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The Kimmeridgian Vega, Tereñes and Lastres formations of Asturias have yielded a rich

vertebrate fauna, represented by both abundant tracks and osteological remains.

However, skeletal remains of theropod dinosaurs are rare, and the diversity of theropod

tracks has only partially been documented in the literature. Here we describe the only non-

dental osteological theropod remain recovered so far, an isolated anterior caudal vertebra,

as well as the largest theropod tracks found. The caudal vertebra can be shown to

represent a megalosaurine megalosaurid and represents the largest theropod skeletal

remain described from Europe so far. The tracks are also amongst the largest theropod

footprints reported from any setting and can be assigned to two different morphotypes,

one of which similar to Megalosauripus sensu lato, and the other being morphologically

most similar to Grallator-like tracks, characterized by a strong mesaxony, and thus

representing a more gracile trackmaker. We discuss the recently proposed distinction

between robust and gracile large to giant theropod tracks and their possible trackmakers

during the Late Jurassic-Berriasian. In the absence of complete pedal skeletons of most

basal tetanurans, the identity of the maker of Jurassic giant theropod tracks is difficult to

establish. However, the notable robustness of megalosaurine megalosaurids fits well with

the described robust morphotypes, whereas more slender large theropod tracks might

have been made by a variety of basal tetanurans, including allosaurids,

metriocanthosaurids or afrovenatorine megalosaurids, or even exceptionally large

ceratosaurs. Concerning osteological remains of large theropods from the Late Jurassic of

Europe, megalosaurids seem to be more abundant than previously recognized and occur in

basically all Jurassic deposits where theropod remains have been found, whereas

allosauroids seem to be represented by allosaurids in Western Europe and
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metriacanthosaurids in more eastern areas. Short-term fluctuations in sea level might

have allowed exchange of large theropods between the islands that constituted Europe

during the Late Jurassic.
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Abstract 26 

The Kimmeridgian Vega, Tereñes and Lastres formations of Asturias have yielded a rich vertebrate 27 

fauna, represented by both abundant tracks and osteological remains. However, skeletal remains of 28 

theropod dinosaurs are rare, and the diversity of theropod tracks has only partially been documented in 29 

the literature. Here we describe the only non-dental osteological theropod remain recovered so far, an 30 

isolated anterior caudal vertebra, as well as the largest theropod tracks found. The caudal vertebra can 31 

be shown to represent a megalosaurine megalosaurid and represents the largest theropod skeletal 32 

remain described from Europe so far. The tracks are also amongst the largest theropod footprints 33 

reported from any setting and can be assigned to two different morphotypes, one of which similar to 34 

Megalosauripus sensu lato, and the other being morphologically most similar to Grallator-like tracks, 35 

characterized by a strong mesaxony, and thus representing a more gracile trackmaker. We discuss the 36 

recently proposed distinction between robust and gracile large to giant theropod tracks and their 37 

possible trackmakers during the Late Jurassic-Berriasian. In the absence of complete pedal skeletons of 38 

most basal tetanurans, the identity of the maker of Jurassic giant theropod tracks is difficult to establish. 39 

However, the notable robustness of megalosaurine megalosaurids fits well with the described robust 40 

morphotypes, whereas more slender large theropod tracks might have been made by a variety of basal 41 

tetanurans, including allosaurids, metriocanthosaurids or afrovenatorine megalosaurids, or even 42 

exceptionally large ceratosaurs. Concerning osteological remains of large theropods from the Late 43 

Jurassic of Europe, megalosaurids seem to be more abundant than previously recognized and occur in 44 

basically all Jurassic deposits where theropod remains have been found, whereas allosauroids seem to 45 

be represented by allosaurids in Western Europe and metriacanthosaurids in more eastern areas. Short-46 

term fluctuations in sea level might have allowed exchange of large theropods between the islands that 47 

constituted Europe during the Late Jurassic.  48 

PeerJ reviewing PDF | (2018:01:23659:0:1:NEW 31 Jan 2018)

Manuscript to be reviewed



 

3 

INTRODUCTION 49 

 50 

In the Late Jurassic, Europe was an assemblage of numerous smaller to large islands, separated by 51 

shallow epicontinental seas (Cosentino et al., 2010: fig. 7). Apart from the Fennoscandian shield, 52 

representing the largest continental mass in north-eastern Europe, larger landmasses included, from east 53 

to west, the Bohemian Massif (approximately where the Czech Republic lies today), the London-54 

Brabant Massif and the Rhenian Isle (extending from the area around London to the lower Rhine 55 

embayment), the Massif Central (south-central France), the Armorican Massif (mainly the Bretagne 56 

today), the Irish Massif in the north-west, and the Iberian Massif (Portugal and parts of western Spain).  57 

During parts of the Late Jurassic, the London-Brabant-Rhenian Massif and the Bohemian Massif might 58 

have been connected in the north, and the Armorican Massif might have partially had a connection with 59 

the Massif Central (Thierry et al. 2000; Meyer, 2012). All of these landmasses certainly possessed a 60 

fauna of terrestrial vertebrates, but little is still known about many of these faunas.  61 

Apart from the record of the Iberian Peninsula, in which abundant terrestrial vertebrates are mainly 62 

found in Late Jurassic terrestrial to transitional sediments of the Lusitanian (see Mocho et al., 2017, and 63 

references therein) Maestrazgo and South Iberian basins (Royo-Torres et al., 2009; Aurell et al., 2016; 64 

Campos-Soto et al., 2017), most records of Late Jurassic dinosaurs from Europe come from shallow 65 

marine sediments, such as the famous lithographic limestones of southern Germany (Rauhut & 66 

Tischlinger, 2015; Tischlinger et al., 2015), the Upper Oxford Clay and Kimmeridge Clay of England 67 

