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Abstract
Candidemia and other forms of invasive candidiasis caused by Candida glabrata and to a lesser

extent [Saccharomyces cerevisiae are a serious health problem, especially if their steadily rising

resistance to the limited range of antifungal drugs is taken into consideration. Various drug
combinations are an attractive solution to the resistance problem, and some drug combinations
are already common in the clinical environment due to the nature of diseases or therapies. We
tested a few of the common antifungal-immunomodulatory drug combinations and evaluated
their effect on selected strains of C. glabrata and S. cerevisiae. The combinations were
performed using the checkerboard microdilution assay and interpreted using the Loewe
additivity model and a model based on the Bliss independence criterion. A synergistic
interaction was confirmed between calcineurin inhibitors (Fk506 and cyclosporine A) and
antifungals (fluconazole, itraconazole, and amphotericin B). A new antagonistic interaction
between mycophenolic acid (MPA) and azole antifungals was discovered in non-resistant
strains. A possible mechanism that explains this is induction of the Cdr1 efflux pump by MPA
in C. glabrata ATCC 2001. The Pdrl regulatory cascade plays a role in overall resistance to
fluconazole, but it is not essential for the antagonistic interaction. This was confirmed by the
CgpdrlA mutant still displaying the antagonistic interaction between the drugs, although at

lower concentrations of FLC. This antagonism calls into question the use of simultaneous
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therapy with MPA and azoles in the clinical environment.

Introduction
The frequency and associated mortality of candidemia and other forms of invasive

candidiasis have not decreased over the past fwo decades despite the introduction of several
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extended-spectrum triazole and echinocandin antifungal drugs for use in prophylaxis, empiric

therapy, and targeted therapy (Pfaller & Diekema, 2007; Pfaller & Castanheira, 2016). Candida
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albicans is the dominant pathogen, but the incidence of invasive infections caused by Candida
glabrata has been steadily rising (Pfaller et al., 2012b, 2014). The most vulnerable populations
include transplant patients, patients with AIDS or cancer, those on immunosuppressive therapy,
patients receiving total parenteral nutrition, and premature infants (Pfaller & Diekema, 2010;
Whaley & Rogers, 2016). In certain populations, C. glabrata even surpasses C. albicans as the
leading pathogen; these include patients with hematologic malignancies, diabetes mellitus, and
patients with an abdominal source of infection (Hachem et al., 2008; Segireddy et al., 2011;
Khatib et al., 2016; Whaley & Rogers, 2016). The reasons for the rise of C. glabrata infections
include the introduction of fluconazole in 1990 and its widespread prophylactic use against
fungal infections (Berrouane, Herwaldt & Pfaller, 1999), a higher rate of antifungal use and
intrinsic or acquired resistance of C. glabrata to both fluconazole and echinocandins (Silva et
al., 2012; Pfaller et al., 2012a; Alexander et al., 2013; Pfaller & Castanheira, 2016; Colombo,
Junior & Guinea, 2017), and better identification of non-albicans species in the clinic (Liguori
et al., 2009).

One of the main problems when dealing with C. glabrata is its intrinsically low
susceptibility to azole antifungals (Vermitsky & Edlind, 2004) and its ability to develop
resistance to several antifungal drug classes (Pfaller, 2012; Glockner & Cornely, 2015). For

example, resistance to azole antifungals in clinical isolates is mostly connected to mutations in

| CDeIeted: the

the gene PDRI, which encodes the transcription factor for the pleiotropic drug response
(Vermitsky & Edlind, 2004). Activating mutations in PDR/ lead to distinct patterns of altered
gene expression among Pdrl1 targets, commonly leading to overexpression of efflux pumps that

lower the bioavailability of the azoles, thus lowering their effectiveness (Whaley & Rogers,
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2016). The efflux pumps most commonly associated with azole resistance in C. glabrata are
the ATP-binding cassette (ABC) transporters Cdr1 (Sanglard, Ischer & Bille, 2001), Cdr2/Pdh1

