to overexpression of efflux pumps that 67 

lower the bioavailability of the azoles, thus lowering their effectiveness (Whaley & Rogers, 68 

2016). The efflux pumps most commonly associated with azole resistance in C. glabrata are 69 

the ATP-binding cassette (ABC) transporters Cdr1 (Sanglard, Ischer & Bille, 2001), Cdr2/Pdh1 70 

(Miyazaki et al., 1998), and Snq2 (Torelli et al., 2008). Alternative azole resistance mechanisms 71 
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include petite mutants with increased expression of CDR1 and CDR2 through Pdr1 induction 75 

and lower levels of ergosterol intermediates (Brun et al., 2004; Tsai et al., 2006; Whaley & 76 

Rogers, 2016). Namely, azoles inhibit Erg11 (lanosterol 14-α demethylase in ergosterol 77 

biosynthesis), causing disruption of the membrane and the accumulation of toxic sterol 78 

intermediate (Cowen, 2008). Documented mechanisms of azole resistance also include Upc2A 79 

regulated uptake of exogenic sterols with the Aus1 transporter (Nakayama et al., 2007; Nagi et 80 

al., 2011), and mutations or changes in the expression of target gene ERG11 and genes involved 81 

in sterol intermediate synthesis (ERG3, ERG24) (Morio et al., 2012; Whaley et al., 2017). 82 

However, C. glabrata clinical isolates do not appear to utilize azole resistance mechanisms that 83 

involve mutations or changes in the expression of genes in the ergosterol biosynthesis pathway 84 

(Sanguinetti et al., 2005). 85 

 S. cerevisiae has resistance mechanisms to azole antifungals similar to those in C. 86 

glabrata through the increased activity of efflux pumps (Pdr5 homologue of Cdr1) induced by 87 

Pdr1 (Moye-Rowley, 2003), and the dysfunctional mitochondria of petite mutants 88 

(Kontoyiannis, 2000). S. cerevisiae is not usually associated with pathogenesis; however, 89 

instances of Candida-like infections (Aucott et al., 1990; Murphy & Kavanagh, 1999; Piarroux 90 

et al., 1999; Wheeler et al., 2003), often connected with its probiotic variant Saccharomyces 91 

boulardii (nom. nud.), have been reported (Lherm et al., 2002; Cassone et al., 2003; Enache-92 

Angoulvant & Hennequin, 2005; Roy et al., 2017). Food-oriented S. cerevisiae and pathogenic 93 

C. glabrata therefore present an interesting link for observing the development of various 94 

aspects of adaptations to the human host and the mechanisms of evolution in the 95 

Saccharomycetaceae (Wheeler et al., 2003; Roetzer, Gabaldón & Schüller, 2011; Bolotin-96 

Fukuhara & Fairhead, 2014). S. cerevisiae serves as a model organism, and so its regulatory 97 

networks and gene functions are extensively studied. A high degree of homology with C. 98 
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glabrata therefore makes it possible to utilize the accumulated knowledge from the model 105 

organism and apply it to the pathogen. 106 

Searching for and developing new antifungal drugs is problematic due to the time and 107 

money it takes to achieve this and also due to significant side effects in the host because the 108 

fungal pathogen is also eukaryotic. Synergistic and additive drug treatments are potential 109 

strategies for controlling resistance development and evolution because the administration of 110 

multiple drugs may disrupt several mechanisms or processes in the pathogen and thus minimize 111 

the selection of resistant strains (Yeh et al., 2009; Bollenbach, 2015). The combination of 112 

antifungals flucytosine (5FC) and amphotericin B (AMB) is recommended by the Infectious 113 

Diseases Society of America for Candida infections (Pappas et al., 2015) due to the high rate 114 

of resistance developed during 5FC monotherapy (Barchiesi et al., 2000). Other combinations 115 

between two antifungals have been put through clinical trials (Scheven et al., 1992; Ghannoum 116 

