1 Biomechanical evidence suggests extensive eggshell thinning during

2 incubation in the Sanagasta titanosaur dinosaurs

- 3 E. Martín Hechenleitner^{1*}, Jeremías R. A. Taborda², Lucas E. Fiorelli¹, Gerald Grellet-Tinner^{1,3}, Segundo
- 4 R. Nuñez-Campero¹
- 5¹Centro Regional de Investigaciones Científicas y Transferencia Tecnológica de La Rioja (CRILAR),

6Provincia de La Rioja, UNLAR, SEGEMAR, UNCa, CONICET. Entre Ríos y Mendoza s/n, (5301)

7Anillaco, La Rioja (Argentina).

8ºCentro de Investigaciones en Ciencias de la Tierra (CICTERRA), Universidad Nacional de Córdoba,

9CONICET, FCEFyN, Vélez Sarsfield 1611, Ciudad Universitaria, X5016GCA Córdoba, Argentina.

10³The Orcas Island Historical Museums, Eastsound, Washington, USA.

11*Corresponding author: emhechenleitner@gmail.com

12Abstract

13The reproduction of titanosaur dinosaurs is still a complex and debated topic. Their Late 14Cretaceous nesting sites are distributed worldwide, and their eggs display substantial 15morphological variations according to the parent species. In contrast to the typical 1.3-2.0 mm-16thick shells common to eggs of most titanosaur species (e.g. those that nested in Auca Mahuevo, 17Tama, Totești or Boseong), the Cretaceous Sanagasta eggs of Argentina display an unusual shell 18thickness of up to 7.9 mm. Their oviposition was synchronous with a palaeogeothermal process, 19leading to hypothesizethe hypothesis that their extra thick eggshell was an adaptation to this 20particuliar nesting environment. Although this hypothesis has already been supported indirectly 21through several investigations, the mechanical implications of developing such thick shells and 22how this might have affected the success of hatching remained untested. Finite element analyses 23now allow determiningestimate that the breaking point of the thick-shelled Sanagasta eggs is 2414-45 times higher than for other smaller and equally sized titanosaur eggs. The considerable 25energetic disadvantage for pipping through these thick eggshells suggests that their dissolution 26during incubation would have been paramount for a successful hatching.

27

28

29INTRODUCTION

- Recent studies have changed our perspective on titanosaur palaeobiology. These highly 31 diversified dinosaurs were the largest terrestrial organisms that ever roamed the earth and, 32 according to recent investigations, their thermophysiology was similar to that of large modern 33 endotherms (Seymour et al., 2012; Seymour, 2013; Eagle et al., 2015). Their Titanosaur eggs 34 were incubated in holes excavated in the soil or in mounds of soil and leaf litter, comparable to 35 the nests of the modern megapodes (Grellet-Tinner & Fiorelli, 2010; Hechenleitner, Grellet-36 Tinner & Fiorelli, 2015), and their chicks had a rapid ontogenetic development (Werner & 37 Griebeler, 2014; Curry Rogers et al., 2016). Perinatal embryos preserved *in ovo* also revealed 38 that titanosaurs developed an "egg-tooth"-like structure (García, 2007) that could have served to 39 break the shell during hatching. Such anatomical structure is present in all the archosaurs (from 40 crocodilians to birds) and presently, is the only known to be specifically involved in the 41 hatching process (Honza et al., 2001; García, 2007; Hieronymus & Witmer, 2010; Hermyt et al., 422017).
- Titanosaurs laid amniotic eggs with a calcitic shell. This genetically and physiologically44controlled, biomineralized hard layer that protects the developing embryo from damage
 45(mechanical or chemical), dehydration and infection, is specifically adapted to particular nesting
 46environments, hence functionally optimized for each species (Ferguson, 1981; Board, 1982).
 47Titanosaur eggshells consist of monolayered calcium carbonate, growing from densely packed
 48shell units of rhombohedric, acicular calcite crystals that radiate from nucleation centres located
 49at the external surface of the membrana testacea (Grellet-Tinner, Chiappe & Coria, 2004).
 50Although titanosaur eggshells typically are 1.35-2.0 mm thick, the exceptionally thick-shelled
 51eggs of the Sanagasta nesting site, in La Rioja, Argentina, reach 7.9 mm (Grellet-Tinner &
 52Fiorelli, 2010; Grellet-Tinner, Fiorelli & Salvador, 2012; Hechenleitner et al., 2016a) (Table 1).
- At Sanagasta, more than 80 titanosaur egg clutches were found to be synchronous with a 54Cretaceous geothermal process (Grellet-Tinner & Fiorelli, 2010; Fiorelli et al., 2012). Although 55unique among non-avian dinosaurs, the evidence at hand suggests that several species of 56titanosaurs may have utilized geothermalism as a source of heat for egg incubation (Grellet-