(Miyazaki et al., 1998), and Snq2 (Torelli et al., 2008). Alternative azole resistance mechanisms
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include petite mutants with increased expression of CDRI and CDR?2 through Pdr1 induction
and lower levels of ergosterol intermediates (Brun et al., 2004; Tsai et al., 2006; Whaley &
Rogers, 2016). Namely, azoles inhibit Ergll (lanosterol 14-a demethylase in ergosterol
biosynthesis), causing disruption of the membrane and the accumulation of toxic sterol
intermediate (Cowen, 2008). Documented mechanisms of azole resistance also include Upc2A
regulated uptake of exogenic sterols with the Aus] transporter (Nakayama et al., 2007; Nagi et

al., 2011), and mutations or changes in the expression of target gene FRG1/ and genes involved

in sterol intermediate synthesis (ERG3, ERG24) (Morio et al., 2012; Whaley et al., 2017). |
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However, C. glabrata clinical isolates do not appear to utilize azole resistance mechanisms that,

Jdnvolve mutations or changes in the expression of genes in the ergosterol biosynthesis pathway

(Sanguinetti et al., 2005).

S. cerevisiae has resistance mechanisms to azole antifungals gimilar to those in C.
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glabrata through the increased activity of efflux pumps (Pdr5 homologue of Cdrl) induced by
Pdrl (Moye-Rowley, 2003), and the dysfunctional mitochondria of petite mutants
(Kontoyiannis, 2000). S. cerevisiae is not usually associated with pathogenesis; however,
instances of Candida-like infections (Aucott et al., 1990; Murphy & Kavanagh, 1999; Piarroux
et al., 1999; Wheeler et al., 2003), often connected with its probiotic variant Saccharomyces
boulardii (nom. nud.), have been reported (Lherm et al., 2002; Cassone et al., 2003; Enache-
Angoulvant & Hennequin, 2005; Roy et al., 2017). Food-oriented S. cerevisiae and pathogenic
C. glabrata therefore present an interesting link for observing the development of various
aspects of adaptations to the human host and the mechanisms of evolution in the
Saccharomycetaceae (Wheeler et al., 2003; Roetzer, Gabaldon & Schiiller, 2011; Bolotin-
Fukuhara & Fairhead, 2014). S. cerevisiae serves as a model organism, and so its regulatory

networks and gene functions are extensively studied. A high degree of homology with C.
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glabrata therefore makes it possible to utilize the accumulated knowledge from the model
organism and apply it to the pathogen.
Searching for and developing new antifungal drugs is problematic due to the time and

money it takes to achieve this and also due to significant side effects in the host because the

fungal pathogen is also eukaryotic. [Synergistic and additive drug treatments are potential

strategies for controlling resistance development and evolution because the administration of
multiple drugs may disrupt several mechanisms or processes in the pathogen and thus minimize
the selection of resistant strains (Yeh et al., 2009; Bollenbach, 2015). The combination of
antifungals flucytosine (SFC) and amphotericin B (AMB) is recommended by the Infectious
Diseases Society of America for Candida infections (Pappas et al., 2015) due to the high rate
of resistance developed during SFC monotherapy (Barchiesi et al., 2000). Other combinations
between two antifungals have been put through clinical trials (Scheven et al., 1992; Ghannoum
& Elewski, 1999; Rex et al., 2003; Pachl et al., 2006), but so far only the SFC+AMB
combination therapy has a clinical role (Pappas et al., 2015). Common combinations studied
are between a commercial antifungal and a specific inhibitor of a protein of interest; for
example, antifungals combined with Hsp90 inhibitors (Cowen, 2013; Veri & Cowen, 2014) or
protein kinase C inhibitors (LaFayette et al., 2010). Several promising drug combinations
against pathogenic fungi have recently been reviewed (LaFayette et al., 2010; Liu et al., 2014;
Cui et al., 2015; Svetaz et al., 2016).