& Elewski, 1999; Rex et al., 2003; Pachl et al., 2006), but so far only the 5FC+AMB 117 

combination therapy has a clinical role (Pappas et al., 2015). Common combinations studied 118 

are between a commercial antifungal and a specific inhibitor of a protein of interest; for 119 

example, antifungals combined with Hsp90 inhibitors (Cowen, 2013; Veri & Cowen, 2014) or 120 

protein kinase C inhibitors (LaFayette et al., 2010). Several promising drug combinations 121 

against pathogenic fungi have recently been reviewed (LaFayette et al., 2010; Liu et al., 2014; 122 

Cui et al., 2015; Svetaz et al., 2016). 123 

 Due to the nature of the therapy already employed in the clinical environment, drug 124 

combinations are often overlooked with regard to their effect on the pathogens, and treatments 125 

can become problematic because of unexpected interactions (Henry et al., 1999). Possible side 126 

effects and the toxicity of certain drug-drug interactions usually focus on the host, whereas the 127 

actual pathogens and their role in these interactions are rarely taken into consideration (Nett & 128 

Andes, 2016). Simultaneous therapy with several overlapping drugs often occurs in the clinic. 129 
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Such instances often involve administration of antifungal and immunomodulatory drugs 131 

(Pfaller & Castanheira, 2016). Many immunomodulatory drugs have conserved targets in 132 

fungal pathogens; for example, calcineurin is crucial for the survival during membrane stress 133 

(Cruz et al., 2002), and calcineurin inhibitors (cyclosporine A (CsA) and Fk506) have 134 

antifungal properties (Steinbach et al., 2007; Li et al., 2015; Denardi et al., 2015; Yu, Chang & 135 

Chen, 2015). Methotrexate (MTX), which blocks folic acid metabolism, also has antifungal 136 

properties as it inhibits ergosterol production in C. albicans and makes it more susceptible to 137 

azoles (Navarro-Martínez, Cabezas-Herrera & Rodríguez-López, 2006). Mycophenolic acid 138 

(MPA) targets inosine-5’-monophosphate dehydrogenase, which is a crucial enzyme for the de 139 

novo synthesis of guanine nucleotides (Shah & Kharkar, 2015). MPA has antifungal properties 140 

and is synergistic with AMB in C. albicans (Banerjee, Burkard & Panepinto, 2014).  141 

 The study’s main goal was to observe whether drug combinations of 142 

immunomodulatory and antifungal drugs have any modulatory effects on the selected C. 143 

glabrata and S. cerevisiae isolates. Synergy between calcineurin inhibitors and antifungals was 144 

detected. Antagonism between MPA and fluconazole (FLC) in most non-resistant strains was 145 

detected as well. This antagonism was unexpected, and therefore the underlying mechanism 146 

was briefly investigated. Because FLC resistance is commonly connected to the activation of 147 

Pdr1 and subsequent overexpression of the Cdr1 efflux pump, their gene expression was 148 

analysed. MPA appears to induce overexpression of the CDR1 efflux pump, but the central role 149 

of Pdr1 is questionable. This was further confirmed in a  Cgpdr1∆ mutant, in which an 150 

antagonistic interaction between FLC and MPA was observed, although at lower concentrations 151 

of FLC. This antagonistic interaction between FLC and MPA opens the potential to further 152 

explore the underlying mechanism and its impact in the clinical environment. 153 

 154 

Materials & Methods 155 
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 Strains. Five Saccharomyces cerevisiae, six Candida glabrata clinical isolates and one 170 

S. cerevisiae non-clinical isolate were selected from the Collection of Industrial 171 

Microorganisms (ZIM) at the Biotechnical Faculty, Slovenia (Table 1). These were selected 172 

from 96 clinical isolates (40 S. cerevisiae and 56 C. glabrata; full list of strains is in 173 