57Tinner & Fiorelli, 2010; Hechenleitner, Grellet-Tinner & Fiorelli, 2015). Yet, nesting in active 58geothermal settings is still a strategy exploited by several modern vertebrates, chiefly iguanas, 59snakes, birds, and even deep-sea skates (Werner, 1983; Göth & Vogel, 1997; Guo et al., 2008; 60Salinas-de-León et al., 2018), asbecause it iensures a nesting thermal stability. Such association 61between titanosaur nesting and palaeogeothermalism led to hypothesisees that thickness of the 62Sanagasta eggshells was an adaptation to resist the extrinsic dissolution by pore fluids in a harsh 63nesting environment (Grellet-Tinner & Fiorelli, 2010; Grellet-Tinner, Fiorelli & Salvador, 642012). This hypothesis received additional paleobiological support from more recent studies on 65the striking thickness of these eggshells (Grellet-Tinner, Fiorelli & Salvador, 2012; 66Hechenleitner et al., 2016a). The new data confirmed that these titanosaur eggs were 67physiologically functional; that is, they would have allowed an appropriate gas exchange under 68burial conditions in the substrate, even when their shells were as thick as 7.9 mm. Moreover, 69calculations based on micro-CT data showed that the eggshells were also physiologically 70functional even when they thinned up to 80% or 1.5 mm (Hechenleitner et al., 2016a). This 71implies that the suggested external chemical erosion of the shell by hydrothermal fluids would 72not have compromised the incubation with respect to gas exchange. However, whether or not 73this dissolution of the shell was an essential for the hatchability of the Sanagasta eggs (as well 74as other titanosaur eggs) is a hypothesis that has not yet been tested.

Therefore, the present investigation aims to test the mechanical strength of the Sanagasta 76eggs using FEA on models of titanosaur eggs from several nesting sites by evaluating the 77required force to break them from inside. Furthermore, it will shed light on the importance of 78the external dissolution of the shell by chemical leaching, and its paramount role for their 79hatchability and the survival of several titanosaur species.

80

81METHODS

82Specimens and modelling

We analysed data of Haţeg (Romania), Boseong (South Korea), Tama, Sanagasta, and 84Auca Mahuevo nesting sites (Argentina) (Table 1). Measurements of the eggs from Tama and

85Sanagasta were obtained from digital 3D reconstructions. Egg models for other sites are based 86on personal observations (Haţeg and Auca Mahuevo) and literature (Boseong) (Hechenleitner, 87Grellet-Tinner & Fiorelli, 2015; Hechenleitner et al., 2016b). In addition, we included data from 88Hahn et al. (2017) for four kinds of living birds: quail, hen, goose, and ostrich (Table 1). A 89comparison of their size and shape is given in Fig. 1A.

90

91Egg morphology and size

92 In most nesting sites the titanosaur eggs are transformed, mostly compressed, during 93diagenesis: hence, it is difficult to assess exactly their original shape and diameter 94(Hechenleitner et al., 2016b)[4]. Therefore, we performed a CT-scan of a complete egg from 95Sanagasta (CRILAR-Pv 400 SA-C6-e1 a 64-channel multi-slicer tomograph, at 140 Kv 96and 403 mA. The resulting CT dataset was analysed by using 3D Slicer v4.1.1 (Fedorov et al., 972012)[7], and we obtained 141 three-dimensional structures that correspond to eggshell 98fragments. During the analysis of the CT we observed that the ellipsoidal shape of the egg 99CRILAR-Pv 400 SA-C6-e1 is a product of the displacement of shell fragments by the sediment. 100Using CAD software relocated each fragment to its original relative position (Fig. 1B). This 101produced an assembled model of spherical shape. Using this model we estimated the inner 102volume (2500 cm³) and inner diameter (169 mm), required to make the finite element model. Size estimations of the eggs from Totesti and Tama are based on CT data (Grellet-Tinner 103 104et al., 2012; Hechenleitner et al., 2016b). The estimations for the eggs from Boseong and Auca 105Mahuevo (Grellet-Tinner, Chiappe & Coria, 2004; Hechenleitner, Grellet-Tinner & Fiorelli, 1062015) should be taken with caution until CT scans provide accurate data. All measurements are 107summarized in the Table 1.

108

109Eggshell mechanical properties

The eggshells, like bones, loose their original mechanical properties during fossilization, 111hence biomechanical analyses must rely on data from living relatives. The titanosaur eggshells 112are homologous to the internal-most layer (layer 1 or mammillary layer) of the bird's eggshell

113(Grellet-Tinner, Chiappe & Coria, 2004). Recent insightful information inwith respect withto 114the mechanical properties of the eggs of several living species of birds (Hahn et al., 2017) allow 115overcoming of the limitations imposed by diagenesis for conducting finite element analyses 116(FEA) on titanosaur eggs. Input data for carrying out FEA was obtained from the empirical tests 117performed on birds' eggshells (Hahn et al., 2017). We selected average values from existing 118data (Table 1) for the calculations on titanosaur egg models. These are: Young's modulus (E) = 11917.51 GPa and assumed a Poisson's ratio (v) = 0.3.

The shell of the amniote egg has a tremendous structural complexity, including organic 121and inorganic compounds (Board, 1982; Bain, 1991; Juang et al., 2017; Hahn et al., 2017) as 122well as voids (e.g. pore canals and vesicles). AsBecause data was obtained through empirical 123tests (Hahn et al., 2017), itmeasured mechanical properties results from the interaction of all of 124these variables. Hence, all the eggs were modelled using a homogeneous "eggshell" material 125with the mechanical properties of a modern bird's eggshell.