(see Benson, 2008a; Benson & Barrett, 2009; Barrett et al., 2010; Carrano et al., 2012), the marine 68 

carbonates at Oker, Germany (Sander et al., 2006), or the Calcaire de Cleval Formation in eastern 69 

France (Mannion et al., 2017). Interestingly, the sparse evidence from these more eastern occurrences 70 

seems to indicate some differences with the fauna from western Iberia. Whereas the latter fauna is 71 

closely comparable to the contemporaneous fauna of the Morrison Formation of western North 72 

America  (Mateus, 2006), with even several shared genera being present (Pérez-Moreno et al., 1999; 73 

Antunes & Mateus, 2003; Escaso et al., 2007; Malafaia et al., 2007, 2015, 2017a; Hendrickx & Mateus, 74 

2014), at least the theropod fauna from more eastern European localities seems to show some Asian 75 

influence, with the metricanthosaurid Metriacanthosaurus from the Oxfordian of England (Huene, 76 

1926; Walker, 1964; Carrano et al., 2012), possible metriacanthosaurid teeth in the Kimmeridgian of 77 

northern Germany (Gerke & Wings, 2016), and compsognathid and paravian theropods from the 78 

Kimmeridgian-Tithonian of the Solnhofen Archipelago (Ostrom, 1978; Wellnhofer, 2008; Tischlinger 79 

et al, 2015; Foth & Rauhut, 2017). 80 
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Apart from the abundant record from the Lusitanian, South Iberian and Maestrazgo Basins, Late 81 

Jurassic dinosaur remains have also been reported from the Kimmeridgian Vega, Tereñes and Lastres 82 

Formations of Asturias, Spain (García-Ramos et al., 2006). In the Late Jurassic, Asturias lay between 83 

the Lusitanian Basin and the Armorican Massif, either as part of smaller islands (Cosentino et al. 84 

2010), or as part of the Iberian Massif (Thierry et al., 2000), and its fauna is thus of great interest for 85 

understanding European Late Jurassic dinosaur biogeography. Dinosaurs from these units, principally 86 

from the Vega and Lastres formations, include mainly ornithischians, with stegosaurs (Ruiz-Omeñaca 87 

et al., 2009a, 2013) and ornithopods (Ortega et al., 2006; Ruiz-Omeñaca et al., 2007, 2009b, 2010, 88 

2012) having been reported. Sauropods are rare and include remains of a turiasaur (Canudo et al., 89 

2010) and a diplodocid (Ruiz-Omeñaca et al., 2008). Theropod remains are also rare and consist mainly 90 

of isolated teeth (Canudo & Ruiz-Omeñaca, 2003; Ruiz-Omeñaca et al., 2009c). The only skeletal 91 

remain of a theropod is a large anterior caudal vertebra, which was briefly described by Martínez et al. 92 

(2000) and referred to an unspecified ceratosaur (see also Canudo & Ruiz-Omeñaca, 2003). This 93 

specimen, which is remarkable for its extremely large size, is re-evaluated here. Furthermore, the 94 

Kimmeridgian of Asturias has yielded a rich dinosaur track record (García-Ramos et al., 2006; Milàn et 95 

al., 2006; Avanzini et al., 2008; 2012; Lockley et al., 2008; Piñuela Suárez, 2015; Castanera et al., 96 

2016; Piñuela et al., 2016), including isolated tracks of giant theropods (Piñuela Suárez, 2015), which 97 

are also documented here. 98 

 99 

Geological setting 100 

The main and best-exposed Jurassic outcrops in the Asturias region extend along the sea cliffs between 101 

Gijón and Ribadesella localities (Fig. 1). The Jurassic rocks in the eastern part of Asturias overlie 102 

diverse Variscan and Permian-Triassic units and can be grouped into two main lithologically and 103 

environmentally characterized units. The lower one is predominantly made up of carbonate rocks of 104 

littoral-evaporitic (Gijón Formation) and open marine origin (Rodiles Formation). The upper unit 105 

mainly comprises siliciclastic rocks of fluvial (Vega Formation), restricted marine (shelf lagoon) and 106 

coastal (fluvial-dominated lagoonal deltas) origin, respectively represented by the Tereñes and Lastres 107 

formations (Fig. 2A). 108 

The Vega Formation, with an estimated thickness of 150m, consists of alternating white, pale grey and 109 

reddish sandstones and red mudstones with several sporadic conglomeratic beds typically arranged in 110 

minor finnig-upward cycles within a major cycle of the same character (Fig. 2B). These rocks represent 111 

fluvial deposits formed by ephemeral and highly sinuous streams separated by extensive floodplains on 112 

which calcareous palaeosols (calcretes) developed (García-Ramos et al., 2010a; Arenas et al., 2015). 113 
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Based on datations with ostracods and pollen and spores, the age of the Vega Formation is probably 114 

Kimmeridgian (Schudack and Schudack, 2002; Barrón, 2010). 115 

The climate during sediment deposition represents warm and semi-arid conditions with a strongly 116 

seasonal precipitation regime, as indicated by the local presence of gypsum crystals and veins, the 117 

palynological composition (Barrón, 2010) and the most frequent palaeosol varieties (Gutierrez and 118 

Sheldon, 2012). 119 

Fossil prospecting in the Vega Formation of the type locality along the coast 6 km west of Ribadesella 120 

town (Fig.1) yielded the theropod caudal vertebra documented in this study. The fossil bone occurred 121 

in a 0.65m thick grey bed of polygenic calcareous microconglomerate (see asterisk in Fig. 2B), which 122 

includes mainly carbonate clasts from underlying marine Jurassic units (Gijón and Rodiles formations), 123 

together with intraformational limestone and lutitic fragments from the Vega Formation. The 124 

calcareous microconglomerate passes upwards to a cross-bedded sandstone. Both lithologies are 125 

arranged in at least two finning-upwards channelised levels, showing rapid lateral variations in both 126 

thickness and grain-sizes. 127 

The vertebrate bone bed represents an amalgamation of small lenticular channels (scours) showing 128 

several episodes of lateral accretion. Their origin is related to channelised flows produced by extreme 129 

flooding events associated with heavy rainfall periods. These high discharge processes are probably 130 

supplied by the rapid recharge of water springs from an uppermost Triassic-Lower Jurassic rock aquifer 131 

emerging from a nearby fault-controlled calcareous relief located to the south (García-Ramos et al., 132 

