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ABSTRACT
We conducted a spatially explicit, stochastic, individually based population viability
analysis for the Hawaiian common gallinule (Gallinula galeata sandvicensis), an endan-
gered subspecies of waterbird endemic to fragmented coastal wetlands in Hawai‘i. This
subspecies persists on two islands, with no apparent movement between them. We
assessed extirpation risk for birds on O‘ahu, where the resident gallinule population is
made up of several fragmented subpopulations. Data on genetic differentiation were
used to delineate subpopulations and estimate dispersal rates between them. We used
sensitivity analyses to gauge the impact of current uncertainty of vital rate parameters
on population projections, to ascertain the relative importance of gallinule vital rates to
population persistence, and to compare the efficacy of potential management strategies.
We used available sea level rise projections to examine the relative vulnerability
of O‘ahu’s gallinule population to habitat loss arising from this threat. Our model
predicted persistence of the island’s gallinule population at 160 years (∼40 generations),
but with high probabilities of extirpation for small subpopulations. Sensitivity analyses
highlighted the importance of juvenile and adult mortality to population persistence in
Hawaiian gallinules, justifying current predator control efforts and suggesting the need
for additional research on chick and fledgling survival. Subpopulation connectivity
from dispersal had little effect on the persistence of the island-wide population, but
strong effects on the persistence of smaller subpopulations. Our model also predicted
island-wide population persistence under predicted sea level rise scenarios, but with
O‘ahu’s largest gallinule populations losing >40% of current carrying capacity.

Subjects Animal Behavior, Conservation Biology, Zoology, Climate Change Biology, Population
Biology
Keywords Climate change, Connectivity, Habitat fragmentation, Hawaii, Moorhen, Population
viability analysis, Wetland, Vortex, Rallidae, Island bird

INTRODUCTION
Island taxa are a conservation priority because of their high species endemism and
elevated risks of extinction when compared to mainland ecosystems (Alcover, Sans &
Palmer, 1998; Duncan & Blackburn, 2007; Kier et al., 2009). Avian extinctions on islands
are among the best documented recent and pre-historic losses of vertebrate biodiversity
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(Olson & James, 1982; Duncan, Boyer & Blackburn, 2013), and extant island birds make
up a large proportion of threatened avian taxa (Lee & Jetz, 2010). Climate change is a
rapidly emerging threat to island species in general (Fordham & Brook, 2010) and birds in
particular (Şekercioğlu, Primack & Wormworth, 2012). Among climate change threats to
island species are lower adaptive capacity to environmental change (Buckley & Jetz, 2010),
a reduced dispersal capacity to adjust to changing habitat conditions, a limited elevational
or latitudinal gradient for such adjustments (of particular concern for birds, Devictor et
al., 2008) and habitat inundation with sea level rise, a qualitatively higher risk for island
systems (Mimura et al., 2007). Şekercioğlu, Primack & Wormworth (2012) emphasized that
research on climate change impacts on tropical birds in particular is important because of
a diverse array of likely impacts, and generally poor knowledge of the subject.

The Hawaiian archipelago is a hotspot for extinction, having lost the majority of its
endemic avifauna to human impacts (Olson & James, 1982). Research has demonstrated
climate change is having strong negative impacts on Hawaiian forest birds and seabirds
(Atkinson & LaPointe, 2009; Reynolds et al., 2015), but very little attention has been paid
to climate impacts on other endemic Hawaiian waterbird taxa. The Hawaiian common
gallinule (‘Alae ‘ula, Gallinula galeata sandvicensis; hereafter Hawaiian gallinule), is among
themost threatened of these (USFWS, 2011), with biannual population survey counts below
1,000 individuals (Reed et al., 2011) and a range limited to the islands of O‘ahu and Kaua‘i.
We integrated data on vital rates, movement ecology, and climate change projections to
generate a stochastic simulation model of the Hawaiian gallinule population on O‘ahu to
investigate the potential impacts of management strategies and climate change on their
extirpation risk. Hawaiian gallinules exhibited rapid population declines throughout the
late 19th and early 20th centuries (Shallenberger, 1977; Banko, 1987;Griffin, Shallenberger &
Fefer, 1990) due to hunting, habitat loss from wetland reclamation, and predation by exotic
invasive species, and by the 1960s an estimated 60 individuals remained (Engilis & Pratt,
1993). Population increases have been achieved since the 1970s, principally attributed to
the establishment of protected wetland refuges, predator control, and habitat management,
by state and federal authorities (Reed et al., 2011; Underwood et al., 2013).

Hawaiian gallinules are one of many native Hawaiian bird species, including all of
the waterbirds, that are conservation reliant (Reed et al., 2011; Underwood et al., 2013),
requiring continuous management for populations to persist. Management for Hawai‘i’s
endangered waterbirds typically includes control of mammalian, avian, and amphibian
predators, regulating fresh water input to control depth and salinity, and regular removal
of emergent vegetation through tilling, mowing, burning, or flooding to prevent habitat
degradation and domination by exotic invasive plants (USFWS, 2011; VanderWerf, 2012).
The distribution of gallinules on each island is naturally fragmented by the subspecies’
ecological specialization on limited coastal freshwater wetlands, with greater isolation
caused by wetland loss from widespread anthropogenic landscape change (van Rees &
Reed, 2014; van Rees et al., 2018b). Habitat patches (and therefore local subpopulations)
on O‘ahu are generally small, most supporting fewer than 50 individuals at a site.
This highlights the potential importance of dispersal for the persistence of an island’s
population. Unfortunately, very little is known about Hawaiian gallinule movements,
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although a population genetic analysis by van Rees et al. (2018b) showed strong signs of
genetic structure among gallinule populations on O‘ahu, indicating that movement may
be restricted. This increasing awareness of the fragmented nature of O‘ahu’s gallinule
population has led to suggestions for studying and improving connectivity between the
island’s isolated subpopulations (van Rees & Reed, 2015; van Rees et al., 2018b). The cryptic
behavior of Hawaiian gallinules has made field studies of their vital rates and movement
behavior difficult; until recently, insufficient data were available to model population
persistence for Hawaiian gallinules, or to evaluate alternative management scenarios and
threat impacts.

Recent studies of the Hawaiian Islands have projected that climate change, particularly
with respect to sea level rise, may have dramatic effects on Hawaiian coastal freshwater
wetlands (Underwood et al., 2013; Kane et al., 2015a; Htun et al., 2016), raising additional
concerns over the long-term viability of O‘ahu’s Hawaiian gallinule population. The
freshwater wetlands upon which Hawaiian gallinules depend are found only along a
narrow strip of flat, low-elevation land bordering the coastlines of the islands, and are
therefore vulnerable not only to inundation with sea level rise but also to salinization
(VanderWerf, 2012); as sea water rises, it can penetrate the freshwater aquifers that support
many palustrine wetlands (Lau & Mink, 2006). Hawaiian gallinules appear to have the
lowest tolerance for elevated salinity among Hawaii’s endangered waterbirds, so they may
be threatened by habitat degradation from saltwater intrusion in addition to habitat loss
from inundation with sea level rise (USFWS, 2011; Underwood et al., 2013).

These numerous sources of uncertainty and risk warrant quantitative assessment, and
the US Fish and Wildlife Service’s (2011) Recovery Plan for Hawaiian Waterbirds lists
population viability analysis (PVA) as a key part of the process toward de-listing this
subspecies. PVAs are population models used to project population size and persistence
into the future as quantitative assessments of extinction risk (e.g., Seal & Foose, 1989;
Catlin et al., 2016). Depending on their structure, PVAs can incorporate a wide variety of
demographic and life history information and various types of stochasticity to estimate
probabilities of extinction or pseudo-extinction (the probability of declining below
a threshold population size; Beissinger & Westphal, 1998; Morris & Doak, 2002). The
objective of PVAs is making the most accurate projections or comparisons (among
alternative management scenarios) possible using the best available data, which in the
case of many declining or rare taxa are often very limited (Boyce, 1992; Morris & Doak,
2002; Zeigler & Walters, 2014). Beissinger & Westphal (1998) present guidelines for the
responsible and practical use of PVA, stressing that their primary utility is in assessing
relative impacts (rather than absolute predictions) and trade-offs among organism vital
rates, associated management strategies, and their influences on extinction risk.

Recent studies have shown that a species’ behaviors can have major impacts on model
predictions, in some cases showing higher (Gerber, 2006) and others lower (Grimm et al.,
2005;Mortensen & Reed, 2016) extinction risk relative to a behaviorally uninformedmodel.
Movement behavior is an especially important driver of population dynamics for small and
fragmented populations, (Hanski, 1999; Maciel & Lutscher, 2013), mediating population
connectivity (Taylor et al., 1993; Reed & Levine, 2005), which in turn may ameliorate

van Rees and Reed (2018), PeerJ, DOI 10.7717/peerj.4990 3/36

https://peerj.com
http://dx.doi.org/10.7717/peerj.4990


extinction risk for small populations via the rescue effect (Brown & Kodric-Brown, 1977;
Gotelli, 1991), recolonizing empty sites (e.g., Hanski, 1999), and genetic rescue (Keller &
Waller, 2002).