126

127Finite element models (FEM)

- The shape of the bird eggs varies considerably. As such, to construct the 3D egg models, 129we used the outline of the eggs shown by Hahn et al., (2017) and assume each egg as a revolved 130solid. The titanosaur eggs were modelled following the same protocol, although, based on 131previous data (Hechenleitner et al., 2016b), we assumed a 2D circular outline. Thickness of the 132revolved solids in all cases is equivalent to that of the respective eggshell. All models were 133made using CAD software (1A).
- To define the boundary conditions of the finite element models, we located the centre of 135the egg in the middle of its maximum-length axis (Fig. 1C). The external surface was fixed 136below 150°, to avoid rotation of the models.
- In contrast to external resistance tests found in the literature (e.g. Juang et al., 2017; Hahn 138et al., 2017), in which a force is applied on the apex of the eggs, we decided to apply the 139internal force in an angle similar to that observed in birds during hatching. In modern birds the 140hatching point is variable, between the equator and the blunt end of the egg. As such we

141selected a 30° angle from the maximum-length axis to apply the load force. The latter angle is 142only important for the asymmetric eggs, sincebecause the shell does not mechanically behave 143uniformly.

In the present work we evaluate the structural response of the eggs to an internal force, 145emulating the conditions of effort during hatching. SinceBecause the egg is a closed structure, it 146is impossible to do such empirical tests without damaging the shell. In a recent paper, Juang et 147al. (2017) show that the eggs of all avian species fractured from outside at a displacement to 148thickness ratio of about 1. Because of its shape, the structural behaviour of the egg is different 149from the internal and external side. However, although the actual ratio may vary, the ratio = 1 150was used as a simplified eriteriacriterion to determine the fracture force. This means that we 151assumed that the shell breaks when the displacement at the load point equals its thickness. As 152such, our model seeks to obtain a parameter in equivalent conditions among different eggs, 153which allows emparingcomparison of the mechanical performance during hatching.

All models were meshed using tetrahedral elements of four nodes (see supplementary 155*.nas files), considering that the eggshell material is isotropic and homogeneous. The elastic 156properties of each egg model are specified in Table1. The finite element analyses were 157conducted using the software ADINA v8.7.3.

158

159Breaking force estimation

In all instances (birds and titanosaurs), we conducted exploratory analyses. Using internal 161 forces of different magnitude we recorded the eggshell displacement at the load point (Figs. 2A-1622J; Table 2). Based on these results, we estimated the inner load force required to obtain a 163 displacement equal to the eggshell thickness in each case (Fig. 3; Table 2).

164

165Effect of the eggshell dissolution on the egg mechanical resistance

In order to evaluate the effect of the dissolution of the eggshell in the Sanagasta eggs, as 167was previously hypothesized (Grellet-Tinner and Fiorelli, 2010; Grellet-Tinner et al., 2012b; 168Hechenleitner et al., 2016b), we generated and analysed models with different shell thicknesses

169between 7.9 and 1.2 mm (the maximum and minimum thicknesses recorded at this site). Each of 170these models was evaluated with an internal load force of 5 N (Figs. 4A-B). This magnitude 171corresponds to the average of forces previously estimated for all the titanosaur eggs in our 172sample, excluding the estimation for maximum thickness of the Sanagasta eggs. Based on the 173data of maximum displacement at the load point (Table 3), we estimated the maximum shell 174thickness that can be broken applying 5 N.

175

176Statistical analysis

We performed a multiple linear regression analysis to test the influence of the egg volume 178and shell thickness on the strength of the eggs (Fig. 5). To perform the statistical analysis we 179used the lm function from the Ppackage stats version 3.4.3 of the open source software R (R 180CoreTeam, 2017).

Two models were performed in order to evaluate the relationship between variables; one 182model with interaction of the variables volume and thickness and one without interaction. The 183AIC method was used to select the model that better fits to data. A residual *vs.* leverage plot of 184the fittest model helped to identify extreme values within the data set.

185

186RESULTS

According to the present 3D reconstruction, the Sanagasta eggs were originally spherical 188(Fig. 1B). This is consistent and supports all the previous publications on titanosaur eggs 189(Grellet-Tinner, Chiappe & Coria, 2004; Grellet-Tinner, Fiorelli & Salvador, 2012; 190Hechenleitner, Grellet-Tinner & Fiorelli, 2015). Furthermore, the present CT-scan-based 191analysis shows that previous studies overestimated the size of these eggs (Fig. 1B). After 192digitally rearranging the eggshell fragments, the external egg diameter decreased from ~210 mm 193(~4850 cm³ in volume) to ~180 mm (~3370 cm³). Such a reduction in volume involves much 194less internal space for nutrient storage and embryo development. In addition, the diameter of the 195embryonic chamber of the Sanagasta eggs only reaches 169.2 mm due to the considerable shell 196thickness of these eggs (Fig. 1B). Therefore, although the Sanagasta eggs are larger than those

197 of Tama, a nesting site found less than 150 km away in the same stratigraphic unit 198(Hechenleitner et al., 2016b), both display an identical chamber space available for the 199 developing embryo (Table 1).