Due to the nature of the therapy already employed in the clinical environment, drug
combinations are often overlooked with regard to their effect on the pathogens, and treatments
can become problematic because of unexpected interactions (Henry et al., 1999). Possible side
effects and the toxicity of certain drug-drug interactions usually focus on the host, whereas the
actual pathogens and their role in these interactions are rarely taken into consideration (Nett &

Andes, 2016). Simultaneous therapy with several overlapping drugs often occurs in the clinic.
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Such instances often involve administration of antifungal and immunomodulatory drugs
(Pfaller & Castanheira, 2016). Many immunomodulatory drugs have conserved targets in

fungal pathogens; for example, calcineurin is crucial for the survival during membrane stress

CDeIeted: as well. F )

(Cruz et al., 2002), and calcineurin inhibitors (cyclosporine A (CsA) and Fk506) have

antifungal properties (Steinbach et al., 2007; Li et al., 2015; Denardi et al., 2015; Yu, Chang &

Chen, 2015). Methotrexate (MTX), which blocks folic acid metabolism, also has antifungal

(Deleted: the

properties, as it jnhibits ergosterol production in C. albicans and makes jt more susceptible to .

azoles (Navarro-Martinez, Cabezas-Herrera & Rodriguez-Lopez, 2006). Mycophenolic acid
(MPA) targets inosine-5’-monophosphate dehydrogenase, which is a crucial enzyme for the de
novo synthesis of guanine nucleotides (Shah & Kharkar, 2015). MPA has antifungal properties

and js synergistic with AMB in C. albicans (Banerjee, Burkard & Panepinto, 2014).
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The study’s main goal was to observe whether drug combinations of
immunomodulatory and antifungal drugs have any modulatory effects on the selected C.
glabrata and S. cerevisiae isolates. Synergy between calcineurin inhibitors and antifungals was
detected. Antagonism between MPA and fluconazole (FLC) in most non-resistant strains was
detected as well. This antagonism was unexpected, and therefore the underlying mechanism
was briefly investigated. Because FLC resistance is commonly connected to the activation of

Pdrl and subsequent overexpression of the Cdrl efflux pump, their gene expression was

analysed. MPA ap

of Pdrl is questionable. This was further confirmed in @ _Cgpdr/A mutant, in which an

ears to induce, overexpression of the CDR/ efflux pump, but the central role .

antagonistic interaction between FLC and MPA was observed, although at lower concentrations
of FLC. This antagonistic interaction between FLC and MPA opens the potential to further

explore the underlying mechanism and its impact in the clinical environment.

Materials & Methods
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Strains. Five Saccharomyces cerevisiae, six Candida glabrata clinical isolates and one .
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S. cerevisiae non-clinical isolate were selected from the Collection of Industrial

Microorganisms (ZIM) at the Biotechnical Faculty, Slovenia (Table 1). These, were selected
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from 96 clinical isolates (40 S. cerevisiae and 56 C. glabrata; full list of strains is in .

CDeIeted: among

Supplemental Files “List_of strains.xIsx’’) and nine non-clinical S. cerevisiae isolates based on
their minimal inhibitory concentrations (MICs) obtained by the reference method for broth

dilution antifungal susceptibility testing of yeasts (CLSI M27-A3) (CLSI, 2008). The criterion

was to select strains with different MICs to cover several spectra of antifungal resistance. S. .

cerevisiae strain Sc6 from sorghum beer was selected because it displayed high tolerance (16
mg/l) towards fluconazole for a non-clinical isolate. Candida parapsilosis ATCC 22019 and
Candida krusei ATCC 6258 were used as the control strains in the drug susceptibility and
checkerboard assays. In addition, to explore the antagonistic mechanism of MPA and azole
antifungals, we used C. glabrata ATCC 2001 and CgpdriA (CAGLOK10780gA::NATI)

mutant, provided by Karl Kuchler’s laboratory, Medical University of Vienna, from their

CDeIeted: The Sc6
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deletion library (Schwarzmiiller et al., 2014). CgpdriA is isogenic to C. glabrata ATCC 2001.

Table 1

Media. Strains were preserved in storage media (10% glycerol, 1 % NaCl, and 1 %
Tween 20) at —80 °C. They were revitalized and routinely grown on yeast peptone dextrose
(YPD) agar plates (2% Bacto Peptone, 1% yeast extract, 2% dextrose, and 2% Bacto agar) at
35 °C, regularly sub-cultured before each experiment. Throughout the assays we also used YPD
broth (2% Bacto Peptone, 1% yeast extract, 2% dextrose), Sabouraud dextrose agar (3%

Sabouraud dextrose from Sigma-Aldrich, 2% Bacto agar), and RPMI (1.04% RPMI-1640 from
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Sigma-Aldrich, 3.453% morpholinepropanesulfonic acid from Sigma-Aldrich, pH adjusted to
pH 7 with 10 M NaOH solution) (Adams et al., 1998).