2010a; Arenas et al., 2015; Lozano et al., 2016). 133 

A tip of a large theropod tooth (MUJA-1226) from the same level as the vertebra described here was 134 

reported by Martínez et al. (2000) and described in more detail by Ruiz-Omeñaca et al. (2009c). This 135 

crown tip is strongly labiolingually compressed, shows centrally placed, serrated carinae, mesiodistally 136 

long, rectangular denticles, antapically directed interdenticular sulci, and an anastomosing enamel 137 

texture (Fig. 3; see Ruiz-Omeñaca et al., 2009c). All of these characters are found in megalosaurid 138 

teeth, such as teeth of Torvosaurus (Hendrickx et al., 2015), so this specimen most probably represents 139 

a megalosaurid.  140 

The same level also included some small oncoids, vegetal remains, turtle fragments, crocodile teeth 141 

(Ruiz-Omeñaca, 2010), and a sauropod caudal vertebrae (MUJA-0650), as well as poorly-preserved 142 

quadrupedal dinosaur footprints.  143 

The Lastres Formation is about 400 m thick unit and consists of grey sandstones, lutites and marls with 144 

occasional conglomeratic levels (Fig. 2A). The depositional environment was characterised by a 145 

succession of fluvial-dominated lagoonal deltas. The main deposits include prodelta, crevasse-splay, 146 
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levee, distributary channel, delta front, interdistributary bay and delta-abandonment facies (Avanzini et 147 

al., 2005; García-Ramos et al., 2006; 2010b). Within the Lastres Formation, several short-term 148 

transgressive events are recorded by muddy and calcareous laterally extensive shell beds with abundant 149 

brackish-water bivalves and gastropods. This formation has provided numerous reptile tracks, not only 150 

belonging to dinosaurs, but also to pterosaurs, crocodiles, turtles and lizards (García-Ramos et al., 151 

2006; Piñuela Suárez, 2015). The footprints here studied were found as loose and isolated sandstone 152 

casts on the sea cliffs, thus no precise descriptions of the levels are provided, but most of the Lastres 153 

Formation theropod tracks are related to crevasse-splay facies. 154 

 155 

Institutional abbreviations. BYU, Brigham Young University, Provo, USA; IVPP; Institute of 156 

Vertebrate Paleontology and Paleoanthropology, Beijing, China; MOR, Musem of the Rockies, 157 

Bozeman, USA; MUJA, Museo del Jurásico de Asturias, Colunga, Spain; NHMUK, Natural History 158 

Museum, London, UK; OUMNH, Oxford University Museum of Natural History, Oxford, UK 159 

 160 

DESCRIPTION 161 

 162 

Osteological remains 163 

The vertebra MUJA-1913 is a large anterior caudal vertebra that has most of the centrum and the base 164 

of the neural arch preserved (Fig. 4); the zygapophyses, neural spine and most of the transverse 165 

processes are missing. The centrum is notably robust and amphi-platycoelous, with the articular 166 

surfaces being oval in outline and slightly higher than wide. The anterior articular surface has suffered 167 

from erosion, so that its exact size and morphology cannot be established, but the posterior articular 168 

surface is only slightly concave and only slightly higher (c. 150 mm) than wide (c. 140-145 mm as 169 

reconstructed; the right rim is eroded). In lateral view, the posterior articular surface is notably offset 170 

ventrally in respect to the anterior surface (Fig. 4A). The length of the centrum as preserved is c. 140 171 

mm, but approximately 10 mm might be missing anteriorly, so that the centrum was approximately as 172 

high as long. In ventral view, the centrum is moderately constricted to a minimal width of c. 90 mm 173 

between the articular ends. Ventrally, a broad, but shallow ventral groove is present, which becomes 174 

more marked posteriorly between the poorly developed chevron facets (Fig. 4C). The lateral sides of 175 

the centrum are strongly convex dorsoventrally and offset from the ventral surface by the broadly 176 

rounded edges of the ventral groove. On the dorsal part of the lateral side of the centrum, below the 177 

base of the neural arch, a notable, large pleurocentral depression is present (Fig. 4A). This depression is 178 
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deeper posteriorly than anteriorly, with the anteroventral part of the depression forming a small 179 

lateroposteroventrally facing platform that is offset from the deeper posterior part by a rounded, but 180 

notable oblique step.  181 

The walls of the neural arch are massive, and the neural canal is large (c. 35 mm in diametre) and round 182 

to slightly oval in outline. The base of the massive transverse process is placed entirely on the neural 183 

arch and extends for approximately the anterior three-fourths of the centrum. Posteriorly, the transverse 184 

process is supported ventrally by a stout, posterolaterally facing posterior centrodiapophyseal lamina, 185 

the ventral end of which does not reach the posterodorsal end of the centrum (Fig. 4B). Whereas the 186 

left lamina forms a sharp, posterolaterally facing edge, the right lamina seems to be more rounded, 187 

although this might be due to erosion. An anterocentrodiapophyseal lamina is only indicated by a slight 188 

depression on the anterior side of the base of the transverse process. The transverse process was 189 

laterally and strongly posteriorly directed, but has almost no dorsal inclination. Posteriorly, a large 190 

postzygocentrodiapophyseal fossa is present between the posterior centrodiapophyseal lamina and the 191 

lamina extending ventrally between the medial ends of the postzygapophyses and the neural canal (Fig. 192 