The 3D FEA conducted here, which are the first of their kind, allowed 201estimatingestimations that an effort of 3.04-9.77 N could break most of the titanosaur egg 202samples, namely Tama, Toteşti, Boseong, and Auca Mahuevo (Figs. 2A-F and 3). In contrast, 203the eggs of Sanagasta are 14-45 times stronger, requiring up to 136 N to break.

204 Porosity could affect the eggshell's strength, although to date, there is no quantitative 205information in this regard (Hahn et al., 2017). Eggshell strength in modern birds has been 206correlated with several factors, e.g. calcium diet, shell microstructure, incubation period, but, 207however, shell thickness is the main factor affecting strength (Ar, Rahn & Paganelli, 1979). The 208statistical model corroborated that there is an important linear association between egg internal 209 volume and shell thickness ($F_{(1.8)}$ = 16.93, R^2 = 0.64, p= 3.40⁻⁴), although an over-dispersion of 210thickness values becomes evident as volume increases (Fig. 5A). From the two multiple linear 211regression models tested, the model that better explains the relationship between internal 212 volume and eggshell thickness as independent variables, and the shell mechanical strength as 213 response variable was the model without interaction (AIC= 14.13). The regression analysis 214showed a statistical association between eggshell thickness and the mechanical strength of the 215eggs ($F_{(2,7)}$ = 107.1, R^2 = 0.96, p= 8.53⁻⁵; Fig. 5B), whereas there is not a direct association with 216egg internal volume ($F_{(2,7)}$ = 107.1, R^2 = 0.96, p= 0.80; Fig. 5C). The residual vs leverage plot 217shows that the thick-shelled egg from Sanagasta and the quail egg represent outlavier values, 218 and according to the Cook's distance, they are strong influential observations for the model 219(Fig. 5D).

Considering that the geological and palaeontological data, as well as the evidence from 221modern analogues, suggest that the eggshells of Sanagasta would have partially dissolved 222during incubation, we further tested the mechanical effect of their constant thinning (Figs. 4A-223B; Table 3). Results indicate that the average estimate for the other titanosaur eggs (5 N), has 224little effect on the Sanagasta egg, when its shell is thick (Figs. 4A-B). However, as the thinning

225progresses, the shell strength drops abruptly. When thinning reaches ~1.6 mm, the shell reaches 226its fracture threshold and, as previously speculated (Grellet-Tinner, Fiorelli & Salvador, 2012; 227Hechenleitner et al., 2016a), it breaks easily at and below this threshold (Figs. 4A-B).

228

229DISCUSSION

230 The concept that all of the eggs of titanosaurs are spherical is well established. However, 231several sites preserve deformed and/or incomplete eggs (Huh & Zelenitsky, 2002; Salgado et 232al., 2009; Jackson, Schmitt & Oser, 2013; Hechenleitner et al., 2016b), and there is little CT 233information available to reconstruct their original shape and volume. The CT scan of the 234specimen CRILAR-Pv 400 SA-C6-e1 confirmed that the Sanagasta eggs were spherical. A 235 Sepherical shape in eggs is mechanically and physiologically optimal. It has a greater resistance 236to impacts and is the smallest surface with respect to any geometric figure of equal volume 237(Bain, 1991; Stoddard et al., 2017). As such it is advantageous in terms of strength, shell 238economy, and heat conservation (Kratochvil & Frynta, 2006; Stoddard et al., 2017). 239 Currently, there is strong evidence for titanosaurs' precociality or hyperprecociality 240(Hechenleitner, Grellet-Tinner & Fiorelli, 2015; Curry Rogers et al., 2016). Precociality 241requires a relatively greater amount of available nutrients and therefore a larger egg size. Egg 242internal diameter constitutes a valuable proxy for the size of a fully developed embryo, so its 243 precise measurement is important to figure out how big (and, eventually estimate, how strong) 244the embryo could have been. The new data shows that the Sanagasta and Tama eggs have nearly 245the same internal space for accommodating an embryo. This suggests that the hatchlings of 246Sanagasta could have been strong enough to pip through (at least) a 1.5 mm-thick eggshell 247(Table 1). However, hatching through a 7.9 mm-thick shell, more than three times thicker than 248other titanosaur eggs (depending on which species), seems unlikely.

The characteristics present in the archosaur eggshells result from a compromise between 250several factors (Board, 1982). They must be strong enough to prevent fracture, but sufficiently 251weak to allow hatching. This relationship is corroborated by the statistical analysis of the 252present data, which shows an association between the eggshell thickness and strength of the

253eggs (F_(2,7)= 107.1, R²= 0.96, p= 8.53⁻⁵; Fig. 5B). The titanosaur eggs show, in general, a good fit 254to the statistical model (Fig. 5C). However, the Sanagasta eggs with thick shell fall entirely 255outside these predictions. According to the FEA, they were 14-45 times stronger than any other 256titanosaur eggs that have nearly the same space for accommodating a late term embryo, such as 257those of Tama and Boseong. Thus, the Sanagasta embryos would have had to invest a 258considerable amount of energy to be able to hatch, if theythe eggs kept their thickness constant 259during the whole incubation.