The discrete distribution of Hawaiian gallinules on O‘ahu makes them an excellent
study system for spatially explicit PVA (Walters, Crowder & Priddy, 2002), and their
current existence in many small subpopulations warrants attention to the impacts of
stochastic elements of population dynamics as well as to deterministic drivers of decline.
The uncertainty in demographic parameter estimates for this taxon (van Rees et al., 2018a),
and difficulty of studying them in the field means that vital rate sensitivity analysis could
aid in prioritizing field study and data collection (Morris & Doak, 2002). The management
dependence of this subspecies also raises questions about the efficacy of management
alternatives. Finally, the threat of sea-level rise to Hawaiian gallinule populations, though
referenced by several authors, has not been evaluated quantitatively. Here we create a
spatially explicit population viability analysis for the Hawaiian gallinule on O‘ahu and
examine extirpation risk in this subspecies both under current conditions and under
potential climate-change scenarios and management alternatives.

MATERIALS & METHODS
Study area
We studied the population of gallinules on O‘ahu, Hawai‘i (21◦28′N, 157◦59′W), which
persists in fragmented subpopulations along the island’s coastal plain (Fig. 1). Wetland
habitats supporting breeding subpopulations of gallinules include state and federal wildlife
refuges that are actively managed for waterbirds, gardens, agricultural areas, and golf
courses. O‘ahu is themost developed island of Hawai‘i with the highest human populations,
and it has experienced rapid landscape change (Giambelluca, 1986; Giambelluca, 1996;
Klasner & Mikami, 2003), resulting in a highly diverse and increasingly urbanized landscape
matrix. Most wetlands support small numbers of gallinules (five–30 individuals), although
two larger wetland complexes may support subpopulations of ∼100 (C van Rees, 2018,
unpublished data). To our knowledge, the O‘ahu population of gallinules is an effectively
closed system, with no published records of movements between O‘ahu and Kaua‘i (Banko,
1987; van Rees et al., 2018a), although biannual waterbird surveys show extremely rare
occurrences of gallinules on the Big Island, Maui, and Molokai, so the possibility of
movement cannot be excluded. Demographic data used for this study were taken from
van Rees et al. (2018a), and were collected from fourteen wetland sites on the island from
different time periods from 1979–2017.

Baseline population model
We used Vortex 10 (Lacy, 1993; Lacy & Pollak, 2017) to generate an individual-based
stochastic simulation model of O‘ahu’s gallinule population. We chose this approach to
explicitly model how the small size of many of our subpopulations affects extirpation
risk, and the movement of individuals between subpopulations (Lacy, 2000; Walters,
Crowder & Priddy, 2002). We used a time frame of 160 years, the span of ∼40 generations
recommended by O’Grady et al. (2008) and Reed & Mccoy (2014), based on our estimated
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Figure 1 Map of study site (O‘ahu, Hawai‘i), highlighting locations of modeled populations of Hawai-
ian gallinules. Black dots indicate the approximate centroid of wetland habitats that make up a popula-
tion; some complexes represent four or more separate wetlands, which were pooled based on population
genetic information from Van Rees et al. (2018b). Gray areas represent the Waianae (left) and Ko‘olau
(right) mountain ranges, which are presented for geographic and topographic reference.

Full-size DOI: 10.7717/peerj.4990/fig-1

generation time of approximately four years as calculated in Vortex (using the Euler
equation, Lacy, Miller & Traylor-Holzer, 2017). We set the duration of each year in
days as 365 days. We defined a subpopulation as extirpated (or, in the software, the
‘‘extinction definition’’) when only one sex remained; the same criterion was used for
island-wide extirpation. We did not model population harvest or supplementation.
Accordingly, the order of events in each Vortex year (as described in the program) was
EV—Breed—Mortality—Age—Disperse—rCalc—Ktruncation—UpdateVars—Census.
For each scenario, we ran 1000 iterations, and recorded the following metrics of extirpation
risk for each subpopulation and for the total island population: (1) probability of extirpation
by 160 years, (2) mean population size of extant populations (and subpopulations) at 160
years, and (3) deterministic and stochastic growth rates for that scenario. We did not
include state variables as defined in the Vortex simulation model.

Subpopulations and carrying capacity
We delineated subpopulations based on genetic evidence from van Rees et al. (2018b),
combining subpopulations with no evidence of genetic structure (e.g., nonsignificant or

van Rees and Reed (2018), PeerJ, DOI 10.7717/peerj.4990 5/36

https://peerj.com
https://doi.org/10.7717/peerj.4990/fig-1
http://dx.doi.org/10.7717/peerj.4990


Table 1 Sizes and size classifications of simulated Hawaiian gallinule subpopulations on O’ahu.
Names, carrying capacities (K ), and size classes of the eight subpopulations modeled in our study of the
population viability of Hawaiian gallinules (Gallinula galeata sandvicensis), on O’ahu, Hawai’i.

Subpopulation name K Size class

Windward Complex 186 Large
Kahuku Complex 105 Large
Pearl Harbor Complex 40 Medium
Turtle Bay 38 Medium
Waimea Valley 27 Medium
Klipper 15 Small
Lotus Farm 14 Small
Keawawa 6 Small

near-zero FST) intowetland complexes (Fig. 1). The carrying capacity of each subpopulation
was estimated as the maximum recorded count of gallinules in the last 12 years, using data
from bothHawai‘i’s biannual waterbird survey and playback surveys (followingDesRochers,
Gee & Reed, 2008) that we conducted for a separate project (C van Rees, 2018, unpublished
data). The carrying capacities of wetland complexes were the sum of carrying capacities of
their constituent wetlands (Table 1). The starting size (time = 0) of each subpopulation
was set to 80% of K, which is similar to current estimated population sizes, and we
assigned the model to start populations at a stable age distribution. We chose the default
value (0.5) for correlation of environmental variance between subpopulations given an
absence of quantitative data on this parameter and a general understanding that while
habitats are geographically proximate due to the small size of the island, that precipitation
conditions can differ dramatically based on orographic rainfall (Lau & Mink, 2006). We
set the correlation between reproduction and survival to 0.1 due to repeated observations
of failed nests and depredated broods with no evidence of increased adult mortality (C van
Rees, pers. obs., 2018, M Silbernagle, USFWS ret., pers. comm., 2017).

For almost all wetland sites, gallinule counts from unpublished playback survey data
yielded the highest numbers, and these values were consequently used. These counts likely
have much lower detection error than waterbird survey counts (DesRochers, Gee & Reed,
2008), but our carrying capacities and starting population sizes nonetheless assume high
detection and could be underestimates of true population size.

Survival and reproductive system
We generated baseline model parameter values using information on reproduction and
survival from van Rees et al. (2018a), with support and supplementation from data on
related taxa (e.g., Commonmoorhen,Gallinula chloropus; Table 2). Even though Hawaiian
gallinules do not breed until age 2, there is no evidence of age structure in survival rate
beyond year 1 (van Rees et al., 2018a). Accordingly, we modeled survival using two age
classes: hatch year (hatching to age 1), and after hatch year (age 1+ or adult). For adult (after
hatch year, AHY) birds, we used the less conservative of two survival estimates generated by
van Rees et al. (2018a), because it better accounted for the extremely poor detection in this
taxon. We calculated first-year survival by combining survival rates to fledging with adult
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Table 2 List of vital rates, their values for our baseline population viability analysis, and range of values used for three sensitivity analysis
methods. Letters in superscript indicate the reasons for which a given vital rate was chosen for sensitivity analysis; other parameters were not
varied because they did not fit the criteria used. EV stands for environmental variation, the component of variance in vital rate value due to annual
variation in environmental conditions. Vital rates that were selected for sensitivity analysis because of uncertainty are marked withU and those
selected because they are relevant to management are marked withM.