Drugs. Immunomodulatory drugs used for the screening were methotrexate (MTX),
mycophenolic acid (MPA) and its derivate mycophenolate mofetil, cyclosporine A (CsA), and
tacrolimus (Fk506). We also included a B-lactam antibiotic amoxicillin trihydrate (AMX)
because it is often administered simultaneously with immunomodulatory agents. Antifungal
drugs used for the initial screenings were amphotericin B (AMB), itraconazole (ITC), and
fluconazole (FLC). For further exploration of the antagonistic mechanism between MPA and

azoles, we used posaconazole (POS), ketoconazole (KCT), and voriconazole (VRC). All of the
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drugs were obtained from Sigma-Aldrich, except Fk506, which was provided by Acies Bio.

Stock solutions of MPA, MTX, CsA, Fk506, AMB, ITC, POS, KCT, VRC, and CLO
were prepared in dimethyl sulfoxide (DMSO; Sigma-Aldrich), whereas AMX and FLC were
diluted directly in the medium of choice for the assay. All the final drug concentrations were
made in media (RPMI for drug susceptibility and checkerboard assay, YPD for further
evaluation of the antagonistic interaction). List of stock solutions is in Supplemental Files
“Optical_density values.xIsx”.

Checkerboard assay. To determine the susceptibility of the selected strains to these
drugs and to observe the effects of the drug combinations on them, we used CLSI M27-A3
checkerboard microdilution assay (CLSI, 2008). Briefly, drug dilutions and combinations were
prepared in RPMI medium in microtiter plates. Negative (only medium) and positive (strain
and medium without drug) controls were included. Strains were grown on Sabouraud agar at
35 °C and, after 24 h, one colony was transferred in 1 ml 0.85% saline solution. Inoculum was
prepared by diluting yeast cells in RPMI medium to 3—5 x 10° cells/ml using the automatic
ImagelJ-counting technique (Zupan et al., 2013). 100 pl of this cell suspension was then

transferred to 100 pl of drug suspension prepared in microplates. When the DMSO was used
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for drug dilution, it comprised < 1% of the final test volume in the microtiter well. Tested drug
concentrations ranged from 200-2 mg/l for MTX, 400—6.25 mg/l for AMX, 120—2 mg/1 for
MPA, 400-0.25 mg/1 for Fk506, 16—0.125 mg/l for CsA, 256—0.25 mg/1 for FLC, 256—0.25
mg/1 for ITC, 1-0.004 mg/l for AMB, 16—0.068 mg/l for KCT, 16—0.017 mg/l for VRC, and
16—0.25 mg/1 for POS. After incubation at 37 °C for 24, 48, or 72 h, we measured the optical
density at 600 nm (ODsoo) with a microplate reader (Tecan). Background optical densities were
subtracted from that of each well. /n vitro susceptibility and drug combination tests were
performed at least in biological triplicates.

When we further investigated the observed mechanism of the antagonism between MPA
and additional azole antifungals versus C. glabrata ATCC 2001 and CgpdriA mutant, we used
aversion of the assay described above but replaced SAB and RPMI media with YPD agar plates
and broth, respectively. We have confirmed that the antagonistic effect in C. glabrata ATCC
2001 is present in both RPMI and YPD media, results are in Supplemental Files

“ATCC_2001_RPMI_YPD.xIsx”.

Fractional Inhibitory Concentrations Index, The data obtained from the . [Formatted: Font: Bold

checkerboard microdilution assays were analyzed with the fractional inhibitory concentrations
index (FICI) based on the Loewe additivity model (Loewe, 1928), using the following equation:
FICI=FICa + FICg, where FIC = MICcombination/MICindividual. For azoles and immunomodulatory
drugs MIC50 was used, and MIC90 for AMB. FICI is interpreted as synergistic when < 0.5,
indifferent when > 0.5 and < 4, and antagonistic when > 4 (Odds, 2003). For calculation of the
FICIs when the MIC resulted in an off-scale value, the next higher concentration (e.g., > 32 =
64 mg/l) was used (Moody, 2010). FICImin was reported as the FICI in all cases unless the
FIClmax was greater than 4, in which case FIClnax was reported as the FICI for that particular