Recapitulating on the adaptive advantage of such a thick shell for the Sanagasta 261specimens, two reasons that are not mutually exclusive can be considered: mechanical strength 262and resistance to chemical abrasion. Most titanosaurs laid biologically and mechanically viable 263eggs with thinner shells (e.g. Auca Mahuevo, Toteşti), which rarely exceed 2 mm, thus 264suggesting that strength was not a primary reason for developing thick eggshells. This shows 265that the excessive thickness of the Sanagasta shells would not respond to a mechanical need 266(e.g. withstand shock from outside).

However, keeping the shells thick during the whole incubation process could have had 268serious consequences for the Sanagasta titanosaurs. First, it would be detrimental for the 269development of the embryo sincebecuse, as it grows, its needs change from preventing water 270loss to increasing gas exchange, due to the increase in energy consumption of a late embryo [a 271process documented among mound-nester archosaurs (Ferguson, 1981; Booth & Seymour, 2721987; Hechenleitner et al., 2016a)]. Second, a very thick eggshell might also represent a 273problem during hatching, as it is suggested by the new results (Fig. 2A and Fig. 3). The case 274was pointed out by empirically studying *Alligator mississippiensis*, which bury their eggs in 275mounds of vegetation, in a way similar to that used by some titanosaurs and megapode birds 276(Hechenleitner, Grellet-Tinner & Fiorelli, 2015). Eggs incubated artificially (without natural 277substrate) develop normally, but then, the fully grown embryos are unable to break their shell 278(Ferguson, 1981). In nature, the dissolution of the *A. mississippiensis* eggshell is mediated by 279bacterial decomposition, which acidifies the nesting environment. Given the environmental 280similarities for ground-nesting, it is not surprising that the shells of several titanosaur nesting

281sites show evidence of extrinsic dissolution (Grellet-Tinner, Chiappe & Coria, 2004; 282Hechenleitner, Grellet-Tinner & Fiorelli, 2015). This type of dissolution should not be confused 283with the internal calcium absorption produced in the late stages of the embryogenesis, which is 284ubiquitous among archosaurs (Chien, Hincke & McKee, 2009). During ossification the calcium 285is removed from the shell, getting to reduce up to 20% of its thickness in precocial birds, such 286as the megapodes (Booth & Seymour, 1987). However, these high values are associated with 287very thin eggshells, in which the removal mostly affects the base of the structural units of 288calcite, in the innermost portion of the shell. Indeed, some internal dissolution in the Sanagasta 289eggshells was related with calcium resorption, but is negligible compared to the shell's 290thickness (Grellet-Tinner, Fiorelli & Salvador, 2012).

The results of FEA conducted on models of Sanagasta eggs with different shell 292thicknesses, between the minimum and maximum shell thickness reported for this site, show 293that an effort similar to the one necessary to break other titanosaur eggs would have had very 294little effect on those of Sanagasta immediately after oviposition (Figs. 4A-B). However, when 295the thickness is reduced to less than 1.6 mm, the shell becomes as fragile as for other titanosaur 296eggs.

The nesting strategies of titanosaurs have been compared with those of modern 298megapodes (Kerourio, 1981; Cousin & Breton, 2000; Garcia et al., 2008; Grellet-Tinner & 299Fiorelli, 2010; Grellet-Tinner, Fiorelli & Salvador, 2012; Hechenleitner, Grellet-Tinner & 300Fiorelli, 2015; Grellet-Tinner, Lindsay & Thompson, 2017). To date, only a handful of dinosaur 301species are confirmed to exploit and have exploited the geothermalism as a source of heat for 302incubating their eggs (Jones & Birks, 1992; Grellet-Tinner & Fiorelli, 2010; Harris, Birks & 303Leaché, 2014; Hechenleitner, Grellet-Tinner & Fiorelli, 2015; Grellet-Tinner, Lindsay & 304Thompson, 2017). The eggshell structure of modern dinosaurs differ from those of their 305ancestors by having three to four structural layers that confer a greater strength for a thinner 306eggshell thickness (Grellet-Tinner, 2006), instead of one structural layer like the Sanagasta 307dinosaur eggs. *Macrocephalon maleo* and *Megapodius pritchardii* are two modern megapode 308species that resort or reverserever ecothermal incubation, although the former, in Sulawesi

309Island, have two populations that do not interbreed and respectively utilize black sand with solar 310radiation and geothermal heated sand. However, the latter do oviposit in sands heated by in 311geothermal activities and M. pritchardii in the volcanic ashes of calderas. In both instances the 312megapode eggs are not in direct contact with geothermal fluids. Leipoa ocellata and Alectura 313lathami, two mound-builder megapodes that inhabit Australia, must also deal with the risks of 314external acidic erosion. In their mound-nests the activity of microorganisms that maintains a 315high incubation temperature (Seymour & Ackerman, 1980) also produces organic acids as a by-316product (Grellet-Tinner, Lindsay & Thompson, 2017). The eggshells of both species have an 317accessory layer composed of nanospheres of calcium phosphate on their outer surface (Board, 3181980). D'Alba et al. (2014) showed that this accessory layer has antimicrobial properties. In 319 addition, the calcium phosphate of the nanospheres is, compared to the calcite present in the 320structural layers of the eggshell, a relatively insoluble salt (Board, 1980). For this reason it has 321been recently suggested that the accessory layer also constitutes a protective cover that prevents 322the external erosion of the shell (Grellet-Tinner, Lindsay & Thompson, 2017). In addition, the 323pronounced nodular surficial ornamentation of these eggs complements the calcium phosphate 324nanospheres against chemical erosion by limiting most of the external erosion of their eggshell 325to these nodes. Therefore, although a few species of modern megapodes may display a reversal 326that utilizes ground generated heat as a passive incubating energy, their incubating strategies 327differ from the Sanagasta dinosaurs, which eggs were in direct contact with acidic geothermal 328fluids (Grellet-Tinner & Fiorelli, 2010).