Parameter Baseline value (SD) Source Perturbation Conventional Logistic
regression

Reproduction
Breeding system Long-term Monogamy Bannor & Kiviat (2002) N/A N/A N/A
Min–Max age of
reproduction (years)

2–10 Clapp, Klimkiewicz &
Kennard (1982) and
Van Rees et al. (2018a)

N/A N/A N/A

Distribution of broods
per yearU,M

0 to 4 by binomial dist’n Nagata (1983), Gibbons
(1986), Greij (1994);
C van Rees (pers. obs.,
2018)

N/A ±10% shift N/A

Mean of brood sizeM 4.19 (1.82) Van Rees et al. (2018a) 1–8, by 0.5 ± 10% 1–8
Sex ratio at birth 1:1 Assumed – – –
Percent females
breedingU ± EV

90± 10 C van Rees (pers. obs.,
2018)

0–100, by 10 ± 10% –

Males in breeding pool 100% Assumed – – –
Annual Mortality
Juvenile (HY) mortality
± EVU,M

0.67 (0.15) Van Rees et al. (2018a) 0–1, by 0.1 ± 10% (EV:± 10%) 0–1 (EV: 10–25)

Adult mortality± EVM 0.27 (0.033) Van Rees et al. (2018a) 0–1, by 0.1 ± 10% (EV:± 10%) 0.02–0.66
(EV: 0.03–0.2)

Population parameters
Carrying capacity±
EVM

See Table 1;± 10% Waterbird surveys;
C van Rees (2018,
unpublished data)

5–100 individuals, by 5 ± 10% per population 4–25

Dispersal ratesU,M? See Supp. Materials Van Rees et al. (2018b) 2–100× baseline, by 5 ± 10% 2–80

survival rates for the remainder of year 1 (10 months). We used information on fledgling
survival from van Rees et al. (2018a), which reported ∼41% mortality within the 60-day
period up to fledging; similar to observations in G. g. cachinnans in North America (Greij,
1994). Assuming adult mortality rates for the remaining 10 months of year 1, the total
mortality in year 1 was estimated as 67% (Table 2). We estimated mean adult mortality
to be 26.8%, using pooled data from van Rees et al. (2018a), and calculated variance in
adult survival using the binomial equation (yielding a value of 3.3%), because the standard
deviation from van Rees et al. (2018a) appeared to be inflated by detection errors. We
chose a value of 15% for the variance in juvenile to reflect the large variability in chick
survival observed in the field. The sensitivity of our model to this parameter estimate and
those above was evaluated to assess the degree to which our assumptions and parameter
uncertainty affect the outcome of the model and its predictions (see Sensitivity Analyses).

We used the long-term monogamy mating system in Vortex, given observations of
two closely monitored pairs (van Rees et al., 2018a) and general knowledge of the species
(Bannor & Kiviat, 2002). We set the age of first breeding for males and females to 2 years
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(van Rees et al., 2018a). We used a maximum age of 10, which is the oldest observed
Common gallinule (Gallinula galeata) from mark-resighting data in the United States
(Clapp, Klimkiewicz & Kennard, 1982); Hawaiian gallinules have not been recorded as
living this long (van Rees et al., 2018a). We assumed no reproductive senescence, since no
evidence of this has been observed in Hawaiian gallinules (van Rees et al., 2018a). Because
we had no information on the potential impacts of inbreeding depression in Hawaiian
gallinules, and because it is considered of potentially lower importance for island bird
species (Duncan & Blackburn, 2007) we did not include it in our model.

We defined offspring in the model as chicks, and used 8 as the maximum number of
progeny per brood, which is the highest observed brood size on O‘ahu (van Rees et al.,
2018a). We specified the distribution of brood sizes based on data from 103 broods on
O‘ahu collated by van Rees et al. (2018a) (Table 2) and assumed a 1:1 sex ratio at hatch
in the absence of evidence to the contrary. We set the maximum number of broods in
a given year to 4, basing our estimate on field observations of two closely monitored
pairs (van Rees et al., 2018a), as well as accounts of this and conspecifics under natural
conditions (Benthum, 1931; Nagata, 1983). We modeled the distribution in number of
broods produced per female per year using a binomial distribution with the estimate of
nest success for O‘ahu (0.65; van Rees et al., 2018a) as the probability parameter, and the
maximum number of broods in a year (4) as the number of trials (Table 2). Because Vortex
does not accommodate additional modeling steps for nesting (and thus counts only chicks
as offspring) our approach to modeling reproduction accounted for nest failure and hatch
rates implicitly. Observed nest success rates were used to generate the number of successful
broods per year, and our observed data on brood sizes rather than clutch sizes internalized
hatch rates into reproduction in the model. We used sensitivity analyses of the distribution
of brood sizes and mean brood size to examine the potential impacts of changing nest
success rates as well as hatch rates on the outcomes of our model. Notably, the effects of
these parameters could not be distinguished from uncertainty in clutch size, though this
is one of our best-studied parameters (van Rees et al., 2018a), and we see little biological
reason it should be changing across time or differing between subpopulations.

We did notmake young dependent on their parents formultiple years, because Hawaiian
gallinules can feed independently within a month of hatching (Chang, 2010). In the absence
of evidence of polygyny, and assuming that all males of breeding age have the potential
to compete for breeding vacancies, we set the percentage of breeding-age males included
in the model’s breeding pool to 100%. All reproduction and survival parameters were
identical between subpopulations, because we currently lack site-specific data on Hawaiian
gallinule vital rates (van Rees et al., 2018a).

Density dependence
Given observations that Hawaiian gallinules are aggressively territorial (Chang, 2010; C van
Rees, pers. obs., 2018), and population models in other rails that took territoriality
into account (Wanless, 2002; Hockey, Wanless & Brandis, 2011), we included density
dependence in our model. We did this using the density dependence function provided by
Vortex, which varies the probability of an individual female breeding in a given year based
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on the population size with respect to carrying capacity (Lacy & Pollak, 2017):

P (N )=

(
P (0)−

[
P (0)−P (K )

(
N
K

)B
])

N
N +A

. (1)

Here P(N ) is the proportion of females that breed when the population size is N , P(K )
is the proportion that breed when the population size has reached carrying capacity, and
P(0) is the proportion of females breeding at low densities. We used a value of 0 for A, the
Allee parameter, because we have seen no evidence for behaviors that would lead to Allee
effects in this species (e.g., no dependence on group defense from predators; large habitats
where finding mates would be difficult), and a value of 20 for the steepness parameter B,
whichmade the function show few density dependent impacts until the population is above
0.8K (80% of carrying capacity). We assumed this high ceiling because the only published
research on Hawaiian gallinules indicates that they are not food limited (DesRochers, SR &
Reed, 2010). This study focused only on plant-based nutrition, which is the majority of the
adult diet. We acknowledge, however, that the degree to which animal prey might possibly
be limiting, especially at certain life stages (e.g., nesting or chick-rearing), has never been
investigated. Empirical evidence for food limitation and food-driven density dependence
in waterbirds appears to be restricted to dabbling ducks in boreal wetlands (e.g., Sjöberg et
al., 2000; Elmberg et al., 2005), which are likely ecologically very different than our system, a
highly cursorial rallid in tropical wetlands. Accordingly, given the best available knowledge
of our system, we assumed that Hawaiian gallinules would likely not experience density
dependent negative feedback until territorial behaviors (e.g., chasing and fighting) began
negatively affecting survival and reproductive success. We set P(0), the baseline probability
of a female breeding in a year at 0.90, and P(K ), the probability of a female breeding under
maximum density dependence, at 0.33. We estimated P(K ) based on our observations that
large family groups in densely populated wetlands typically had at most four non-breeding
adult helpers, of which 2 were likely females assuming a 1:1 sex ratio, which implies that 1
in 3 adult females per territory would be breeding at high density (C van Rees, pers. obs.,
2018).

Dispersal
We estimated dispersal using unidirectional gene flow data from van Rees et al. (2018b)
calculated using software MIGRATE (Beerli & Felsenstein, 1999; Beerli & Felsenstein, 2001).
We estimated the number of migrant individuals per generation (m) from one wetland to
another as m−Mµ, where M is the effective emigration rate between one subpopulation
and another, and µis the mutation rate. We used µ= 10−4, which is a standard mutation
rate for microsatellite dinucleotide repeats (Vigouroux et al., 2002; Marriage et al., 2009).
We then converted the resulting per-generation estimate to per-year using Hawaiian
gallinule generation time (four years) and to a percentage, to determine the percent of
individuals from eachwetlandmoving each year to each of the other wetlands.We used gene
flow estimates to estimate movement rates instead of measures of genetic differentiation
(e.g., FST) because of their ability to provide separate values for different directions between
the same subpopulation pair, and because fewer assumptions were made in converting
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those estimates to actual probabilities of movement (Beerli & Felsenstein, 1999; Beerli
& Felsenstein, 2001; Whitlock & McCauley, 1999). We input these values as a matrix of
pairwise inter-wetland percentage movement rates, included both males and females as
dispersing sexes in the absence of evidence for sex-biased dispersal, and set the age range
for dispersal as one to five years, based on observations frommark-resight studies (van Rees
et al., 2018a). We estimated high percent survival of dispersers (95%) given our current
understanding that gallinules likely disperse at night to avoid predation and fly at higher
altitudes where they are unlikely to be struck by vehicles (van Rees et al., in press).