data set (Melietiadis et al., 2005).
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Bliss Independence. The expected effect of drug combinations was also calculated by

a model based on the Bliss independence (BI) criteria, where we assume that the relative effect

|- CDeIeted: on

of a drug at a particular concentration is independent of the presence of the other drug (Bliss,
1939; Goldoni & Johansson, 2007; Yeh et al., 2009). We calculated the predicted decrease of
relative growth (Epredictea) using the following equation: Eprediced = 1 — Ea * Ep, where Ea and
Eg are individually measured relative growth inhibitions by drugs A or B, respectively. Positive
or negative deviations (AE = Emeasured — Epredicted) from this predicted decrease of relative growth

describe synergistic and antagonistic interactions, respectively (Yeh et al., 2009).

To interpret and summarize the entire interaction surface calculated by the BI criteria,

among several different drug combination concentrations, we used previously described
interpretations (Meletiadis et al., 2005). Briefly, we summed all statistically significant AE
(ZS8SI), determined the mean percentage (MSSI), and calculated the 95% confidence interval
(CI). If it did not include 0 and was positive or negative, statistically significant synergy or
antagonism, respectively, was claimed for the entire data set. In addition, we also calculated the
¥SSI and MSSI for all the significant synergistic (ESYN and MSYN, respectively) and
antagonistic (XANT and MANT, respectively) AE separately. The absolute sum of all ZSYN
or XANT was considered to be a weak (0—100%), moderate (100-200%), or strong (> 200%)
interaction.

The interaction between two drugs was considered significant, if it was confirmed with
at least one model (either BI or FICI).

Gene expression. C. glabrata ATCC 2001 was grown in liquid YPD overnight at 37
°C. In the morning, we diluted it in fresh YPD to ODsoo 0.05 and let it grow at 37 °C back to
ODsoo 0.1 (approximately 1.5 h). At that point, we added the following drug combinations: a)

untreated, b) 5 mg/l FLC, ¢) 5 mg/l MPA, and d) 5 mg/l FLC and 5 mg/l MPA. The optimal

|- CDeIeted: on
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concentrations were determined with preliminary growth tests and checkerboard assays. All of
the samples received the same amount of DMSO.

At timepoints 0, 2, and 4 h we collected the samples with a 3 min spin down at 1,500 g,
4 °C, resuspended them in ice-cold water, and transferred them to 2 ml screw caps, where we

performed a short spin down to remove the supernatant and froze, the pellet in liquid nitrogen.
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Samples were stored at —80 °C. Time points were determined according to growth curve assays,
Supplemental Files “Growth_curve time points_for gene expression.docx”.

RNA isolation and qPCR analysis were performed as described previously (Tscherner
etal., 2012). PGKI and RIPI were used as housekeeping genes (Hnisz et al., 2010; Li, Skinner
& Bennett, 2012).

The primers used were CgPGK1f (5'-ACGAAGTTGTCAAGTCCTCCA-3'),
CgPGKlr (5-TTACCTTCCAACAATTCCAAGGAG-3"), CgRIP1f (5'-
CTTCATGGTCGGTTCTCTAGG-3"), CgRIPIr (5'-"ACAACAACGTTCTTACCCTCAG-3'),
CgPDRIf (5-TACCAATGTCTCAGATACCACCA-3'), CgPDRIr (5'-
CTGTCTTTAGAATCCAACTGCGT-3'), CgCDRIf (5'-
AGACTTACGCTAGACATTTAACGG-3'), and CgCDRIr (5'-
CACAAATAGAGACTTCAGCAATGG-3"). Amplification curves were analyzed using the
Realplex Software (Eppendorf) and relative mRNA quantification was performed using the
efficiency corrected AACt method (Pfaffl, 2001). Quantification was performed in Excel
(Microsoft) and statistical analysis with GraphPad Prism (GraphPad Software) using one-way

ANOVA and Bonferroni’s multiple comparison test.