Supplemental Files “List_of_strains.xlsx”) and nine non-clinical S. cerevisiae isolates based on 174 

their minimal inhibitory concentrations (MICs) obtained by the reference method for broth 175 

dilution antifungal susceptibility testing of yeasts (CLSI M27-A3) (CLSI, 2008). The criterion 176 

was to select strains with different MICs to cover several spectra of antifungal resistance. S. 177 

cerevisiae strain Sc6 from sorghum beer was selected because it displayed high tolerance (16 178 

mg/l) towards fluconazole for a non-clinical isolate. Candida parapsilosis ATCC 22019 and 179 

Candida krusei ATCC 6258 were used as the control strains in the drug susceptibility and 180 

checkerboard assays. In addition, to explore the antagonistic mechanism of MPA and azole 181 

antifungals, we used C. glabrata ATCC 2001 and Cgpdr1∆ (CAGL0K10780gΔ::NAT1) 182 

mutant, provided by Karl Kuchler’s laboratory, Medical University of Vienna, from their 183 

deletion library (Schwarzmüller et al., 2014). Cgpdr1∆ is isogenic to C. glabrata ATCC 2001. 184 

 185 

Table 1 186 

 187 

 Media. Strains were preserved in storage media (10% glycerol, 1 % NaCl, and 1 % 188 

Tween 20) at −80 °C. They were revitalized and routinely grown on yeast peptone dextrose 189 

(YPD) agar plates (2% Bacto Peptone, 1% yeast extract, 2% dextrose, and 2% Bacto agar) at 190 

35 °C, regularly sub-cultured before each experiment. Throughout the assays we also used YPD 191 

broth (2% Bacto Peptone, 1% yeast extract, 2% dextrose), Sabouraud dextrose agar (3% 192 

Sabouraud dextrose from Sigma-Aldrich, 2% Bacto agar), and RPMI (1.04% RPMI-1640 from 193 
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Sigma-Aldrich, 3.453% morpholinepropanesulfonic acid from Sigma-Aldrich, pH adjusted to 199 

pH 7 with 10 M NaOH solution) (Adams et al., 1998). 200 

 Drugs. Immunomodulatory drugs used for the screening were methotrexate (MTX), 201 

mycophenolic acid (MPA) and its derivate mycophenolate mofetil, cyclosporine A (CsA), and 202 

tacrolimus (Fk506). We also included a b-lactam antibiotic amoxicillin trihydrate (AMX) 203 

because it is often administered simultaneously with immunomodulatory agents. Antifungal 204 

drugs used for the initial screenings were amphotericin B (AMB), itraconazole (ITC), and 205 

fluconazole (FLC). For further exploration of the antagonistic mechanism between MPA and 206 

azoles, we used posaconazole (POS), ketoconazole (KCT), and voriconazole (VRC). All of the 207 

drugs were obtained from Sigma-Aldrich, except Fk506, which was provided by Acies Bio. 208 

 Stock solutions of MPA, MTX, CsA, Fk506, AMB, ITC, POS, KCT, VRC, and CLO 209 

were prepared in dimethyl sulfoxide (DMSO; Sigma-Aldrich), whereas AMX and FLC were 210 

diluted directly in the medium of choice for the assay. All the final drug concentrations were 211 

made in media (RPMI for drug susceptibility and checkerboard assay, YPD for further 212 

evaluation of the antagonistic interaction). List of stock solutions is in Supplemental Files 213 

“Optical_density_values.xlsx”. 214 

 Checkerboard assay. To determine the susceptibility of the selected strains to these 215 

drugs and to observe the effects of the drug combinations on them, we used CLSI M27-A3 216 

checkerboard microdilution assay (CLSI, 2008). Briefly, drug dilutions and combinations were 217 

prepared in RPMI medium in microtiter plates. Negative (only medium) and positive (strain 218 

and medium without drug) controls were included. Strains were grown on Sabouraud agar at 219 

35 °C and, after 24 h, one colony was transferred in 1 ml 0.85% saline solution. Inoculum was 220 

prepared by diluting yeast cells in RPMI medium to 3−5 × 103 cells/ml using the automatic 221 