4B); as the postzygapophyses are missing and the median lamina is poorly preserved, it is unclear if a 193 

small hyposphene might have been present, but at least a marked ventral expansion of this lamina was 194 

certainly absent. A small, ridge-like lamina extending from the dorsal margin of the transverse process 195 

towards the dorsomedial rim of the neural canal subdivides the postzygocentrodiapophyeal fossa into a 196 

larger, conical ventral recess and a smaller, much shallower dorsomedial depression (Fig. 4B). 197 

Anteriorly, a small depression is present on the roof of the neural canal, being offset from the massive 198 

dorsal surface of the transverse process by a small, transverse step (Fig. 4D). The base of the broken 199 

neural spine is transversely narrow and extends over the entire length of the neural arch, showing the 200 

eroded bases of the slightly anteriorly diverging spinoprezygapophyseal laminae anteriorly. 201 

 202 

Asturian theropod tracks 203 

Five tracks of very large or gigantic theropods (footprint length (FL) more than 60 cm), were reported 204 

from the Kimmeridgian Lastres Formation of Asturias by Piñuela Suárez (2015). Following the 205 

definition of Marty et al. (2017), according to which giant theropod tracks are those of a FL longer than 206 

50 cm, two more Asturian tracks can be added in the present study (see table 1 for measurements). The 207 

footprints (all more than 53 cm long) are preserved as sandstone casts and can be classified into two 208 

groups by morphology (Piñuela Suárez, 2015).  209 
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Morphotype A is represented by four tracks (Argüero, Oles and Tazones specimens and MUJA-1889; 210 

Fig. 5), which, although slightly different in morphology, are robust and weakly mesaxonic. The 211 

FL/FW ratio is very low (0.88-1.16), one of them (Argüero; Fig. 5A) is even wider than long and 212 

another has similar length and width. The digit impressions are broad and generally show claw marks 213 

(Fig. 5). The divarication angle (II^IV) lies between 36º and 40º. In some of these tracks the digital 214 

pads are subtly visible. Based on the morphology, the Asturian footprints would form part of the 215 

Megalosauripus-Kayentapus-group proposed by Piñuela Suárez (2015), even though the tracks 216 

attributed to the latter ichnogenus never present such sizes. The specimens of morphotype A are 217 

thought to represent more graviportal theropods (Piñuela Suárez, 2015).  218 

Morphotype B is represented by three footprints (MUJA-1263, MUJA-0213 and Argüero specimens; 219 

Fig. 6), which seem to be much longer than wide (digit IV is lacking in two of them) and with a strong 220 

mesaxony. Pad impressions are only preserved in MUJA-1263 (Fig. 6A), despite being the cast of a 221 

shallow undertrack. Thus, in this specimen the claw impressions are wide and robust, whereas in the 222 

other two they are very narrow in comparison with the digit width. The morphology of these footprints 223 

does not fit in large or very large known theropod ichnogenera, but rather in smaller ones characterized 224 

by a high mesaxony, such as Grallator (Piñuela Suárez, 2015). The problematic issue of vertebrate 225 

ichnogenera and their sizes was discussed by Bertling et al. (2006), who noted that they were “reluctant 226 

to use size at the ichnospecies rank and reject it altogether at higher ranks” (Bertling et al., 2006: 274). 227 

This set of tracks seems to represent more cursorial theropods (Piñuela Suárez, 2015) than morphotype 228 

A.  229 

 230 

DISCUSSION 231 

 232 

Systematic affinities of MUJA-1913 233 

Despite the incomplete preservation of the caudal vertebra reported here, its systematic affinities can be 234 

narrowed down to at least a higher taxonomic category, although not to generic or species level. Large-235 

bodied theropod dinosaurs reported from the Late Jurassic of Europe so far include members of the 236 

Ceratosauridae (Antunes & Mateus, 2003; Mateus et al., 2006; Malafaia et al., 2015), Megalosauridae 237 

(Antunes & Mateus, 2003; Mateus et al, 2006; Carrano et al., 2012; Hendrickx & Mateus, 2014; 238 

Malafaia et al., 2017a), Metriacanthosauridae (Huene, 1926; Walker, 1964; Carrano et al., 2012), and 239 

Allosauridae (Pérez-Moreno et al., 1999; Mateus et al., 2006; Malafaia et al., 2007, 2008a, 2010). 240 

Thus, comparisons of MUJA-1913 will mainly be with these clades. 241 
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Concerning the position of MUJA-1913 within the caudal vertebral column, this element can be quite 242 

confidently identified as a second or third caudal vertebra. Arguments in favour of this are the well-243 

developed posterior centrodiapophyseal lamina, which is only present in the anteriormost caudal 244 

vertebrae, but is usually already less pronounced by caudal vertebra four (Madsen, 1976). On the other 245 

hand, the first caudal usually lacks chevron facets, but they are present on the posterior end of the 246 

centrum in MUJA-1913. 247 

As no vertebral material of Ceratosaurus (the only ceratosaurian genus identified from the Jurassic of 248 

Europe so far) or any other ceratosaur has been described from the Jurassic of Europe, comparisons can 249 

only be made with Ceratosaurus from the Morrison Formation of the western US (Gilmore, 1920; 250 

Madsen & Welles, 2000). Anterior caudal vertebrae of this taxon differ from MUJA-1913 in the 251 

considerably higher than wide articular facets of the centrum (Madsen & Welles, 2000: pl. 7), the lack 252 

of a pronounced offset of the articular facets (Gilmore, 1920; Madsen & Welles, 2000), presence of a 253 

considerably narrower, deeper and better defined groove on the ventral side (Gilmore, 1920: pl. 22; 254 

Madsen, 1976: fig. 8B), the presence of a large, ventrally expanded hyposphene in the anterior caudals, 255 

and the relatively smaller and not subdivided postzygocentrodiapophyseal fossa (Madsen & Welles, 256 