Results
Drug susceptibility. Each test had MICs of the control strains (C. parapsilosis ATCC

22019, C. krusei ATCC 6258) within the expected range for the tested antifungal. MICs for
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selected strains against individual drugs at 48 h are summarized in Table 2. Strains showed
resistance to certain antifungals; for example, Sc2 (32—64 mg/l), Cg5 (64—128 mg/l), and Cg6
(128 mg/1) against FLC and Scl (2 mg/l), Sc2 (24 mg/l), Sc3 (2—4 mg/l), Cg5 (4-16 mg/l),
and Cg6 (128 mg/l) against ITC (CLSI, 2008). For most of the immunomodulatory drugs, the
concentration range that was used here, and was based on the range expected in human blood
after drug administration, did not obtain a MIC; exceptions were some strains with MPA (Sc3,

Sc4, Sc5, Cg2 at 120 mg/l) and Fk506 (Sc4, Sc6 at 200 mg/1).

Table 2

Interpretation of drug interactions. Results were obtained using the checkerboard
microdilution assay. A summary of the interpretations for each strain and drug combination is
found in Figure 1. The interaction was considered significant, if it was confirmed with at least
one model (FICI or BI). Calculated FICI and BI values are located in Supplemental Files
“Calculated FICI and BI values.xlsx”.

The FLC+MPA combination was antagonistic in 8 out of 12 strains (five S. cerevisiae,
three C. glabrata) and synergistic in two C. glabrata strains. One synergistic and two indifferent
interactions involved highly resistant strains (MIC of 64 mg/l or higher). The AMB+MPA
combination had a synergistic effect in 8 out of 12 strains (three S. cerevisiae, five C. glabrata)
and antagonism in one S. cerevisiae isolate. The effect of ITC+MPA was not as uniform; four
synergistic and three antagonistic interactions were observed, indicating that the response is
strain-specific.

A strain-specific response was observed in the combination of antifungals and MTX or
AMX as well. MTX+FLC had two synergistic and three antagonistic interactions, MTX+ITC

four synergistic and one antagonistic, MTX+AMB two synergistic and five antagonistic,
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AMX+HFLC three synergistic interactions, AMX+ITC two synergistic and one antagonistic, and
AMX+AMB five synergistic and four antagonistic interactions.

Out of 72 interactions between antifungals and calcineurin inhibitors (CsA and Fk506),
67 were synergistic, even in the FLC and ITC resistant strains Cg5 and Cg6. Antagonistic
interactions were observed only in the combination of CsA and FLC in three S. cerevisiae
isolates.

The results from the FICI and BI models fitted well, and both showed a trend towards
the same interpretation; if the interpretation with one model was synergy, the other model either
showed synergy or indifference, but never the opposite, antagonism. Out of 180 combinations
tested against selected strains, the FICI model showed 60 significant modulatory interactions
and the BI model 124, in which most of the absolute sum values (XSYN or ZANT) indicated

strong interactions (> 200%).

Figure 1

Antagonistic interaction between MPA + azole antifungals. The strain C. glabrata
ATCC 2001 was used to further explore the observed antagonism between MPA and azole
antifungals (Figure 2A). Azole antifungals included FLC, ITC, KCT, VRC, and POS. Table 3
shows the MIC, FICI, and BI of this strain against azole antifungals combined with MPA (MIC
for MPA ranges from 32 to 64 mg/l) in YPD at 37 °C after 48 hours. All of the interactions

were interpreted as antagonistic by at least one model. This confirms that an_antagonistic

CDeIeted: the

interaction between MPA and all of the selected azole antifungals pccurs in C. glabrata ATCC
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2001.

Table 3
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The roles of PDRI and CDRI. Gene expression of PDRI and CDRI was analysed in
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C. glabrata ATCC 2001 at two different timepoints (Figure 2). It was calculated relative to the
untreated samples for each timepoint. All of the following differences described have statistical
significance (p-value < 0.05).

At 2 hours, PDR1 expression was significantly higher in samples treated with FLC. It
was higher than in all the other conditions, including the samples treated with the combination
of FLC+MPA. At 4 hours the expression of PDR I was still higher in samples treated with FLC

compared to the untreated samples and samples treated with MPA.

For CDRI, at 2 hours, all treated samples (FLC, MPA, FLC+MPA) had higher .