ImageJ-counting technique (Zupan et al., 2013). 100 µl of this cell suspension was then 222 

transferred to 100 µl of drug suspension prepared in microplates. When the DMSO was used 223 
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for drug dilution, it comprised < 1% of the final test volume in the microtiter well. Tested drug 225 

concentrations ranged from 200−2 mg/l for MTX, 400−6.25 mg/l for AMX, 120−2 mg/l for 226 

MPA, 400−0.25 mg/l for Fk506, 16−0.125 mg/l for CsA, 256−0.25 mg/l for FLC, 256−0.25 227 

mg/l for ITC, 1−0.004 mg/l for AMB, 16−0.068 mg/l for KCT, 16−0.017 mg/l for VRC, and 228 

16−0.25 mg/l for POS. After incubation at 37 °C for 24, 48, or 72 h, we measured the optical 229 

density at 600 nm (OD600) with a microplate reader (Tecan). Background optical densities were 230 

subtracted from that of each well. In vitro susceptibility and drug combination tests were 231 

performed at least in biological triplicates.  232 

 When we further investigated the observed mechanism of the antagonism between MPA 233 

and additional azole antifungals versus C. glabrata ATCC 2001 and Cgpdr1∆ mutant, we used 234 

a version of the assay described above but replaced SAB and RPMI media with YPD agar plates 235 

and broth, respectively. We have confirmed that the antagonistic effect in C. glabrata ATCC 236 

2001 is present in both RPMI and YPD media, results are in Supplemental Files 237 

“ATCC_2001_RPMI_YPD.xlsx”. 238 

 Fractional Inhibitory Concentrations Index. The data obtained from the 239 

checkerboard microdilution assays were analyzed with the fractional inhibitory concentrations 240 

index (FICI) based on the Loewe additivity model (Loewe, 1928), using the following equation: 241 

FICI = FICA + FICB, where FIC = MICcombination/MICindividual. For azoles and immunomodulatory 242 

drugs MIC50 was used, and MIC90 for AMB. FICI is interpreted as synergistic when ≤ 0.5, 243 

indifferent when > 0.5 and < 4, and antagonistic when ≥ 4 (Odds, 2003). For calculation of the 244 

FICIs when the MIC resulted in an off-scale value, the next higher concentration (e.g., > 32 = 245 

64 mg/l) was used (Moody, 2010). FICImin was reported as the FICI in all cases unless the 246 

FICImax was greater than 4, in which case FICImax was reported as the FICI for that particular 247 

data set (Melietiadis et al., 2005). 248 
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 Bliss Independence. The expected effect of drug combinations was also calculated by 250 

a model based on the Bliss independence (BI) criteria, where we assume that the relative effect 251 

of a drug at a particular concentration is independent of the presence of the other drug (Bliss, 252 

1939; Goldoni & Johansson, 2007; Yeh et al., 2009). We calculated the predicted decrease of 253 

relative growth (Epredicted) using the following equation: Epredicted = 1 − EA * EB, where EA and 254 

EB are individually measured relative growth inhibitions by drugs A or B, respectively. Positive 255 

or negative deviations (DE = Emeasured − Epredicted) from this predicted decrease of relative growth 256 

describe synergistic and antagonistic interactions, respectively (Yeh et al., 2009). 257 

 To interpret and summarize the entire interaction surface calculated by the BI criteria 258 

among several different drug combination concentrations, we used previously described 259 

interpretations (Meletiadis et al., 2005). Briefly, we summed all statistically significant DE 260 

(SSSI), determined the mean percentage (MSSI), and calculated the 95% confidence interval 261 

(CI). If it did not include 0 and was positive or negative, statistically significant synergy or 262 

antagonism, respectively, was claimed for the entire data set. In addition, we also calculated the 263 

SSSI and MSSI for all the significant synergistic (SSYN and MSYN, respectively) and 264 

antagonistic (SANT and MANT, respectively) DE separately. The absolute sum of all SSYN 265 

or SANT was considered to be a weak (0–100%), moderate (100–200%), or strong (> 200%) 266 

interaction. 267 

The interaction between two drugs was considered significant, if it was confirmed with 268 

at least one model (either BI or FICI). 269 

 Gene expression. C. glabrata ATCC 2001 was grown in liquid YPD overnight at 37 270 