Catastrophes
Generally, wetlands on O‘ahu are subject to few catastrophic events (typically, hurricanes),
whichwe view as unlikely to have significant effects on survival or reproduction ofHawaiian
gallinules. Observations indicate that adult Hawaiian gallinules are unlikely to be killed
by flood events on O‘ahu (M Silbernagle, USFWS ret., pers. comm., 2017), although
flooding is more common and possibly a greater threat on Kaua‘i (Htun et al., 2016; K
Uyehara, USFWS, pers. comm., 2018) Hawaiian gallinules can re-nest quickly (van Rees
et al., 2018a), indicating that nest and chick losses due to storm-related flooding might
be quickly compensated by repeated breeding attempts. Additionally, Hawaiian gallinules
are aseasonal breeders, apparently breeding year-round (DesRochers et al., 2009), so even
widespread losses at a single time point would represent reproductive loss for only a small
portion of the total annual breeding window, rather than disrupting a limited breeding
season. Three major hurricanes have directly hit the main Hawaiian Islands with enough
proximity to affect O‘ahu in the last 68 years (Central Pacific Hurricane Center, 2017). We
generated a per-year probability using this value (0.04). Because subpopulations are spread
across three different coasts of the island, we estimated that a hurricane could cause total
reproductive failure due to flooding to a maximum of 50% of the population. Due to their
aseasonal breeding habits, however, such a catastrophe would probably eliminate only
about one fourth (25%) of the year’s breeding attempts in affected subpopulations, given
that the combined nesting, incubation, and fledging time of Hawaiian gallinules is around
90 days. This would result in reducing the reproductive output of 50% of the island’s
subpopulations by 25%, so we estimated that a hurricane would reduce reproduction by
12.5% in the year that it struck. We set catastrophes to reduce survival by 5% to account for
the possibility of a small number of individuals being killed by flooding or during dispersal
from flooded areas.

Sensitivity analyses
We followed the sensitivity analysis protocols ofMortensen & Reed (2016), who conducted
sensitivity testing using three approaches: (1) perturbation analysis, (2) relative sensitivity
or elasticity, and (3) the logistic regression approach (Cross & Beissinger, 2001). Their
perturbation approach involves systematically changing a single parameter to see how
much a parameter value can be changed until a population either declines to extinction
or persists throughout the study period (if it is going extinct under baseline conditions).
This method explores potentially extreme parameter values in order to ensure proper
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model behavior (e.g., to ensure that a modeled population can go extinct, or persist,
given parameter values of sufficient magnitude) and to identify the threshold value (or
set of values) at which model behavior changes from extinction to persistence (or vice
versa). This threshold can be used to determine how close current estimated parameter
values are to a major change in population behavior, and whether management or future
conditions could possibly result in a shift between extinction and persistence We used
perturbation analyses of subpopulation carrying capacity and dispersal rates as a test of two
competing management strategies, wetland management and connectivity conservation, to
assess their relative value as strategies for decreasing island population and subpopulation
extirpation risk. In particular, we were interested in whether extirpation risk could be
altered dramatically with realistic shifts in these parameters, or if the changes required
are beyond the capability of current management. The logistic regression approach uses
logistic regression to examine the relationship between the value of a given parameter and
the probability of extinction given a large number of samples of possible parameter values
and a binary outcome of extinct or not extinct at the end of the study period (McCarthy,
Burgman & Ferson, 1995; Cross & Beissinger, 2001). Notably, each of these methods of
sensitivity analysis offers a different advantage and yields different information about the
model (Mortensen & Reed, 2016; Manlik, Lacy & Sherwin, 2017). The principle advantage
of elasticity analysis is its comparability to other studies as a widely-used metric, while
perturbation analysis reveals the points at which model behavior changes across parameter
values, and provides perspective on whether system shifts (e.g., extinction vs. persistence)
are feasible with realistic parameter values. The logistic regression approach allows for
the examination of each parameter’s effect on model outcome while taking the effects of
all others into account (Cross & Beissinger, 2001; Mortensen & Reed, 2016). We performed
sensitivity analyses on all subpopulations separately, and on the entire O‘ahu population
combined.

We performed perturbation analyses, following Reed, Murphy & Brussard (1998), on
mean and variance of juvenile and adult mortality, percentage of females breeding in a
given year, carrying capacity, mean brood size, and dispersal rate (Table 2). We varied both
survival parameters from 0-1 in increments of 0.1, and percentage of females breeding from
0-100% in increments of 10%. In order to simulate habitat management, we varied K from
5-100 in increments of 5 for all subpopulations that had a probability of subpopulation
extirpation >0 in our baseline model, which included all populations other than the
Windward and Kahuku complexes (Fig. 1). We did not increase the carrying capacities of
subpopulations with∼0% extirpation risk under baseline conditions, because no changes in
carrying capacity could further reduce extirpation risk in these subpopulations. We varied
the distribution of brood sizes (which we used as a proxy for reproductive success) based
on a normal distribution with a mean that we varied between 1 and 8 chicks (standard
deviation of 1), encompassing the range of observed values on O‘ahu (van Rees et al.,
2018a), and changed mean brood size by 0.5 chicks at a time. We changed dispersal rate
by applying a multiplier across all inter-wetland movement rates, thus keeping relative
dispersal rates the same and increasing overall movement and population connectivity on
O‘ahu. We varied this multiplier from 2 to 100, effectively varying annual probability of
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individual dispersal by two orders of magnitude, but maintaining relative rates. We used
this broad range to reflect current uncertainty about the extent to which connectivity might
be altered by management, and uncertainty over the true mutation rate of microsatellite
markers used to estimate per-generation movement rates. Each scenario was run for 1000
iterations and 160 years.

We conducted elasticity analysis by changing each parameter by ±10% of its mean
value, and dividing the difference between the stochastic lambda (λ) of positive and
negative scenarios by 0.2 times the stochastic lambda of the baseline scenario, according
to the equation (λ+−λ−)/(0.2∗λ0) (Cooper, Walters & Priddy, 2002), where λ+ and λ−
are the positive and negative scenarios, respectively, and λ0 is the baseline scenario. We
calculated stochastic lambda using the stochastic instantaneous growth rate (r) provided by
Vortex for each scenario (using λ= er ). We assessed the relative sensitivity of our modeled
populations to mean and variation of juvenile and adult mortality, the distribution of
number of broods per female per year, the average brood size, the percentage of breeding-
aged females breeding in a year, the carrying capacity K of each subpopulation, and
population connectivity (Table 2). We varied the distribution of the number of broods
per year by subtracting 10% of the proportion of brood numbers falling in each category
(zero, one, two, three, and four broods per year) and adding it either to the next highest
or lowest category, depending on the direction being tested. Accordingly, the distribution
was shifted to higher or lower values by 10%. We called this parameter ‘‘distribution of no.
broods per year’’, which represents the probability distribution of the number of broods
per year a simulated pair might have (i.e., the probability of having zero, one, two, three,
or four successful nests) given that they attempted to breed. In our sensitivity analysis
for this parameter, we changed the distribution by adjusting the frequency of higher vs.
lower numbers of broods per year. We changed the distribution of brood sizes per year
by modeling brood size as a normal distribution, and adding or subtracting 10% from
the mean value. We altered dispersal rate by adjusting the overall dispersal multiplier by
±10%. We used Cooper, Walters & Priddy (2002)’s rule of thumb for assessing the relative
sensitivity of model outcomes to changes in parameter values, whereby any parameter
with a sensitivity value of >1 or <−1 was considered to have a disproportionate effect on
population growth rate.

For logistic regression analysis, we used LatinHypercube sampling inVortex to randomly
generate parameter sets selected from uniform distributions that we determined using
observed and feasible values for Hawaiian gallinules. We ran 10 iterations for each
parameter set, resulting in 10,000 total simulations for regression analysis. We then
performed logistic regression using the ‘car’ package (Fox & Weisberg, 2011) in R 3.2.2
(R Core Team, 2015), treating extirpation (or persistence) at 160 years as the dependent
variable. We conducted logistic regression using carrying capacity, mean juvenile and adult
mortality, environmental variation in juvenile and adult mortality, percentage of females
breeding, and connectivity as explanatory variables. Each parameter was varied according
to a uniform distribution, bounded where appropriate based on knowledge of feasible
values. We varied mean juvenile mortality rate from 0–1 because of our extremely poor
knowledge of the parameter and its large apparent variation in the field, and adult mortality
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from 0.02–0.65, based on the potential range of annual adult apparent mortality estimates
found in van Rees et al. (2018a). We varied the dispersal multiplier from 2 to 80, again
reflecting poor knowledge of possible values (Table 2). We combined these parameters as
predictor variables in a single generalized linear model with probability of extirpation (PE)
as the response variable. We compared the explanatory value of different parameters using
their standardized regression coefficients, calculated by dividing the regression coefficient
by its standard error.

Climate scenarios
We used readily available spatial data on sea level rise and maps of the location and
extent of modeled Hawaiian gallinule habitats to estimate the reduction in habitat area
expected from future sea level rise on O‘ahu. Wherever existing habitat features overlapped
with future areas of inundation (indicated by the distribution of future inundated areas),
we counted that area as habitat loss. We assumed that reductions in habitat would
correspond with a proportional reduction in carrying capacity; in other words, that
gallinule population densities are uniform throughout their habitats. The spatial data that
we used to approximate sea level rise on O‘ahu were created by the National Oceanic and
Atmospheric Administration’s (NOAA) Office of Coastal Management, and are available
through their sea level rise data portal (https://coast.noaa.gov/slrdata/). These sea level
rise projections do not account for the impacts of erosion, island subsidence, wetland
migration through accretion, or human management for sea level rise mitigation, but
represent a baseline model of potential habitat losses due to inundation. We used these
models to generate an estimate of the potential magnitude of reduction of gallinule habitat
and carrying capacity on O‘ahu under projected sea level rise scenarios, and to gauge the
relative threat of sea level rise compared to other potential factors affecting extirpation risk
in this taxon.