2000). The anterior caudal vertebrae of Ceratosaurus have marked pleurocentral depressions on the 257 

dorsolateral side of the centrum (see Gilmore, 1920: pl. 22), but these are larger and less well-defined 258 

than in MUJA-1913. Concerning other ceratosaurian lineages, anterior caudal vertebrae of abelisaurs 259 

differ markedly from MUJA-1913 in lacking noted pleurocentral depressions, having well-developed 260 

hyposphenes in anterior caudals (with the exception of Majungasaurus; O'Connor, 2007), and usually 261 

strongly dorso-latero-posteriorly directed transverse processes (see Méndez, 2014). A referral of 262 

MUJA-1913 to Ceratosauria (Martínez et al., 2000; Canudo & Ruiz-Omeñaca, 2003) thus seems 263 

untenable. 264 

The anterior caudal vertebrae of the metriacanthosaurids Metriacanthosaurus (OUMNH J 12144) and 265 

Sinraptor (IVPP 10600; Currie & Zhao, 1993) and the allosaurid Allosaurus (e.g. MOR 693; Madsen, 266 

1976) have centra that are notably higher than wide, have less notably offset anterior and posterior 267 

articular facets, narrow towards their ventral side and lack both a notable pleurocentral depression on 268 

the lateral side of the centrum as well as the subdivision of the postzygocentrodiapophyseal fossa. 269 

Furthermore, a well-developed, ventrally expanded hyposphene is present in the anterior caudal 270 

vertebrae of metriacanthosaurids, and the ventral groove, if present, is notably narrower in allosauroids. 271 

In contrast, the anterior caudal vertebrae of the megalosaurine megalosaurids Megalosaurus and 272 

Torvosaurus are very similar to MUJA-1913.  Both of these taxa have very massive anterior caudal 273 
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vertebral centra with a broad, posteriorly deepening ventral groove and a pronounced offset of the 274 

articular surfaces (NHMUK R 9672; BYU 13745; Britt, 1991; Benson, 2010), and the presence of 275 

marked pleurocentral depressions on the lateral sides of the caudal centra was found to be a 276 

megalosaurine synapomorphy by Rauhut et al. (2016). Furthermore, these taxa lack expanded 277 

hyposphenes in the caudal vertebrae and a subdivision of the postzygocentrodiapophyseal fossa into a 278 

larger ventrolateral and a smaller, very shallow dorsomedial portion is also present in at least one 279 

vertebra of Megalosaurus (NHMUK R 9672), and seems to be also present in Torvosaurus (BYU 280 

13745, BYU 5086). A small depression on the dorsal roof of the anterior part of the base of the 281 

transverse process, very similar to that in MUJA-1913, is also present in the anteriormost preserved 282 

caudal vertebra of the megalosaurid Wiehenvenator (Rauhut et al., 2016). Given these similarities, 283 

including the possibly apomorphic characters of marked pleurocentral depressions and a subdivided 284 

postzygocentrodiapophyseal fossa, we refer MUJA-1913 to an indeterminate megalosaurine 285 

megalosaurid. Given that the genus Torvosaurus has been identified from the Late Jurassic of the 286 

Iberian Peninsula (Antunes & Mateus, 2003; Hendrickx & Mateus, 2014; Malafaia et al., 2017a), this 287 

vertebra might represent this taxon, but a positive generic or specific identification of this incomplete 288 

element is impossible. 289 

 290 

Size of MUJA-1913 291 

One striking feature of the vertebra from the Vega Formation is its enormous size. With a posterior 292 

centrum height of 150 mm, MUJA-1913 is larger than most anterior caudals for which measurements 293 

can be found in the literature. In particular, anterior caudals of Torvosaurus tanneri are about 25% 294 

smaller (Britt, 1991), an anterior caudal of Spinosaurus aegyptiacus is c. 10% smaller (Stromer, 1915), 295 

and one of the largest theropod caudals from the Jurassic, for which measurements were given, a 296 

possible carcharodontosaurid caudal from the Tendaguru Formation (Rauhut, 2011), is also c. 25% 297 

smaller than the specimen described here. Larger caudal vertebrae are present in the gigantic 298 

Cretaceous carcharodontosaurids (e.g. Canale et al., 2015) and Tyrannosaurus (Brochu, 2003), but 299 

might also be found in the largest allosauroid predators of the Late Jurassic Morrison Formation of the 300 

western USA (Chure, 1995, 2000; Williamson & Chure, 1996), though no measurements are available 301 

in the literature for these specimens. However this may be, Hendrickx & Mateus (2014) argued that the 302 

holotype of Torvosaurus guerneyi represented the largest theropod dinosaur yet recorded from Europe 303 

(see also specimens described by Malafaia et al., 2017a). This specimen includes a partial anterior 304 

caudal vertebra, the posterior articular surface of which is about 15% smaller than that of MUJA-1913. 305 
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Thus, given that the specimen from the Vega Formation probably belongs to a closely related taxon, 306 

this specimen probably represents the largest theropod dinosaur recorded so far in Europe, and 307 

represents an apex predator of more than 10 m in length. 308 

It should be noted that Pharisat (1993) briefly reported large theropod caudal vertebrae from the 309 

Oxfordian of Plaimbois-du -Miroi, Doubs, France (see also Allain & Pereda-Suberbiola, 2003), which, 310 

according to the measurements given, are of closely comparable size to MUJA-1913. Although no 311 

detailed description of these elements has ever been published, the general shape of the centra and 312 

neural arches, the presence of a marked pleurocentral depression in the slightly more posterior vertebra, 313 

the almost circular outline of the posterior articular surface and the absence of a hyposphene in the 314 

probably first caudal, and the subdivision of the postzygocentrodiapophyseal fossa into a dorsomedial 315 

platform and a larger, conical ventrolateral depression indicate megalosaurid affinities for these 316 

elements (observations based on unpublished photographs provided by Daniel Marty and Christian 317 