°C. In the morning, we diluted it in fresh YPD to OD600 0.05 and let it grow at 37 °C back to 271 

OD600 0.1 (approximately 1.5 h). At that point, we added the following drug combinations: a) 272 

untreated, b) 5 mg/l FLC, c) 5 mg/l MPA, and d) 5 mg/l FLC and 5 mg/l MPA. The optimal 273 
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concentrations were determined with preliminary growth tests and checkerboard assays. All of 276 

the samples received the same amount of DMSO. 277 

 At timepoints 0, 2, and 4 h we collected the samples with a 3 min spin down at 1,500 g, 278 

4 °C, resuspended them in ice-cold water, and transferred them to 2 ml screw caps, where we 279 

performed a short spin down to remove the supernatant and froze the pellet in liquid nitrogen. 280 

Samples were stored at −80 °C. Time points were determined according to growth curve assays, 281 

Supplemental Files “Growth_curve_time_points_for_gene_expression.docx”. 282 

 RNA isolation and qPCR analysis were performed as described previously (Tscherner 283 

et al., 2012). PGK1 and RIP1 were used as housekeeping genes (Hnisz et al., 2010; Li, Skinner 284 

& Bennett, 2012). 285 

 The primers used were CgPGK1f (5′-ACGAAGTTGTCAAGTCCTCCA-3′), 286 

CgPGK1r (5′-TTACCTTCCAACAATTCCAAGGAG-3′), CgRIP1f (5′-287 

CTTCATGGTCGGTTCTCTAGG-3′), CgRIP1r (5′-ACAACAACGTTCTTACCCTCAG-3′), 288 

CgPDR1f (5′-TACCAATGTCTCAGATACCACCA-3′), CgPDR1r (5′-289 

CTGTCTTTAGAATCCAACTGCGT-3′), CgCDR1f (5′-290 

AGACTTACGCTAGACATTTAACGG-3′), and CgCDR1r (5′-291 

CACAAATAGAGACTTCAGCAATGG-3′). Amplification curves were analyzed using the 292 

Realplex Software (Eppendorf) and relative mRNA quantification was performed using the 293 

efficiency corrected ΔΔCt method (Pfaffl, 2001). Quantification was performed in Excel 294 

(Microsoft) and statistical analysis with GraphPad Prism (GraphPad Software) using one-way 295 

ANOVA and Bonferroni’s multiple comparison test. 296 

 297 

Results 298 

 Drug susceptibility. Each test had MICs of the control strains (C. parapsilosis ATCC 299 

22019, C. krusei ATCC 6258) within the expected range for the tested antifungal. MICs for 300 
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selected strains against individual drugs at 48 h are summarized in Table 2. Strains showed 302 

resistance to certain antifungals; for example, Sc2 (32–64 mg/l), Cg5 (64–128 mg/l), and Cg6 303 

(128 mg/l) against FLC and Sc1 (2 mg/l), Sc2 (2–4 mg/l), Sc3 (2–4 mg/l), Cg5 (4–16 mg/l), 304 

and Cg6 (128 mg/l) against ITC (CLSI, 2008). For most of the immunomodulatory drugs, the 305 

concentration range that was used here, and was based on the range expected in human blood 306 

after drug administration, did not obtain a MIC; exceptions were some strains with MPA (Sc3, 307 

Sc4, Sc5, Cg2 at 120 mg/l) and Fk506 (Sc4, Sc6 at 200 mg/l). 308 

 309 

Table 2 310 

 311 

 Interpretation of drug interactions. Results were obtained using the checkerboard 312 

microdilution assay. A summary of the interpretations for each strain and drug combination is 313 

found in Figure 1. The interaction was considered significant, if it was confirmed with at least 314 

one model (FICI or BI). Calculated FICI and BI values are located in Supplemental Files 315 