We estimated changes in habitat area (carrying capacity) at two scenarios, 0.914 m (3
feet, hereafter ∼1 m) and 1.829 m (six feet, hereafter ∼2 m), given a limited number of
scenarios for which data were available on the NOAA sea level rise portal. These values
correspond approximately to the range of sea level rise projected by Vermeer & Rahmstorf
(2009) for the year 2100, which other researchers have found to be more predictively robust
than the IPCC (2007) projections (Rahmstorf, Perrette & Vermeer, 2011;Kane et al., 2015a).
Notably, Vermeer and Rahmstorf’s (2009) estimates are only for a 100-year projection,
so we chose the highest available sea level rise value from available NOAA maps (1.829
m) for our 160 year time frame, representing a highly conservative estimate. Our smaller
value (0.914 m) corresponds to a conservative value for an 80-year projection (Vermeer &
Rahmstorf, 2009).

We combined our own maps of gallinule habitats on O‘ahu with data from the U.S. Fish
and Wildlife Service’s National Wetlands Inventory (USFWS, 2017) to generate outlines
of the habitats supporting all subpopulations modeled in this study. We converted these
polygon maps to 3m resolution rasters using the Polygon to Raster tool in ArcMap 10.4.1
(ESRI, 2012), and for each subpopulation, added this map to one of the two sea level rise
maps using the raster calculator. We then calculated the area of overlap to estimate the
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Table 3 Scenarios for population viability analysis tested in our population projection model of
Hawaiian gallinules on O’ahu. Restoration/creation of habitat involved hypothetical management
options increasing carrying capacity at small and medium wetlands, and connectivity involved increasing
overall connectivity by increasing the multiplier of baseline dispersal rates between wetlands. The two
sea level rise scenarios have reduced K over time according to an equation approximating common
projections of sea level rise in 80 and 160 years, respectively. Parameter change represents the amount
that each parameter was altered for a given scenario. In the case of sea level rise scenarios, this value
represents the maximum reduction in K experienced during the scenario, achieved at the end of the
scenario (represented by L in Eq. (1)).

Scenario Parameter change Time frame (years)

Baseline N/A 160
Restoration/creation As per Table 2 160
Connectivity As per Table 2 160
Sea level rise (∼1 m, 80 year) 80

Windward Complex 0.94∗ K a

Kahuku Complex 0.83∗K a

Pearl Harbor Complex 0. 89∗ K a

Sea level rise (∼2 m, 160 year) 160
Windward Complex 0.46∗ K a

Kahuku Complex 0.49∗ K a

Turtle Bay 0.01∗ K a

Pearl Harbor Complex 0.00∗ K a

Notes.
aDistributed according to Eq. (1) over the total time frame.

proportion of habitat pixels that would be inundated with salt water. Using this value as an
ending carrying capacity at either 80 or 160 years, we designed a power function of the form
aXb to approximate the shape of the sea level rise curve depicted in IPCC (2007) andVermeer
& Rahmstorf (2009). We applied this to the carrying capacity of affected populations in
Vortex to approximate the change in carrying capacity across time according to (2):

Kt =K0−

[
K0 ∗L

(
at b

Y

)]
, (2)

where Kt is carrying capacity at time t, K 0 is the original carrying capacity, L is the total
proportion of habitat area lost at year 80 or 160 (depending on the simulation), t is the
current year,Y is the last year of the simulation (80 or 160), and a and b are shape parameters
used to approximate the pattern of projected global sea level rise. We determined values of
a and b separately for 80 year and 160 year scenarios to maintain curve shape while passing
through a different point at t = 80 or t = 160 (for 80 years, a= 0.06 and b= 1.613; for
160 years, a= 0.02 and b= 1.7385). We ran sea level rise scenarios using baseline model
parameters. Carrying capacities of individual subpopulations were altered independently
according to separate analyses of their potential area loss. Both scenarios were run with
1,000 iterations, with the∼1 m scenario projecting for 80 years, and the∼2 m scenario for
160 years (Table 3).
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Table 4 Comparison of population viability of Hawaiian gallinule overall island population and subpopulations on O’ahu across management
and sea-level rise scenarios. Probability of extirpation is the probability that a given (sub) population was extirpated over all simulations of a sce-
nario, and mean r is the mean stochastic growth rate of a population for the scenario. The mean ending population size is the mean number of indi-
viduals left in a population when that population was extant at the end of a simulation, and the percent of starting population at ending time is the
proportion of the starting population represented by the mean ending population size.

Scenario Probability of
extinction

Mean r (SD) Mean ending
population size (SD)

Percent of starting
population at ending time

Baseline 0.0 0.25 (0.38) 336 (46) 97%
Windward Complex 0.0 0.24 (0.51) 171 (25) 115%
Kahuku Complex 0.0 0.23 (0.52) 96 (17) 115%
Pearl Harbor Complex 0.05 0.18 (0.51) 36 (11) 111%
Turtle Bay 0.08 0.18 (0.51) 33 (11) 109%
Waimea Valley 0.79 0.16 (0.51) 22 (10) 100%
Klipper 0.99 0.11 (0.55) 5 (5) 37%
Lotus Farm 0.99 0.09 (0.55) 6 (4) 43%
Keawawa 0.99 0.12 (0.58) 3 (1) 64%

Sea level rise (∼1 m, 80 year) 0.0 0.26 (0.37) 311 (35) 89%
Windward Complex 0.0 0.24 (0.50) 160 (23) 107%
Kahuku Complex 0.0 0.23 (0.51) 80 (13) 95%
Pearl Harbor Complex 0.06 0.19 (0.51) 31 (7) 96%
Turtle Bay 0.00 0.19 (0.51) 32 (7) 106%
Waimea Valley 0.69 0.16 (0.51) 20 (7) 91%
Klipper 0.99 0.09 (0.54) 9 (7) 75%
Lotus Farm 0.99 0.07 (0.54) 5 (3) 35%
Keawawa 0.99 0.10 (0.56) 3 (2) 75%

Sea level rise (∼2 m, 160 year) 0.0 0.25 (0.38) 150 (18) 43%
Windward complex 0.0 0.24 (0.50) 90 (14) 60%
Kahuku Complex 0.0 0.23 (0.51) 53 (9) 63%
Pearl Harbor Complex 0.06 0.16 (0.51) 5 (2) 16%
Turtle Bay 0.00 0.16 (0.51) 5 (2) 17%
Waimea Valley 0.69 0.16 (0.51) 22 (10) 100%
Klipper 0.99 0.10 (0.55) 9 (7) 75%
Lotus Farm 0.99 0.09 (0.55) 3 (1) 21%
Keawawa 0.99 0.10 (0.56) 2 (0) 50%

RESULTS
Model projections
Our baseline model showed that O‘ahu’s island-wide Hawaiian gallinule population
has a high likelihood of persistence over the 160 year time frame (Table 4). Probability of
extirpation varied strongly between subpopulations, however, with the large subpopulations
having probabilities near 0, and the small populations having probabilities near 1.0. Among
these small subpopulations, median times to extirpation ranged from four to seven years
andmean times from five to 8.9 years. The longest times to extinction among any iterations
for small populations were on the order of 50 years. Medium subpopulations with nonzero
probabilities of extirpation had mean times to extirpation ranging from 55.5–87.7 years;
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the median time to extirpation for Waimea valley was 53 years. The extirpation of small
subpopulations appears to drive the very slight decreases in mean estimated island-wide
population size at year 160, though average increases in population size in medium and
large populations compensate for much of this loss. The stochastic population growth rate
(r) for the total island population was 0.25, indicating rapid growth, although this ranged
from 0.09 to 0.24 in different subpopulations, where larger subpopulations exhibited higher
rates.

Model sensitivity
Because subpopulations of similar sizes showed similar trends in stochastic population
growth rate and probability of extirpation, we do not show results for all subpopulations,
but instead show representative examples of each size class (Figs. 2–5). Perturbation
analysis showed that large and medium subpopulations transitioned rapidly from low
probabilities of extirpation to high (P =∼1.0) probabilities when juvenile mortality rose
above 80% (Fig. 2). Perturbation of adult mortality showed a transition point for large
subpopulations from low to high probability of extirpation at 50% mortality, although
this point shifted toward lower values in medium-sized subpopulations (Fig. 3). Small
subpopulations’ extirpation probabilities remained at 1.0 for all values of juvenile and
adult survival. The range of parameter uncertainty for adult survival encompassed values
that were meaningful for medium-sized subpopulations (i.e., there were large differences
in probability of extirpation across values ±1 SD from our parameter estimate), but this
was not the case for large or small subpopulations.