329

330CONCLUSIONS

The FEA data suggest that hatching through a 7.9 mm thick shell was impossible for the 332embryos from Sanagasta. However, the analyses carried out on egg models with different shell 333thicknesses further suggest that thinning below 2 mm would have allowed these titanosaurs to 334hatch. With regard to the relationship between eggshell thickness and egg strength, the thick-335shelled Sanagasta eggs are completely out of the prediction of the statistical model. In other 336words, the model shows that in terms of the strength/thickness ratio, the Sanagasta eggshells are

337disproportionately thick with respect to those recorded for birds and other titanosaurs. As the 338original thickness would have been a strong limitation for hatching, the present results are 339consistent with previous arguments of outer eggshell thinning in the Sanagasta nesting site 340(Grellet-Tinner & Fiorelli, 2010; Grellet-Tinner, Fiorelli & Salvador, 2012). Considering that 341titanosaur eggs were incubated in fairly acid nesting environments, such as mounds or dug-out 342holes like also seen in the modern megapodes (Hechenleitner, Grellet-Tinner & Fiorelli, 3432015), it is plausible that the force required for hatching would be even lesser than estimated. 344Regardless of the factors (intrinsic and/or extrinsic) involved in the wear of ~80% of the 345eggshell, our results strongly suggest that external chemical dissolution, here complemented by 346the typical internal ontogenetic dissolution, throughout the incubation process would have been 347essential for allowing hatching of the titanosaurs that nested at Sanagasta.

348

349ACKNOWLEDGEMENTS

350We want to thank the Secretaría de Cultura and Gobierno de La Rioja, Municipalidad de Tama 351and Sanagasta for their help and support.

352

353REFERENCES

354Ar A., Rahn H., Paganelli C V. 1979. The avian egg: Mass and strength. *Condor* 81:331–337.
355Bain MM. 1991. Eggshell strength: A relationship between the mechanism of failure and the
ultrastructural organisation of the mammillary layer. *British Poultry Science* 33:303–319.
357Board RG. 1980. The avian eggshell—a resistance network. *Journal of Applied Bacteriology*48:303–313.

359Board RG. 1982. Properties of avian egg shells and their adaptive value. *Biological Reviews*360 57:1–28.

361Booth DT., Seymour RS. 1987. Effect of eggshell thinning on water vapor conductance of malleefowl eggs. *The Condor* 89:453–459.

363Chien YC., Hincke MT., McKee MD. 2009. Ultrastructure of avian eggshell during resorption following egg fertilization. *Journal of Structural Biology* 168:527–538.

- 365Cousin R., Breton G. 2000. A precise and complete excavation is necessary to demonstrate a
- dinosaur clutch structure. In: First International Symposium on dinosaur eggs and babies/
- 367 Extended abstracts. 31–42.
- 368Curry Rogers K., Whitney M., D'Emic M., Bagley B. 2016. Precocity in a tiny titanosaur from
- the Cretaceous of Madagascar. *Science* 352:450–453.
- 370D'Alba L., Jones DN., Badawy HT., Eliason CM., Shawkey MD. 2014. Antimicrobial
- properties of a nanostructured eggshell from a compost-nesting bird. *The Journal of*
- 372 *Experimental Biology* 217:1116–21.
- 373Eagle RA., Enriquez M., Grellet-Tinner G., Pérez-Huerta A., Hu D., Tütken T., Montanari S.,
- Loyd SJ., Ramirez P., Tripati AK., Kohn MJ., Cerling TE., Chiappe LM., Eiler JM. 2015.
- 375 Isotopic ordering in eggshells reflects body temperatures and suggests differing
- thermophysiology in two Cretaceous dinosaurs. *Nature Communications* 6:8296.
- 377Fedorov A., Beichel R., Kalpathy-Cramer J., Finet J., Fillion-Robin JC., Pujol S., Bauer C.,
- Jennings D., Fennessy F., Sonka M., Buatti J., Aylward S., Miller J V., Pieper S., Kikinis
- R. 2012. 3D Slicer as an image computing platform for the Quantitative Imaging Network.
- 380 *Magnetic Resonance Imaging* 30:1323–1341.
- 381Ferguson MWJ. 1981. Extrinsic microbial degradation of the alligator eggshell. Science
- 382 214:1135–1137.
- 383Fiorelli LE., Grellet-Tinner G., Alasino PH., Argañaraz E. 2012. The geology and
- palaeoecology of the newly discovered Cretaceous neosauropod hydrothermal nesting site
- in Sanagasta (Los Llanos Formation), La Rioja, northwest Argentina. Cretaceous
- 386 *Research* 35, 94–117.
- 387Garcia G., Khosla A., Jafar SA., Sahni A., AVianey-Liaud M. 2008. Eggshell microstructure
- and porosity of the Nicobar scrubfowl (Megapodius nicobarensism, Great Nicobar Island,
- 389 India). *Palaeovertebrata* 36:75–87.
- 390García RA. 2007. An "egg-tooth"-like structure in titanosaurian sauropod embryos. Journal of
- *Vertebrate Paleontology* 27(1):247–252.
- 392Göth A., Vogel U. 1997. Egg laying and incubation of Polynesian megapode. Annual Review of