“Calculated_FICI_and_BI_values.xlsx”. 316 

The FLC+MPA combination was antagonistic in 8 out of 12 strains (five S. cerevisiae, 317 

three C. glabrata) and synergistic in two C. glabrata strains. One synergistic and two indifferent 318 

interactions involved highly resistant strains (MIC of 64 mg/l or higher). The AMB+MPA 319 

combination had a synergistic effect in 8 out of 12 strains (three S. cerevisiae, five C. glabrata) 320 

and antagonism in one S. cerevisiae isolate. The effect of ITC+MPA was not as uniform; four 321 

synergistic and three antagonistic interactions were observed, indicating that the response is 322 

strain-specific. 323 

A strain-specific response was observed in the combination of antifungals and MTX or 324 

AMX as well. MTX+FLC had two synergistic and three antagonistic interactions, MTX+ITC 325 

four synergistic and one antagonistic, MTX+AMB two synergistic and five antagonistic, 326 



AMX+FLC three synergistic interactions, AMX+ITC two synergistic and one antagonistic, and 327 

AMX+AMB five synergistic and four antagonistic interactions. 328 

Out of 72 interactions between antifungals and calcineurin inhibitors (CsA and Fk506), 329 

67 were synergistic, even in the FLC and ITC resistant strains Cg5 and Cg6. Antagonistic 330 

interactions were observed only in the combination of CsA and FLC in three S. cerevisiae 331 

isolates. 332 

 The results from the FICI and BI models fitted well, and both showed a trend towards 333 

the same interpretation; if the interpretation with one model was synergy, the other model either 334 

showed synergy or indifference, but never the opposite, antagonism. Out of 180 combinations 335 

tested against selected strains, the FICI model showed 60 significant modulatory interactions 336 

and the BI model 124, in which most of the absolute sum values (SSYN or SANT) indicated 337 

strong interactions (> 200%). 338 

 339 

Figure 1 340 

 341 

 Antagonistic interaction between MPA + azole antifungals. The strain C. glabrata 342 

ATCC 2001 was used to further explore the observed antagonism between MPA and azole 343 

antifungals (Figure 2A). Azole antifungals included FLC, ITC, KCT, VRC, and POS. Table 3 344 

shows the MIC, FICI, and BI of this strain against azole antifungals combined with MPA (MIC 345 

for MPA ranges from 32 to 64 mg/l) in YPD at 37 °C after 48 hours. All of the interactions 346 

were interpreted as antagonistic by at least one model. This confirms that an antagonistic 347 

interaction between MPA and all of the selected azole antifungals occurs in C. glabrata ATCC 348 

2001. 349 

 350 

Table 3 351 
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 354 

 The roles of PDR1 and CDR1. Gene expression of PDR1 and CDR1 was analysed in 355 

C. glabrata ATCC 2001 at two different timepoints (Figure 2). It was calculated relative to the 356 

untreated samples for each timepoint. All of the following differences described have statistical 357 

significance (p-value < 0.05). 358 

 At 2 hours, PDR1 expression was significantly higher in samples treated with FLC. It 359 

was higher than in all the other conditions, including the samples treated with the combination 360 

of FLC+MPA. At 4 hours the expression of PDR1 was still higher in samples treated with FLC 361 

compared to the untreated samples and samples treated with MPA. 362 

 For CDR1, at 2 hours, all treated samples (FLC, MPA, FLC+MPA) had higher 363 

expression than the untreated samples. At 2 hours FLC+MPA had higher expression of CDR1 364 

than the FLC-treated samples. At 4 hours the expression of CDR1 was even higher in MPA and 365 

FLC+MPA-treated samples and was significantly higher than in the samples treated only with 366 

FLC. 367 

 The expression patterns for CDR1, which seemed like a good candidate to explain the 368 

antagonism of the drug combination, and the low expression of PDR1 in the MPA and 369 

FLC+MPA-treated samples questioned whether the PDR1 regulatory cascade has a central role 370 

in the drug response mechanism responsible for  antagonism between FLC and MPA. To test 371 

this, we performed a checkerboard assay with Cgpdr1D mutant against the combination of FLC 372 

and MPA. Figure 2B shows the relative growth from this assay, in which we saw increased 373 

susceptibility to FLC (MIC at 4 mg/l) and the antagonistic pattern, which was confirmed by the 374 