Large subpopulations and the overall island population transitioned from near 0
extirpation probability to near 1.0 extirpation probability when the percent of females
breeding decreased below 30% (Fig. S4). This transition was more gradual for medium
subpopulations, which increased steadily from about 70% of females breeding, reaching an
extirpation probability near 1.0 at 30%. For mean brood size, large subpopulations and the
overall island population had extirpation probabilities near 1.0 when mean brood size was
zero, but decreased to an extirpation probability of ∼0.0 when mean brood sizes were one
or higher (Fig. S5). Medium-sized subpopulations had a probability of extirpation near 1.0
for mean brood sizes of zero and one, but declined to∼0.25 with a mean brood size of two,
and remained near zero at all higher values. Extirpation probability of small populations
remained at 1.0 for all simulated values of percent of females breeding and brood size.

Our investigation of management scenarios in which connectivity was increased showed
that with large (e.g., 10 to 25 times) increases in the dispersal multiplier, the extirpation
risk of small subpopulations could be reduced by 40–75% (Fig. 4), but that it had little to
no effect the extirpation risk of medium and large subpopulations, or the overall island
population. The probability of extirpation of the two smallest subpopulations, Klipper
and Keawawa, declined rapidly with increases of two to 20 times current dispersal, and
showed slower declines after that point. For medium-sized subpopulations, extirpation risk
declined sharply from two to 12 times detected dispersal rates, at which point probability
of extirpation was near zero. For the habitat management scenario, perturbation of the
carrying capacity of small and medium subpopulations showed consistently that carrying

van Rees and Reed (2018), PeerJ, DOI 10.7717/peerj.4990 16/36

https://peerj.com
http://dx.doi.org/10.7717/peerj.4990#supp-5
http://dx.doi.org/10.7717/peerj.4990#supp-6
http://dx.doi.org/10.7717/peerj.4990


Figure 2 Perturbation analysis of juvenile mortality on probability of extirpation for the O‘ahu pop-
ulation andWindward, Pearl Harbor, and Keawawa subpopulations of Hawaiian gallinules. Perturba-
tion analysis examining the sensitivity of extirpation probability among Hawaiian gallinules populations
on O‘ahu to varying levels of juvenile mortality. Results are shown for the overall island population (A)
and three wetlands whose sensitivity is representative of other wetlands of their size class (in descending
size from B–D). Points represent tested parameter values.

Full-size DOI: 10.7717/peerj.4990/fig-2
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Figure 3 Perturbation analysis of adult mortality on probability of extirpation for the O‘ahu popu-
lation andWindward, Pearl Harbor, and Keawawa subpopulations of Hawaiian gallinules. Perturba-
tion analysis examining the sensitivity of extirpation probability among Hawaiian gallinule populations
on O‘ahu to varying levels of adult mortality. Results are shown for the overall island population (A) and
three wetlands whose sensitivity is representative of other wetlands of their size class (in descending size
from B–D). The dashed vertical line and shaded boxes indicate the mean survival estimate± SD from Van
Rees et al. (2018a).

Full-size DOI: 10.7717/peerj.4990/fig-3
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Figure 4 Perturbation analysis of dispersal rate (connectivity) on probability of extirpation for the
O‘ahu population and the island’s four smallest subpopulations of Hawaiian gallinules. Perturbation
analysis examining the sensitivity of extirpation probability among Hawaiian gallinules populations on
O‘ahu to varying levels of inter-wetland dispersal rates. This perturbation analysis represents the range of
impacts possible under management scenarios in which connectivity among subpopulations is increased.
Results are shown for the overall island population (A) and the four smallest subpopulations, in descend-
ing order (B–E). Points represent tested parameter values.

Full-size DOI: 10.7717/peerj.4990/fig-4

capacities above 15 individuals led to rapid decline in extirpation probability, reaching 0
by around ∼30 individuals (Fig. 5).

Conventional, relative sensitivity analysis showed that none of the tested vital rates
had a disproportionate (>1.0) effect on stochastic annual population growth rate (λ).
Juvenile mortality had the largest effect on the island-wide population persistence (−0.61;
Table 5), though its effects were smaller for small subpopulations (e.g.,−0.46 for Klipper).
Mean brood size (a proxy for reproductive success, including nest failure and hatch
rates) and percent females breeding had the next largest effects, with 0.30 and 0.23,
respectively, with greater sensitivity to brood size among small subpopulations, and
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Figure 5 Perturbation analysis of carrying capacity on probability of extirpation for the O‘ahu popu-
lation and the island’s three smallest subpopulations of Hawaiian gallinules. Carrying capacity (K ) val-
ues simulate hypothetical changes to carrying capacity due to habitat management. Results are shown for
the overall island population (A) and four wetlands whose sensitivity is representative of other wetlands of
their size class (in descending size B–E). Points represent tested parameter values.

Full-size DOI: 10.7717/peerj.4990/fig-5

greater sensitivity to percentage of females breeding among large subpopulations. Adult
mortality had a moderate effect on population growth rate (−0.17), which was greater for
smaller subpopulations (e.g., −0.30 for Keawawa and −0.54 for Lotus Farm). Dispersal
rate had a negligible effect on λ for the island-wide population, but small populations
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Table 5 Sensitivity of probability of extinction (PE) and stochastic population growth (λ) of the over-
all population of Hawaiian gallinules (Gallinula galeata sandvicensis) on O’ahu, Hawai’i to changes
in various model parameters. ‘‘Dist’n of no. broods per year’’ represents the probability distribution of
brood sizes (zero, one, two, three, and four) for individuals in the simulation. The starting probability dis-
tribution was based on a binomial distribution using observed values for nest success and the maximum
number of broods per year (see Methods). Population growth was most sensitive to mean juvenile mor-
tality and mean brood size, while PE was most sensitive to mean juvenile and adult mortality, mean brood
size, and variance in adult mortality.

Parameter Sensitivity to λ Sensitivity to PE

Mean juvenile mortality −0.61 40.47
Variance in juvenile mortality 0.01 10.54
Mean adult mortality −0.17 38.15
Variance in adult mortality 0.00 12.69
Dist’n of no. broods per year 0.12 –
Mean brood size 0.30 −30.85
Percent females breeding 0.23 –
Carrying capacity 0.02 −5.28
Dispersal rate 0.00 −3.83

showed sensitivities up to 0.14. Environmental variation in adult and juvenile mortality
and carrying capacity both also had little effect on λ, with slightly stronger effects (e.g.,
0.03–0.06) on small subpopulations. Our logistic regression analysis showed that mean
juvenile mortality, mean adult mortality, and mean brood size accounted for the most
variability in observed extirpation probability of the overall island population (Table 5).
Variance in juvenile mortality accounted for a greater proportion of variability than did
variance in adult mortality, and both carrying capacity and dispersal rate explained very
little variation. The importance of dispersal and carrying capacity was much larger for
small subpopulations, with standardized coefficients as much as seven times larger than
those for the island-wide population (e.g., Keawawa,−21.73) for dispersal, and three times
higher for carrying capacity. The p values for all covariates in our logistic regression model
were statistically significant (p< 0.0001 in all cases).

Sea level rise scenarios
Our Hawaiian gallinule habitat maps encompassed ∼430 ha of wetland habitat on O‘ahu.
In the 80 year (∼1 m sea level rise) scenario, a total of 36 ha of wetland habitat (8% of total)
are predicted to be lost due to salt water inundation, with a sharp increase in the 160 year
(∼2 m sea level rise) scenario, in which 239 ha (56%) are predicted to be lost. Due to their
landscape context, four wetlands (Keawawa, Klipper, Lotus Farm, Waimea Valley) were
unaffected by projected sea level rise in either scenario, and Turtle Bay was unaffected in
the 80-year scenario. In contrast, the Windward, Kahuku, and Pearl Harbor Complexes are
predicted to lose 5.6%, 17%, and 11%, respectively, of their total carrying capacity in the
80-year scenario. In the 160 year and∼2 m sea level rise scenario, the Windward Complex
is predicted to lose 54% of its carrying capacity, the Kahuku Complex 51% (Fig. 6), the
Pearl Harbor Complex ∼100%, and Turtle Bay 99%.
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Figure 6 Spatial representation of potential Hawaiian gallinule habitat loss due to sea level rise over
80-year and 160-year time scales at the Kahuku wetland complex on the North Shore of O’ahu. The lo-
cation of the wetland complex is shown in (A), and current habitat distribution is displayed in (B). Light
gray areas indicate current Hawaiian gallinule habitat, dark gray indicates areas inundated with seawater
(in (B), this represents current coastline). Black areas indicate current Hawaiian gallinule habitat lost due
to seawater inundation. (C)∼17% of habitat in the Kahuku complex is lost with∼1 m sea level rise (mod-
eled here as 80 years). (D)>50%, including the areas of highest gallinule density, may be inundated with
∼2 m sea level rise (modeled here as 160 years).