- 393 the World Pheasant Association 1996/97:43–54.
- 394Grellet-Tinner G. 2006. Phylogenetic interpretation of eggs and eggshells: implications for
- 395 phylogeny of Palaeognathae. *Alcheringa* 30:141–182.
- 396Grellet-Tinner G., Codrea V., Folie A., Higa A., Smith T. 2012. First evidence of reproductive
- adaptation to "island effect" of a dwarf Cretaceous Romanian titanosaur, with embryonic
- integument in ovo. *PloS One* 7:e32051.
- 399Grellet-Tinner G., Chiappe LM., Coria RA. 2004. Eggs of titanosaurid sauropods from the
- 400 Upper Cretaceous of Auca Mahuevo (Argentina). Canadian Journal of Earth Sciences
- 401 41:949–960.
- 402Grellet-Tinner G., Fiorelli LE. 2010. A new Argentinean nesting site showing neosauropod
- dinosaur reproduction in a Cretaceous hydrothermal environment. *Nature*
- 404 *Communications* 1:32.
- 405Grellet-Tinner G., Fiorelli LE., Salvador RB. 2012. Water vapor conductance of the Lower
- 406 Cretaceous dinosaurian eggs from Sanagasta, La Rioja, Argentina: Paleobiological and
- paleoecological implications for South American faveoloolithid and megaloolithid eggs.
- 408 Palaios 27:35-47.
- 409Grellet-Tinner G., Lindsay S., Thompson MB. 2017. The biomechanical, chemical and
- 410 physiological adaptations of the eggs of two Australian megapodes to their nesting
- 411 strategies and their implications for extinct titanosaur dinosaurs. *Journal of Microscopy*
- 412 267:237–249.
- 413Guo P., Liu SY., Feng JC., He M. 2008. The description of a new species of Thermophis
- 414 (Serpentes: Colubridae). Sichuan Journal of Zoology 27:321.
- 415Hahn EN., Sherman VR., Pissarenko A., Rohrbach SD., Fernandes DJ., Meyers MA. 2017.
- Nature's technical ceramic: the avian eggshell. *Journal of The Royal Society Interface*
- 417 14:20160804.
- 418Harris RB., Birks SM., Leaché AD. 2014. Incubator birds: biogeographical origins and
- evolution of underground nesting in megapodes (Galliformes: Megapodiidae). *Journal of*
- 420 *Biogeography* 41:2045–2056.

- 421Hechenleitner EM., Grellet-Tinner G., Foley M., Fiorelli LE., Thompson MB. 2016a. Micro-CT
- scan reveals an unexpected high-volume and interconnected pore network in a Cretaceous
- 423 Sanagasta dinosaur eggshell. *Journal of The Royal Society Interface* 13:20160008.
- 424Hechenleitner EM., Fiorelli LE., Grellet-Tinner G., Leuzinger L., Basilici G., Taborda JRA., de
- la Vega SR., Bustamante CA. 2016b. A new Upper Cretaceous titanosaur nesting site from
- 426 La Rioja (NW Argentina), with implications for titanosaur nesting strategies.
- 427 *Palaeontology* 59:433–446.
- 428Hechenleitner EM., Grellet-Tinner G., Fiorelli LE. 2015. What do giant titanosaur dinosaurs
- and modern Australasian megapodes have in common? *PeerJ* 3:e1341.
- 430Hermyt M., Kaczmarek P., Kowalska M., Rupik W. 2017. Development of the egg tooth The
- 431 tool facilitating hatching of squamates: Lessons from the grass snake Natrix natrix.
- 432 Zoologischer Anzeiger 266:61–70.
- 433Hieronymus TL., Witmer LM. 2010. Homology and Evolution of Avian Compound
- 434 Rhamphothecae. *The Auk* 127:590–604.
- 435Honza M., Picman J., Grim T., Novák V., Čapek JM., Mrlík V. 2001. How to hatch from an egg
- of great structural strength. A study of the Common Cuckoo. *Journal of Avian Biology*
- 437 32:249–255.
- 438Huh M., Zelenitsky DK. 2002. Rich dinosaur nesting site from the Creataceous of Bosung
- 439 County, Chullanam-Do Province, South Korea. *Journal of Vertebrate Paleontology*
- 440 22:716–718.
- 441Jackson FD., Schmitt JG., Oser SE. 2013. Influence of vertisol development on sauropod egg
- 442 taphonomy and distribution at the Auca Mahuevo locality, Patagonia, Argentina.
- 443 Palaeogeography, Palaeoclimatology, Palaeoecology 386:300–307.
- 444Jones D., Birks S. 1992. Megapodes: recent ideas on origins, adaptations and reproduction.
- 445 *Trends in Ecology and Evolution* 7:88–91.
- 446Juang JY., Chen PY., Yang DC., Wu SP., Yen A., Hsieh HI. 2017. The avian egg exhibits
- general allometric invariances in mechanical design. *Scientific Reports* 7:1–11.
- 448Kerourio P. 1981. Nouvelles observations sur le mode de nidification et de ponte chez les