Meyer). 318 

Other large Late Jurassic theropods from Europe have been reported on the basis of isolated teeth (e.g. 319 

Lapparent, 1943; Buffetaut and Martin, 1993; Rauhut & Kriwet, 1994; Canudo et al., 2006; Ruiz-320 

Omeñaca et al., 2009c; Cobos et al., 2014; Gerke & Wings, 2016; Malafaia et al., 2017b), and some of 321 

these specimens might represent animals that match MUJA-1913 in size (e.g. specimen described by 322 

Cobos et al. [2014]; largest specimens described by Malafaia et al. [2017b]). However, as relative tooth 323 

size varies widely in theropods, a direct size comparison is impossible.  324 

 325 

Ichnological evidence of giant theropods from the Kimmeridgian of Asturias 326 

Regarding the giant theropod track record, Cobos et al. (2014) recently proposed that the Late Jurassic-327 

Early Cretaceous (Berriasian) theropod tracks can be divided in two main groups (Ichno-group 1: 328 

Bueckeburgichnus-Hispanosauropus-Megalosauripus vs Ichno-group 2: Iberosauripus), which can be 329 

distinguished by their narrowness / robustness, the proportion of the length of digit III (mesaxony) or 330 

footprint proportions (FL/FW ratio). The authors proposed that these two main groups might have been 331 

produced by members of Allosauridae and Megalosauridae, respectively. 332 

We partially agree with the two ichno-groups related to the narrowness/robustness and strong/weak 333 

mesaxony proposed by Cobos et al. (2014) but less so with the ichnogenera included within them  (due 334 

to unresolved problems in ichnotaxonomy), and the identification of some trackmakers (see below).  335 

The validity of the Cretaceous German ichnogenus Bueckeburgichnus Kuhn, 1958, based on a poorly 336 

preserved footprint, is questionable, because the irregular shape of the digits and the relatively high 337 

total divarication angles suggesting extramorphological characters. Besides, the ichnogenus was 338 
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created on the basis of only one specimen. Thus, the outline of the track reflects only partially the pedal 339 

morphology of the theropod. The tracks included in this ichnogenus were considered to be 340 

Megalosauripus by Piñuela Suárez (2015; see also Hornung et al., 2012).  341 

The same applies to Hispanosauropus (Mensink and Mertmann, 1984; Lockley et al., 2007) from the 342 

Kimmeridgian of Asturias, considered to be no valid ichnogenus by Piñuela Suárez (2015), who 343 

included these Asturian tracks also in Megalosauripus. The poor preservation, which again does not 344 

reflect faithfully the foot morphology of the trackmaker, the probability of destruction and thus loss of 345 

the topotype located on an unstable sea cliff and the lack of a cast in any museum are enough reasons to 346 

reject the validity of this ichnogenus (see also Lockley et al., 2007). 347 

Another problem concerns the comparison between Megalosauripus (Lockley et al., 2000; Fanti et al., 348 

2013) and Iberosauripus (Cobos et al. ,2014).  349 

On one hand, both shallow and deep undertracks belonging to large theropods, very frequent in 350 

Asturias and usually preserved as casts, are normally wider than the casts of the true tracks (Piñuela 351 

Suárez, 2015). This gives rise to footprints with relatively broader digit impressions, similar to 352 

Iberosauripus.  353 

On the other hand, tracks produced in carbonate sediments, as in the case of Iberosauripus, are often 354 

not well preserved. They sometimes tend, as in the undertracks, to be wider than the foot of the 355 

trackmaker and show also broader digit impressions. Moreover, according to Razzolini et al. (2017) the 356 

material of Iberosauripus grandis is rather poorly preserved. As stated correctly by Dalla Vecchia 357 

(2008: 99) “the footprint morphology is highly influenced by the properties of the substrate, mainly in 358 

carbonate sedimentary settings” (see also Dalla Vecchia and Tarlao, 2000; Belvedere et al., 2008; Fanti 359 

et al., 2013). 360 

Thus, the substrate might have played a role when Iberosauripus was produced by giant theropods, 361 

giving similar footprints to the type specimen of Megalosauripus (Lockley et al., 2000; see also 362 

Lockley et al., 1996). Although some detailed comparisons have recently been offered by Marty et al. 363 

(2017) and Razzolini et al. (2017), a detailed revision of the ichnogenus Megalosauripus and an 364 

evaluation of the possible impact of locomotion and substrate in the production of similar tracks, such 365 

as Iberosauripus, but also Jurabrontes (Marty et al., 2017) are necessary to clarify the ichnotaxonomic 366 

status of these tracks. 367 

Following from the previous considerations, we propose two morphogroups, one of them represented 368 

by the Asturian morphotype A and identified as Megalosauripus-like tracks and the other by the 369 

Asturian morphotype B. The notably divergent morphology of the tracks included in morphotypes A 370 
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and B indicates that at least two taxa of giant theropod were present in the Kimmerdigian of Asturias. 371 

In general terms, the two morphotypes conform to the distinction proposed by Cobos et al. (2014) in 372 

that morphotype A represents a very robust animal, whereas morphotype B seems to stem from much 373 

more gracile theropods. 374 

With up to 82 cm, the Asturian specimens show footprint lengths that fall within the range of the 375 

largest tracks in the world (Boutakiout et al., 2009; Piñuela Suárez, 2015; Marty et al. 2017). Some of 376 

these large predators from the Late Jurassic of Asturias apparently had cursorial adaptations, as 377 

deduced from the morphological study of their footprints (morphotype B), which show strong 378 

mesaxony (sensu Lockley, 2009); their claw impressions, when preserved, are long and very narrow. 379 

These dinosaurs were as large as, but more agile than trackmakers of Megalosauripus-like tracks, and 380 

the largest theropod trackmakers from the Jurassic of Asturias were thus similar in size to 381 