Full-size DOI: 10.7717/peerj.4990/fig-6

Simulated island-wide gallinule populations on O‘ahu had 0.0 probability of extirpation
under both our 80-year and 160-year sea level rise scenarios, though the mean population
size at the end of the simulation was 11% lower than the starting size at 80 years, and 57%
lower in 160 years (Table 4). Probabilities of subpopulation extirpations were not changed
by sea level rise at 80 years, although the ending population sizes of the three largest
subpopulations were smaller than in the baseline scenario. Pearl Harbor and Turtle Bay
had population declines in excess of 80% over the 160-year (∼2 m rise) timeframe, while
the Windward and Kahuku complexes showed declines of 40% and 37%, respectively.
The probabilities of extirpation of the Windward and Kahuku complexes remained
approximately 0.0 after 160 years, but they increased dramatically for both Pearl Harbor
(from 0.05 to 0.77) and Turtle bay (from 0.08 to 0.80). Small populations were equally
likely to be extirpated during either sea level rise scenario as in the baseline scenario.
Stochastic population growth rates showed little change between climate change scenarios,
both for the overall island population and individual subpopulations.
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DISCUSSION
Wedeveloped a spatially explicit, individually based,multi-population projectionmodel for
the Hawaiian gallinule on O‘ahu and assessed the relative effects of potential management
strategies (via sensitivity analyses) and sea level rise scenarios on extirpation risk. This
study contributes to a growing and important body of research on the population-level
impacts of environmental change on the viability of wildlife populations (Johst et al., 2011).
Population projections should generally be cautiously interpreted and used as tools for
assessing relative risks rather than making absolute predictions (Beissinger & Westphal,
1998). Consequently, this study provides baseline estimates of the relative sensitivity of
O‘ahu’s Hawaiian gallinule population to different management strategies and threats,
using the best information currently available.

Under our baseline scenario, O‘ahu’s Hawaiian gallinule population had a high
probability of persistence (extirpation probability of ∼0.0) over 160 years, with a positive
stochastic growth rate, and slight population decline due to the extirpation of small
populations. The growth rate emerging from our model parameter values indicates that
the Hawaiian gallinule’s reproductive capacity makes them capable of quickly responding
to habitat management and other improvements of local carrying capacity. In contrast,
the high extirpation probabilities of the smaller subpopulations are of concern for the
long-term viability of the population under present conditions. van Rees et al. (2018b)
found that two of the island’s smallest subpopulations are also home to some of the most
genetically distinct birds on the island, with several private alleles. The loss of these small
populations would thus come with considerable losses in overall genetic variability for the
subspecies. Given our model findings that extirpation of these subpopulations is highly
likely within less than 50 years in the absence of management or increased dispersal, the loss
of these small subpopulations and their unique contribution to the subspecies’ remaining
genetic diversity seems likely. Our projections emphasize that island-wide persistence
is largely dependent on the fate of several large- and medium-sized subpopulations on
the island, because all small subpopulations and some medium-sized subpopulations
had high probabilities of extirpation. An additional risk factor for the island’s smallest
subpopulations (Keawawa and Klipper) is uncompensated emigration (Fahrig & Merriam,
1985), because estimated gene flow rates out of these subpopulations were much higher
than rates into them (van Rees et al., 2018b), making emigration much more likely than
immigration in our simulation. Such emigration, combined with stochasticity is likely
what makes these subpopulations act as sinks in our simulation (Gyllenberg & Hanski,
1992; Lacy, 2000). Although these factors may play a role in actual population dynamics
on the island, the degree to which they are affected by site-specific vital rates and dispersal
probabilities is unknown.

Very little is known about the movement rates of Hawaiian gallinules. We made our
estimates of dispersal between subpopulations based on gene flow data, which required
us to estimate the mutation rates of microsatellite markers used by van Rees et al. (2018b).
Consequently, after first-year survival, movement between subpopulations is the most
uncertain parameter in our model. Additionally, dispersal rates estimated using gene flow
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models only detect those movements that led to breeding, and thus underestimate to
an unknown degree the actual movement rates amongst O‘ahu’s subpopulations, which
might have other demographic implications. Empirically based simulation models of
other avian habitat specialists have shown that, even where long distance dispersal is rare,
mortality rates during dispersal can have significant impacts on population projections
(e.g., Cooper, Walters & Priddy, 2002). The potential for sex-biased dispersal rates is also
of particular interest given the small size of many of O‘ahu’s subpopulations and the
subsequent importance of stochasticity for their persistence. For example, Schiegg, Walters
& Priddy’s (2002) spatially explicit, individual-based populationmodel of theRed-cockaded
Woodpecker (Picoides borealis) showed strong dispersal effects on population growth rate
driven by sex-specific differences in dispersal tendency. In their simulations, low dispersal
success of females resulted in a large number of solitary, unmated males, thus reducing
population growth rate.Where one sex ismore likely to disperse, ormore likely to disperse a
greater distance, biased sex ratios will occur in isolated populations, potentially impacting
individual fecundity and population growth rate (Milner-Gulland et al., 2003; Gerber,
2006). We also do not know what motivates dispersal in Hawaiian gallinules, whether it is
movement away from crowded sites or towards higher habitat quality (e.g., Doerr, Doerr
& Jenkins, 2006; Pfluger & Balkenhol, 2014). Thus, our currently poor understanding of
dispersal in Hawaiian gallinules would be improved not only by a general understanding
of the frequency of between-wetland dispersal on O‘ahu, but also of sex-specific rates and
mortality risk of dispersing individuals. Because sexes cannot be distinguished in the field,
it will likely require assessments using genetic markers.

Several aspects of our vital rate estimates are worth careful examination. First, the
vital rate estimates used in our baseline model come almost exclusively from managed
populations (van Rees et al., 2018a), and these were applied to all subpopulations. However,
we believe that these values are likely to be optimistic for unmanaged habitats, where
habitat improvements (vegetation management and predator removal; VanderWerf, 2012;
Underwood et al., 2013) are not occurring. The population projection models in this paper
may thus fail to capture important differences in reproductive and survival parameters
between subpopulations that would lead to reduced population sizes and persistence
likelihoods. In addition, if the subspecies is delisted andmanagement reduced, we anticipate
extirpation risk to increase. Our vital rate data also came from a suite of short-term (1-5
year) studies spread across a 35-year time period (1979–2014), and accordinglymay contain
information from different phases of the Hawaiian gallinule’s population trajectory on
O‘ahu over this time period (Reed et al., 2011), introducing variation that may not be
typical of current conditions on the island. van Rees et al. (2018a) also stress that poor
detection rates of Hawaiian gallinules likely caused us to underestimate longevity and
mean annual adult survival. In using their less conservative estimate of survival, we have
attempted to compensate for this potential bias.

Our population model included density-dependent feedbacks despite having only
indirect evidence for their influence on gallinule populations. It has been shown that
incorporating density dependence into population projection models reduces extinction
risk by creating compensatory mechanisms that tend to return populations from declines
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(Ginzburg, Ferson & Akçakaya, 1990). We acknowledge that inclusion of this phenomenon
may produce optimistic projections in our models.

Finally, an important consideration in our results is that our simulations assessed
population viability only for gallinule populations on the island of O‘ahu, which represents
roughly 50% of their range in area but possibly <30% of the entire statewide population
(Hawaii biannual waterbird survey, 2016–2017, unpublished data).We did not expand
the assessment to include Kaua’i because of our limited understanding of the vital rates,
distribution, population connectivity, and abundance of Hawaiian gallinules on Kaua‘i.
While the distribution of Hawaiian gallinules on O‘ahu is discrete and well-studied due
to a long history of habitat loss and fragmentation on the island (van Rees & Reed, 2014;
van Rees et al., 2018b), habitats and subpopulations are not as clearly delineated on Kaua‘i,
and their connectivity and movement rates are unstudied. Applying the present model to
a single-population scenario (lacking information on substructure) for Kaua‘i would be
largely uninformative, given that the island-wide population is very large (in excess of 800
individuals; K Uyehara, USFWS, pers. comm., 2018) and that we would be unable to model
the potential for subpopulation extirpation. In addition to having different vital rates from
the O‘ahu populations (van Rees et al., 2018a), gallinules on Kaua‘i face a different suite of
potential threats, being more at risk of flooding and with higher instances of botulism, but
in the absence of high densities of mongoose Herpestes auropunctatus (Htun et al., 2016;
van Rees et al., 2018a). These differences necessitate a separate population viability analysis
for the island of Kaua‘i, which will not be possible until the distribution and connectivity
of gallinule subpopulations on the island are better understood.