BI model (SANT = −320.79%). These results suggest that the typical PDR1 drug response is 375 

not the only pathway required for this antagonistic interaction and that the induction of CDR1 376 

in this case could to be regulated by alternative pathways. 377 

 378 
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Figure 2 387 

 388 

Discussion 389 

 Drug combinations can present an attractive way to deal with antifungal resistance and 390 

the lack of antifungals, but there may be dangerous complications when there are adverse 391 

reactions in the host or antagonism between the drugs. In this study, the combination of MPA 392 

and FLC made 8 out of 12 strains (which represents all of the less resistant strains) more tolerant 393 

to the antifungal. This could have consequences in the clinical environment, and it also opens 394 

a path to explore drug resistance mechanisms. 395 

 Synergism: calcineurin inhibitors + antifungals. Certain patterns were observed with 396 

different drug combinations (Figure 1). The most striking one was a generally synergistic effect 397 

between most antifungals and calcineurin inhibitors (CsA and Fk506) against all strains tested. 398 

The synergistic effect of calcineurin inhibitors and antifungals is well documented (Cruz et al., 399 

2002; Li et al., 2015; Denardi et al., 2015; Yu, Chang & Chen, 2015). Our results differe to 400 

those of  Cruz et al., 2002 who reported synergistic toxicity toward other fungal species but not 401 

S. cerevisiae. This may be due to  a  strain-specific response in S. cerevisiae, but further tests 402 

are required to clarify this. 403 

 Antagonism: MPA + azoles. Eight out of twelve antagonistic interactions between 404 

MPA and FLC were found. Antagonism was not observed in strains that had high resistance to 405 

FLC (Sc2 32–64 mg/l, Cg5 64–128 mg/l, and Cg6 128 mg/l), which indicates that the 406 

antagonism is probably the result of similar mechanisms that produce the high resistance. FLC 407 

resistance mechanisms include overexpression of the efflux pumps in most cases (Whaley & 408 

Rogers, 2016). The antifungal activity of MPA, which is due to the depletion of purine 409 

nucleotides (Banerjee, Burkard & Panepinto, 2014), made the antagonistic effect all the more 410 

surprising. We therefore explored whether the most common mechanism of azole resistance in 411 
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C. glabrata and S. cerevisiae (Pdr1 induction of efflux pump Cdr1/Pdr5) had a role in this 441 

antagonistic interaction. 442 

 Antagonism: the roles of PDR1 and CDR1. The central role of the transcriptional 443 

factor Pdr1 in azole resistance has been described in detail (Caudle et al., 2011; Yibmantasiri 444 

et al., 2014). It is usually linked to the induction of efflux pumps (Cdr1 as a dominant example) 445 

that remove the azole antifungals from the cell. In this study, relatively high expression values 446 

of CDR1 were observed in the drug combination FLC+MPA and MPA alone compared to the 447 

untreated samples and even to the FLC-treated ones (Figure 2D). This makes the induction of 448 

efflux pumps a good explanation for the increased resistance to azole antifungals. However, an 449 

interesting aspect arose when examining the expression values of PDR1 (Figure 2C) because 450 

their expression pattern did not match the CDR1 induction. Normally, Pdr1 positively regulates 451 

the expression of CDR1, but this was not seen here. This suggests that Pdr1 is not the only 452 

regulatory mechanism enabling a higher expression of CDR1 with MPA or the FLC+MPA 453 

combination. This was further demonstrated by an antagonistic effect in the Cgpdr1D mutant, 454 

interpreted by the BI model with a SANT value of −320.79%, although at lower concentrations 455 

of FLC (Figure 2B). Undoubtedly Pdr1 still plays a major role in overall resistance (because 456 

resistance to FLC did drop in the combination versus Cgpdr1D), but the antagonistic pattern 457 