Tyrannosaurus rex, based on known footprints of that taxon (e.g. Lockley & Hunt, 1994; Manning et 382 

al., 2008; McCrea et al., 2014) and foot skeletons (e.g. Brochu, 2003). 383 

 384 

Late Jurassic apex predators in Europe 385 

Apart from the ichnotaxonomic questions discussed above, the question remains which theropod 386 

groups are represented by these giant tracks. As noted above, Cobos et al. (2014) suggested a division 387 

of theropod tracks into two larger categories of robust and gracile prints (regardless of the exact 388 

identification to ichnogenus or ichnospecies level), which they considered to represent megalosaurids 389 

and allosaurids, respectively. The main argument for this identification was the relative robustness or 390 

slenderness of the tracks: as the only well-known Late Jurassic megalosaurid, Torvosaurus, is a very 391 

robust animal (Britt, 1991; Hendrickx & Mateus, 2014; Malafaia et al., 2017a), whereas the best known 392 

allosaurid, Allosaurus, is much more gracile (e.g. Gilmore, 1920), Cobos et al. (2014: 37-38) argued 393 

that the more robust tracks were probably made by megalosaurids, whereas the more slender tracks 394 

correspond to allosaurids. 395 

However, this suggestion is somewhat simplistic and problematic for several reasons. The first and 396 

obvious problem (also noted by Cobos et al., 2014) is that no complete pes is known in any Jurassic 397 

non-coelurosaurian tetanuran with the exception of Allosaurus (Madsen, 1976), nor for any large 398 

ceratosaurian. Even in the very complete holotype specimen of the metriacanthosaurid Sinraptor dongi, 399 

several pedal phalanges are missing (Currie & Zhao, 1993), and at the most isolated phalanges are 400 

known for megalosaurids (Sereno et al., 1994; Allain & Chure, 2002; Sadleir et al., 2008). Thus, a 401 

synapomorphy-based correlation (sensu Carrano and Wilson, 2001) between pedal morphology and 402 
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trackways in large basal tetanurans is currently impossible. However, known complete pedes of 403 

Allosaurus (e.g. Gilmore, 1920; Evers, 2014) do not seem to show the extreme differences in digit III 404 

as opposed to digits II and IV that would lead to the mesaxony seen in one of the largest footprints 405 

ascribed to morphotype B described here (MUJA-0213). This extreme mesaxony is a strange situation 406 

in large theropod tracks as generally they tend to show lower mesaxony values than smaller theropod 407 

tracks (e.g.: Grallator-Eubrontes plexus; Lockley, 2009). 408 

A second problem in the identification proposed by Cobos et al. (2014) is that it neither takes the 409 

systematic nor the morphological variation of known Jurassic averostrans that reach large to giant sizes 410 

into account. First, allosaurids are not the only large allosauroids known from Europe, with the English 411 

metriacanthosaurid Metriacanthosaurus representing an animal of similar or even greater size than 412 

known specimens of Allosaurus from Europe (Huene, 1926; Walker, 1964; Pérez-Moreno et al., 1999; 413 

Mateus et al., 2006; Malafaia et al., 2010). However, the better known metriacanthosaurids from China 414 

are similar in proportions and robustness to Allosaurus (e.g. Dong et al., 1983; Currie & Zhao, 1993; 415 

Gao, 1999), and the pes of Sinraptor does also not seem to be significantly different from that of 416 

Allosaurus (see Madsen, 1976; Currie & Zhao, 1993). Thus, the more slender tracks of Ichno-Group 1 417 

of Cobos et al. (2014) might represent metriacanthosaurids as well as allosaurids. On the other hand, 418 

the largest allosaurid known from the Late Jurassic Morrison Formation of North America, 419 

Saurophaganax, is a more robustly built animal (Chure, 1995, 2000), whereas afrovenatorine 420 

megalosaurids, such as Afrovenator (Sereno et al., 1994) and Eustreptospondylus (Sadleir et al., 2008) 421 

are rather gracile animals. Although Eustreptospondylus from the Callovian-Oxfordian boundary of 422 

England represents the youngest afrovenatorine currently known from Europe (and, possibly globally, 423 

depending on the uncertain age of Afrovenator), the Late Jurassic European theropod fossil record is 424 

insufficient to completely rule out their survival into later stages, and at least caution is advisable in 425 

identifying tracks as allosauroid on the basis of their slenderness only. 426 

Finally, the basal ceratosaur Ceratosaurus, known from the Late Jurassic of Portugal (Antunes & 427 

Mateus, 2003; Mateus et al., 2006; Malafaia et al., 2015) is a rather large animal as well (Gilmore, 428 

1920; Madsen & Welles, 2000). Although the holotype of Ceratosaurus nasicornis has been estimated 429 

with a total length of slightly more than 5 m (Gilmore, 1920), the type of C. dentisulcatus is about 22% 430 

larger (Madsen & Welles, 2000), and other specimens (e.g. BYU 881) reach sizes comparable to that of 431 

large specimens of Allosaurus. As Ceratosaurus is also a rather gracile animal, exceptionally large 432 

individuals of this or a closely related taxon could also have made the more gracile tracks. 433 
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Concerning megalosaurine megalosaurids, no pedal elements other than metatarsals have been 434 

described for any of the included genera Duriavenator, Megalosaurus, Wiehenvenator, and 435 

Torvosaurus (Galton & Jensen, 1979; Britt, 1991; Benson, 2008b, 2010; Hanson & Makovicky, 2014; 436 

Hendrickx & Mateus, 2014; Rauhut et al., 2016; Malafaia et al., 2017a). However, at least 437 

Megalosaurus, Wiehenvenator and Torvosaurus are notable for their extreme robustness, and 438 