- dinosauriens du Crétacé terminal du Midi de la France. Compte rendu sommatre des
- 450 sélances de la Sociéité Géologique de France 1:25–28.
- 451Kratochvil L., Frynta D. 2006. Egg shape and size allometry in geckos (Squamata: Gekkota),
- lizards with contrasting eggshell structure: why lay spherical eggs? *Journal of Zoological*
- 453 *Systematics and Evolutionary Research* 44:217–222.
- 454R CoreTeam. 2017. R: A language and environment for statistical computing.
- 455Salgado L., Magalhães Ribeiro C., García RA., Fernández MS. 2009. Late Cretaceous
- 456 Megaloolithid eggs from Salitral de Santa Rosa (Río Negro, Patagonia, Argentina):
- inferences on the titanosaurian reproductive biology. *Ameghiniana* 46:605–620.
- 458Salinas-de-León P., Phillips B., Ebert D., Shivji M., Cerutti-Pereyra F., Ruck C., Fisher CR.,
- Marsh L. 2018. Deep-sea hydrothermal vents as natural egg-case incubators at the
- 460 Galapagos Rift. Scientific Reports 8:1788.
- 461Seymour RS., Smith SL., White CR., Henderson DM., Schwarz-Wings D. 2012. Blood flow to
- long bones indicates activity metabolism in mammals, reptiles and dinosaurs. *Proceedings*
- *of the the Royal Society B* 279:451–6.
- 464Seymour RS. 2013. Maximal aerobic and anaerobic power generation in large crocodiles versus
- mammals: implications for dinosaur gigantothermy. *PloS One* 8:e69361.
- 466Seymour RS., Ackerman RA. 1980. Adaptations to underground nesting in birds and reptiles.
- 467 *American Zoologist* 20:437–447.
- 468Stoddard MC., Yong EH., Akkaynak D., Sheard C., Tobias JA., Mahadevan L. 2017. Avian egg
- shape: Form, function, and evolution. *Science* 356:1249–1254.
- 470Werner DI. 1983. Reproduction in the Iguana Conolophus subcristatus on Fernandina Island,
- Galapagos: Clutch Size and Migration Costs. *The American Naturalist* 121:757–775.
- 472Werner J., Griebeler EM. 2014. Allometries of maximum growth rate versus body mass at
- 473 maximum growth indicate that non-avian dinosaurs had growth rates typical of fast
- growing ectothermic sauropsids. *PloS one* 9:e88834.

475

Figure 1. Dinosaur eggs. (A) Schematic silhouettes of the titanosaur and modern bird eggs 478used in the mechanical analyses. (B) Reconstruction of CRILAR-Pv 400 SA-C6-e1. (C) 479Boundary conditions for the analyses. Abbreviation: F, inner load force.

481Figure 2. Break point estimations for each egg model. (A) Sanagasta eggs with the thickest 482shell reported for this site. (B) Sanagasta eggs with the thinnest shell reported for this site. (C) 483Tama. (D) Auca Mahuevo. (E) Boseong. (F) Toteşti. (G) Ostrich. (H) Goose. (I) Hen. (J) Quail. 484Blue dots, FEA results for each test. Red dot, break point estimated by the regression. Results 485are given in Table 2.

Figure 3. Egg strength of several dinosaur eggs. Fracture limit of each egg as a function of its 488shell thickness.

490Figure 4. Strength variations of the Sanagasta eggs. (A) Strength variations as incubation 491progresses, according to Grellet-Tinner & Fiorelli (2010). (B) Detail of strength variation for the 492Sanagasta eggs as thinning progresses. Note that displacement equals shell thickness when 493dissolution reaches \sim 6.3 mm (shell thickness = \sim 1.6 mm)

495Figure 5. Statistical analysis. Multiple linear regression between: (A) Egg volume and shell 496thickness, (B) egg thickness and strength, and (C) egg volume and strength. (D) Model 497diagnostic plot of standardized residuals *vs.* leverage, showing the most extreme and influencing 498thickness values on the eggshell strength, corresponding to the thick shelled eggs from 499Sanagasta (2) and the quail eggs (10). Red and blue dots correspond to titanosaur and avian eggs 500respectively. Reference numbers: (1) Sanagasta (thick); (2) Sanagasta (thin); (3) Tama; (4) Auca 501Mahuevo; (5) Boseong; (6) Totești; (7) Ostrich; (8) Goose; (9) Hen; (10) Quail.

503TABLES

504Table 1. Avian and non-avian dinosaur eggs used in the comparative analyses.

505Specifications for each egg model. d, inner diameter. E, Young's modulus (for all titanosaur 506models this value is 17.51 GPa). V, inner volume. X1, X2, X3, spatial coordinates of the load 507point.

508

511

509**Table 2**. **Summary of the breaking force tests for each egg model.** BP, break point estimated 510by regression. D, maximum displacement at the load point. F, inner load force. T#, test number.

512Table 3. Results of FEA on Sanagasta egg models with different eggshell thicknesses.