still existed. This opens up new and interesting questions regarding which mechanisms instead 458 

of the Pdr1 regulatory cascade are responsible for higher CDR1 expression and the observed 459 

antagonistic effect. Alternative regulators of CDR1 could include transcriptional factors 460 

associated with multidrug resistance (e.g., RDR1, YRR1, YRM1, and STB5) or CAD1, MSN2, 461 

and MSN4 for general stress response, YAP1 for oxidative stress, CRZ1 from calcineurin-462 

mediated stress response, or ECM22 and UPC2 for cell membrane composition (Monteiro et 463 

al., 2017; Teixeira et al., 2018). In addition to Cdr1, other efflux pumps associated with azole 464 

resistance should also be considered in the future, such as Cdr2 (Miyazaki et al., 1998), Snq2 465 
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(Torelli et al., 2008), Flr1 (Alarco et al., 1997), Qdr2 (Costa et al., 2013), Tpo1_2 (Pais et al., 477 

2016), Ybt1 (Tsai et al., 2010), Yhk8 (Barker, Pearson & Rogers, 2003) and Yor1 (Vermitsky 478 

et al., 2006). Further studies at the systemic level would be required to obtain a better picture 479 

of the entire mechanism. 480 

 Antagonism: clinical environment. There are clinical implication to this discovery. 481 

MPA (and its prodrug mycophenolate mofetil) is widely used as a maintenance 482 

immunosuppressive regimen in solid organ transplant patients, for the prophylaxis and 483 

treatment of acute and chronic graft-versus-host disease, and to promote engraftment after 484 

hematopoietic stem cell transplantation (Zhang & Chow, 2016). There are no data on the 485 

frequency of clinical usage for the combination of FLC+MPA; however, antifungal prophylaxis 486 

with azoles (VRC, POS, ITC, and FLC) is commonly prescribed in immunocompromised 487 

populations, which also involve the use of MPA (Pappas & Silveira, 2009; Brizendine, Vishin 488 

& Baddley, 2011; Groll et al., 2014). Possible antifungal prophylaxis or actual treatments with 489 

azole antifungals in these cases should therefore be used with caution and considered for each 490 

individual case because induced resistance could result in a failed therapy. There is even a report 491 

of a statistically significant increase in fungal infections in the geriatric renal transplant 492 

population when receiving MPA versus azathioprine, but the specific organisms and sites of 493 

infection were not reported (Meier-Kriesche et al., 1999; Ritter & Pirofski, 2009). It can be 494 

speculated that this antagonism could be connected to this increase in fungal infections, because 495 

FLC and other azoles (VRC, POS and ITR) are used for the prophylaxis in solid organ 496 

transplantations and other therapies involving immunocompromised patients (Pappas & 497 

Silveira, 2009; Brizendine, Vishin & Baddley, 2011; Groll et al., 2014; Vazquez, 2016). The 498 

next steps should expand the number of tested strains and species against the combination of 499 

azoles and MPA, include an in vivo evaluation of the combination, and include other drugs 500 
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involved in a certain therapy as well; for example, a typical cocktail of prednisolone, MPA, and 504 

cyclosporine in solid organ transplantations (Sollinger, 1995). 505 

 506 

Conclusion 507 

 This study examined how combinations of immunomodulatory and antifungal drugs 508 

affect selected strains of C. glabrata and S. cerevisiae. It confirmed a strong synergistic toxicity 509 

between calcineurin inhibitors and antifungals, but also discovered an antagonistic interaction 510 

between MPA and azoles in non-resistant strains. Based on observation of gene expression in 511 

C. glabrata ATCC 2001 this is probably due to increased expression of drug efflux pump Cdr1 512 

by MPA. However, the mechanism of the induction is still unknown because the Pdr1 513 

regulatory cascade was not essential for the antagonistic interaction, and this deserves further 514 

investigation. In addition, the combined use of MPA and azoles in the clinical environment 515 

should be carefully reevaluated. In particular, there is a need to recognise that drug 516 

combinations affect not only the host but also the pathogen. 517 
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