Sea level rise
We found that a large portion of current gallinule habitat is expected to disappear due
to sea-level rise. Based on our population model, however, this reduced carrying capacity
is not expected to cause extirpation of the overall island population. There are reasons,
however, to believe that our assessment is conservative. The ∼2m sea level rise scenario
that we chose for our 160 year projection is probably a substantial underestimate of sea
level by 2180 (∼160 years from present). Additionally, we did not take into account habitat
degradation through salinization. Coastal freshwater wetlands on O‘ahu could be salinized
either by storm surge or by saltwater intrusion in underlying basal aquifers (Kane et al.,
2015), reducing their habitat value to gallinules. The impacts of salinization with sea level
rise could thus be quite severe and drive reductions in carrying capacity well beyond the
spatial extent modeled in our projections. Finally, our assumption that gallinule densities
are uniform across habitats can be reasonably challenged. We have found that many of the
areas most threatened by sea level rise are also those with the highest population densities
of Hawaiian gallinules (van Rees & Reed, 2016–2017, unpublished data). For example,
Hamakua Marsh (part of the Windward Complex) and James Campbell National Wildlife
Refuge (part of the Kahuku Complex) account for 51% and 76% of the carrying capacities
of their respective wetland complexes, and will be the first parts of their respective wetland
complexes lost to sea level rise. The effects of climate change on gallinule carrying capacity,
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and therefore on extirpation risk, therefore, is likely to be greater than that estimated in
this paper.

Wetland migration due to soil accretion is a potential mitigating effect against habitat
loss for some coastal wetland types, in which wetland distributions shift inland and upland
with rising sea levels (e.g., Traill et al., 2011). This phenomenon may have little benefit
on O‘ahu, where most areas farther inland from wetlands are either densely developed or
feature dramatically sloped topography that transitions directly from the coastal plain into
mountains, leaving little room for wetland migration. Additionally, soil accretion takes
place after inundation, and is thus of value primarily for salt water wetland habitats (Kirwan
et al., 2016). The persistence of the O‘ahu’s two major strongholds for Hawaiian gallinules,
the Windward and Kahuku complexes, may depend strongly on the migration of wetland
habitats to higher elevations and increased management of wetland habitats within those
regions that are less vulnerable to rising sea levels. Both Kawainui marsh in the Windward
Complex and the Shrimp Farms in the Kahuku Complex are positioned inland and adjacent
to high-density managed sites from which gallinules might easily emigrate under sea level
rise. Management (which is currently limited at both sites) to increase carrying capacity at
these higher-elevation sites could create habitat capable of supporting a large portion of the
gallinules currently found in their respective wetland complexes. Similar inland wetland
alternatives are not available for the Pearl Harbor Complex or Turtle Bay, meaning that
more intensive and perhaps economically infeasible measures like habitat creation and
land acquisition might be necessary to mitigate sea level rise impacts there.

The high population growth capacity of Hawaiian gallinules implies that management
strategies that increase carrying capacity of existing wetlands that may be less threatened
by climate change (on O‘ahu or other islands) may compensate for anticipated losses at
sites with greater risk. Such restoration, (e.g., Kawainui marsh, US Army Corp of Engineers
(USACE), 2008), and potential creation of newhabitats would require a solid understanding
of the habitat requirements of Hawaiian gallinules. Unfortunately, no quantitative data
on habitat correlates of gallinule abundance or breeding success have been published, so a
better understanding of determinants of habitat quality may be a research priority for this
subspecies.

Sensitivity analysis and management strategies
Both conventional and regression sensitivity analyses highlighted the importance of
juvenile survival for population persistence in Hawaiian gallinules. This finding is especially
relevant to management, given the general belief that exotic invasive predators have larger
impacts on juvenile than adult mortality, and that predator management is one of the
longest-implemented and logistically feasible management strategies for this subspecies
(VanderWerf, 2012). Reproductive output and mean adult mortality were also shown to
be important, and they are affected by the same management strategies. Consequently, the
prevailing emphasis on predator control in current management plans for this subspecies
should be considered highly justified in light of our population viability analysis. The high
importance and uncertainty of our estimates of juvenile mortality make it a top priority
for future field research on Hawaiian gallinules. Related to this, however, are unanswered
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questions pertaining to predator control to protect Hawaiian gallinules and other endemic
waterbirds. Notably, which predators are having the largest impacts and at what life
stage, how these effects differ across wetlands, islands, and years, and which management
strategies are most effective at reducing the impacts of these predators. The management
of endangered and introduced invasive species is constrained by finite budgets, so more
applied research will be necessary to clarify the exact management implications of our
results. It is additionally unclear if introduced predators are the main driver of juvenile
mortality. Although this notion is supported by numerous anecdotal observations (C van
Rees, pers. obs., 2018, ANadig, USFWS, pers. comm., 2016) and prevailing beliefs (USFWS,
2011; VanderWerf, 2012) on O‘ahu, it is unsupported by empirical evidence. Accounts of
emaciated chicks on Kaua‘i (K Uyehara, pers. obs., 2018) might imply that access to food
also influences chick and juvenile survival rates. Understanding the mechanisms driving
survival in these early life stages is essential to an effective management solution to low
survival rates.

Our sensitivity analysis of mean brood size and the distribution of number of broods
per year showed that the processes intrinsic to those parameters (nest success and hatch
rates) have an important but secondary impact on the viability of Hawaiian gallinule
populations on O’ahu. The importance of nest success and hatch rate for population
viability is sensible, being that they represent a key stage in the gallinule’s reproductive
cycle, but other idiosyncrasies of the gallinule’s reproductive biology may be reducing its
importance. The readiness with which Hawaiian gallinules (and congeners) may limit the
impact of individual nest failures (van Rees et al., 2018a), and a year-round nesting season
indicates that multiple broods are easily possible in any given year. Accordingly, birds may
continue attempting to breed until a nest is successful (as has been observed in one closely
monitored pair, C van Rees, pers. obs., 2018), at which point juvenile survival becomes the
final determinant of reproductive success.

The lower importance of dispersal rates on population growth rate and extirpation risk
relative to juvenile and adult survival to population persistence in our study corresponds
with findings in other systems and reinforces the notion that connectivity typically
contributes less to population viability than demographic rates (South, 1999). In both
regression-based and conventional sensitivity analyses, however, dispersal had some
impact on the extirpation risk of small subpopulations, amounting to as much as half of the
sensitivity value of directly altering carrying capacity for those populations. The extirpation
of these subpopulations under low-dispersal scenarios caused a slow decline in overall
island population throughout the study period, which was ameliorated by increasing the
dispersal multiplier. Interestingly, dispersal multiplier values >10 caused smaller increases
in mean island population size at 160 years, indicating that, at a certain point, gallinule
emigration to isolated populations was detrimental to the overall population. This is similar
to observations by Medici & Desbiez (2012), who examined metapopulation persistence in
lowland tapirs (Tapirus terrestris). Our perturbation analysis also showed steady decreases
in extirpation probability across a wide range of connectivity values. For small and
especially medium populations, even modest (2–5×) increases over current dispersal rates
can produce nontrivial changes in the probability of persistence of small Hawaiian gallinule
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subpopulations. These increases are within current variation in dispersal rates between
populations, implying that they are within the realm of possibility for management.
It is important to recognize that, according to our models, management actions that
directly increase the carrying capacity of small subpopulations would be generally more
effective at reducing extirpation risk. While creating new habitat for Hawaiian gallinules
on the O’ahu might be prohibitive in social and economic cost due to constraints on land
ownership and availability, the restoration of existing habitats would be a highly effective
approach to increasing carrying capacities that would avoid such the complications of
land acquisition. Increasing connectivity through dispersal might be a viable additional
option for decreasing extirpation risk under future sea level rise conditions, where large
subpopulations will be reduced to small and medium-sized ones, and more direct and
effective methods of decreasing extirpation risk will become more challenging. Recent
work by van Rees et al. suggests that stream networks and green water management
infrastructure (e.g., drainage swales) proposed as solutions for climate change adaptation
on O‘ahu may increase landscape permeability to gallinules, providing a feasible measure
for managing connectivity for this subspecies.

CONCLUSIONS
Our population model of the Hawaiian gallinules on O‘ahu predicts near-zero probability
that the island’s populationwill be extirpated in the next 160 years under current conditions,
but with the caveat that this persistence is primarily dependent on two to four large and
medium subpopulations. The model predicted a high likelihood of extirpation for all
smaller populations, which would lead to small overall population declines for the island
as a decrease in genetic diversity. Sensitivity analysis highlighted juvenile survival as the
most influential parameter affecting population growth rates and extirpation probabilities,
implying thatmanagementmethods (e.g., predator control) that decrease juvenilemortality
rates may be the most effective approach to reducing extirpation risk in the population
of this subspecies on O‘ahu. Our sea level rise projections reveal that it is a major future
threat to Hawaiian gallinule populations, which we conservatively estimate could reduce
the island’s current population by as much as 45%. Although dispersal was found to
be largely unimportant to the persistence of the O‘ahu’s overall population, moderate
increases in dispersal made nontrivial reductions in extirpation risk and population growth
rate for small, isolated subpopulations. As sea level rise reduces the number and size
of subpopulations on the island, the importance of dispersal for the subspecies’ overall
persistence may increase relative to other conservation measures.
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