CDeIeted: As for

expression than the untreated samples. At 2 hours FLC+MPA had higher expression of CDR!
than the FLC-treated samples. At 4 hours the expression of CDRI was even higher in MPA and
FLC+MPA-treated samples and was significantly higher than in the samples treated only with

FLC.

The expression patterns for CDR, which seemed, like a good candidate to explain the .
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antagonism of the drug combination, and the low expression of PDR/ in the MPA and

FLC+MPA -treated samples guestioned, whether the PDR/ regulatory cascade has a central role .
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Jn the drug response mechanism responsible for , antagonism between FLC and MPA. To test

this, we performed a checkerboard assay with Cgpdr!A mutant against the combination of FLC
and MPA. Figure 2B shows the relative growth from this assay, in which we saw increased
susceptibility to FLC (MIC at 4 mg/1) and the antagonistic pattern, which was confirmed by the
BI model (XANT = —320.79%). These results suggest that the typical PDRI drug response is
not the only pathway required for this antagonistic interaction and that the induction of CDR]

in this case could to be regulated by alternative pathways.
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Discussion

Drug combinations, can present an attractive way to deal with antifungal resistance and

the lack of antifungals, but there may be dangerous complications when there are adverse

reactions in the host or antagonism between the drugs. ]n this study, the combination of MPA 1

and FLC made 8 out of 12 ktrains|(which represents all of the less resistant strains) more tolerant

to the antifungal. This, could have consequences in the clinical environment, and it also opens

a path to explore drug resistance mechanisms,

Synergism: calcineurin inhibitors + antifungals. Certain patterns were observed with
different drug combinations (Figure 1). The most striking one was a generally synergistic effect
between most antifungals and calcineurin inhibitors (CsA and Fk506) against all strains _tested.
The synergistic effect of calcineurin inhibitors and antifungals is well documented (Cruz et al.,

2002; Li et al., 2015; Denardi et al., 2015; Yu, Chang & Chen, 2015). Our results,

those of, Cruz et al., 2002 who reported, synergistic toxicity foward other fungal species but not

differe to
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| Deleted: also confirmed this synergistic effect for the
selected strains of C. glabrata and S. cerevisiae. This is

S. cerevisiae, This may be due to a, strain-specific response in S. cerevisiae, put further tests

are required to clarify this.

Antagonism: MPA + azoles. Eight, out of fwelve antagonistic interactions between

MPA and FLC were found. Antagonism was not observed in strains that had high resistance to

FLC (Sc2 32-64 mg/l, Cg5 64-128 mg/l, and Cg6 128 mg/l), which indicates that the
antagonism is probably the result of similar mechanisms that produce the high resistance, FLC

resistance mechanisms include overexpression of the efflux pumps in most cases (Whaley &

Rogers, 2016). The antifungal activity of MPA, which is, due to the depletion of purine

nucleotides (Banerjee, Burkard & Panepinto, 2014), made the antagonistic effect all the more

surprising. We therefore explored whether the most common mechanism of azole resistance in .
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C. glabrata and S. cerevisiae (Pdrl induction of efflux pump Cdrl/Pdr5) had a role in this
antagonistic interaction.

Antagonism: the roles of PDRI and CDRI. The central role of the transcriptional
factor Pdrl in azole resistance has been described in detail (Caudle et al., 2011; Yibmantasiri
etal., 2014). It is usually linked to the induction of efflux pumps (Cdr1 as a dominant example)
that remove the azole antifungals from the cell. In this study, relatively high expression values
of CDRI were observed in the drug combination FLC+MPA and MPA alone compared to the
untreated samples and even to the FLC-treated ones (Figure 2D). This makes the induction of
efflux pumps a good explanation for the increased resistance to azole antifungals. However, an

interesting aspect arose when examining the expression values of PDR1 (Figure 2C) because

their expression pattern did not match the CDR/ induction. Normally, Pdrl positively regulates

CDeIeted: The usual setting is that

the expression of CDRI, but, this was not seen here. This suggests that Pdrl is not the only

CDeIeted: in this case that did not happen

regulatory mechanism gnabling a higher expression of CDRI with MPA or the FLC+MPA

CDeleted: with a central role for the

combination. This was further demonstrated by an antagonistic effect in the CgpdriA mutant,

CDeIeted: when it was noted that

Jinterpreted by the BI model with a EANT value of —320.79%, although at lower concentrations

of FLC (Figure 2B). Undoubtedly Pdrl still plays a major role in overall resistance (because

resistance to FLC did drop in the combination versus CgpdriA), but the antagonistic pattern .
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CDeIeted: was still visible and
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still existed. This opens up new and interesting questions regarding which mechanisms instead

of the Pdrl regulatory cascade are yesponsible for higher CDRI expression and fthe observed

antagonistic effect. Alternative regulators of CDRI could include transcriptional factors
associated with multidrug resistance (e.g., RDR1, YRR, YRMI, and STBS) or CADI, MSN2,
and MSN4 for general stress response, YAPI for oxidative stress, CRZI from calcineurin-

mediated stress response, or FCM22 and UPC2 for cell membrane composition (Monteiro et
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al., 2017; Teixeira et al., 2018). In addition to Cdrl, other efflux pumps associated with azole

resistance should also be considered in the future, such as Cdr2 (Miyazaki et al., 1998), Snq2
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(Torelli et al., 2008), Flr1 (Alarco et al., 1997), Qdr2 (Costa et al., 2013), Tpol 2 (Pais et al.,
2016), Ybtl (Tsai et al., 2010), Yhk8 (Barker, Pearson & Rogers, 2003) and Yorl (Vermitsky
et al., 2006). Further studies at the systemic level would be required to obtain a better picture
of the entire mechanism.

Antagonism: clinical environment. There are clinical implication fo this discovery.

| CDeIeted: This also leads to the

MPA (and its prodrug mycophenolate mofetil) is widely used as a maintenance
immunosuppressive regimen in solid organ transplant patients, for the prophylaxis and
treatment of acute and chronic graft-versus-host disease, and to promote engraftment after

hematopoietic stem cell transplantation (Zhang & Chow, 2016). There are no data on the
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frequency of clinical usage for the combination of FLC+MPA; however, antifungal prophylaxis
with azoles (VRC, POS, ITC, and FLC) is commonly prescribed in immunocompromised
populations, which also involve the use of MPA (Pappas & Silveira, 2009; Brizendine, Vishin
& Baddley, 2011; Groll et al., 2014). Possible antifungal prophylaxis or actual treatments with
azole antifungals in these cases should therefore be used with caution and considered for each
individual case because induced resistance could result in a failed therapy. There is even a report
of a statistically significant increase in fungal infections in the geriatric renal transplant
population when receiving MPA versus azathioprine, but the specific organisms and sites of
infection were not reported (Meier-Kriesche et al., 1999; Ritter & Pirofski, 2009). It can be
speculated that this antagonism could be connected to this increase in fungal infections, because
FLC and other azoles (VRC, POS and ITR) are used for the prophylaxis in solid organ
transplantations and other therapies involving immunocompromised patients (Pappas &
Silveira, 2009; Brizendine, Vishin & Baddley, 2011; Groll et al., 2014; Vazquez, 2016). The
next steps should expand the number of tested strains and species against the combination of

azoles and MPA, include an in vivo evaluation of the combination, and include other drugs
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involved in a certain therapy as well; for example, a typical cocktail of prednisolone, MPA, and

cyclosporine in solid organ transplantations (Sollinger, 1995).

Conclusion

This study examined how combinations of immunomodulatory and antifungal drugs
affect selected strains of C. glabrata and S. cerevisiae. It confirmed a strong synergistic toxicity
between calcineurin inhibitors and antifungals, but also discovered an antagonistic interaction
between MPA and azoles in non-resistant strains. Based on observation of gene expression in
C. glabrata ATCC 2001 this is probably due to increased expression of drug efflux pump Cdrl
by MPA. However, the mechanism of the induction is still unknown because the Pdrl
regulatory cascade was not essential for the antagonistic interaction, and this deserves further

investigation. In addition, the combined use of MPA and azoles in the clinical environment

should be carefully reevaluated. In particular, there is a need to recognise that drug . CDeleted:There is especially a need to understand

combinations affect not only the host but also the pathogen.
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