Williamson & Chure (1996: 78) cite a personal communication by James Madsen, according to which 439 

the pedal phalanges of Torvosaurus are notably short and wide. These observations are thus in 440 

agreement with the suggestion by Cobos et al. (2014) that the very robust tracks with a low mesaxony 441 

might represent (megalosaurine) megalosaurids. Nevertheless, we agree with Marty et al. (2017) that 442 

caution is advisable in assigning giant theropod tracks from the Jurassic to any clade unless better data 443 

on pedal morphology in basal tetanurans becomes available. 444 

Regardless of the exact identification of the trackmaker, European sites have yielded some of the 445 

largest known Jurassic theropod tracks, such as the trackways described from the Middle Jurassic of 446 

Oxforshire, UK, (Day et al., 2004) and Vale de Meios, Portugal, (Razzolini et al., 2016), which were 447 

made by giant theropods, tentatively attributed to Megalosaurus and to the Megalosauridae, 448 

respectively. Recently, Marty et al., (2017) described new giant theropod tracks (Jurabrontes 449 

curtedulensis) from the Kimmeridgian of NW Switzerland. This new ichnotaxon is characterized by 450 

tracks that are slightly longer than wide and show weak mesaxony, and, as the authors suggested, can 451 

be included within the main features of the Ichno-Group 2 of Cobos et al., (2014). These authors 452 

emphasized that some of the Jurabrontes tracks are among the largest theropod tracks worldwide. 453 

However, the Kimmeridgian of Asturias is the only Jurassic European site that has yielded tracks of 454 

two giant theropods (gracile and robust) so far, indicating that two different clades of giant theropods 455 

were present here.  456 

Concerning osteological remains, the identification of MUJA-1913 as a megalosaurid adds to the 457 

already diverse European fossil record of the clade. As discussed by Benson (2010), Carrano et al. 458 

(2012) and Rauhut et al. (2016), megalosaurids were taxonomically diverse and widespread in the 459 

Middle Jurassic of Europe. However, whereas megalosaurids are rare in the Kimmeridgian-Tithonian 460 

Morrison Formation of the western US (Foster, 2003; Rauhut et al., 2016), and unknown from the Late 461 

Jurassic of Asia, they seem to be abundant and wide-spread in the Late Jurassic of Europe. From the 462 

Lusitanian Basin, the large megalosaurid Torvosaurus guerneyi and several other megalosaurid 463 

postcranial specimens, numerous teeth, as well as eggs and embryos were described (Antunes & 464 

Mateus, 2003; Mateus et al., 2006; Malafaia et al., 2008b, 2017a, b; Araújo et al., 2013; Hendrickx & 465 
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Mateus, 2014). From the Late Jurassic Villar del Arzobispo Formation of the Iberian Range, Gascó et 466 

al. (2012) and Cobos et al. (2014) referred isolated teeth to the Megalosauridae, including the largest 467 

tooth specimen found in these rocks (Cobos et al., 2014). Likewise, Gerke & Wings (2016) identified 468 

the largest theropod teeth in their sample from the Kimmeridgian of northern Germany as probable 469 

megalosaurids. Furthermore, the early juvenile megalosaurid Sciurumimus was found in the 470 

Kimmeridgian Torleite Formation of Bavaria (Rauhut et al., 2012; the layers were referred to the 471 

Rögling Formation in that paper, but recent lithostratigraphic revisions place the Kimmeridgian beds at 472 

Painten in the Torleite Formation; Niebuhr & Pürner, 2014). Apart from the fragmentary skeleton of 473 

the large-bodied metriacanthosaurid Metriacanthosaurus from the Oxfordian Oxford Clay (Huene, 474 

1926; Walker, 1964), all identifiable large theropod remains from the Late Jurassic of England seem to 475 

represent megalosaurids as well, including remains of a large maxilla and a very robust tibia from the 476 

Kimmeridge Clay (Benson & Barrett, 2009; Carrano et al., 2012). As noted above, the largest Jurassic 477 

theropod remains found in France (Pharisat, 1993) also seem to represent a megalosaurid. The 478 

specimen described here from the Kimmeridgian of Asturias fits well in this general panorama.  479 

Thus, megalosaurid theropods seem to have represented the largest predators on all of the Late Jurassic 480 

European landmasses that we have fossil evidence for, together with allosaurids in the western parts of 481 

Europe and metriacanthosaurids in the eastern areas. As these parts of Europe were an assemblage of 482 

medium-sized islands and most of the sediments that have yielded theropod remains are either 483 

nearshore terrestrial or even marine beds, this seems to support the suggestion of Rauhut et al. (2016) 484 

that megalosaurids might have preferred nearshore environments, and that the apparent faunal change 485 

from megalosaurid-dominated to allosauroid-dominated faunas from the Middle to the Late Jurassic 486 

might rather reflect regional and environmental biases in the fossil record of Jurassic theropods. 487 

Given the abundance and wide distribution of megalosaurids in the Late Jurassic of Europe, the 488 

question arises if different lineages of megalosaurids populated the different landmasses, possibly 489 

evolving in isolation from their Middle Jurassic predecessors, or if an interchange of megalosaurid taxa 490 

between the different islands might have been possible. The presence of abundant theropod tracks, the 491 

largest of which are often related to megalosaurids, in shallow marine or carbonate platform 492 

environments (e.g. Marty et al. 2017) might indicate that short time sea level changes may have 493 

allowed some faunal interchange between otherwise separate landmasses during the Late Jurassic 494 

(Meyer, 2012). Indeed, Marty et al., (2017) suggested that the Jura carbonate platform could have 495 

represented a “faunal exchange corridor” of the dinosaur faunas between the southern and the northern 496 

landmasses.  497 
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 498 

CONCLUSIONS 499 

 500 

The presence of very large theropods in the Asturian Basin (Northern Spain) during the Upper Jurassic 501 

(Kimmeridgian) is confirmed by both the footprints and skeletal remains. Whereas the only skeletal 502 

remain of a giant theropod from the Vega Formation represents a megalosaurine megalosaurid, the 503 

track record indicates at least two taxa of giant theropods in the slightly younger Lastres Formation. 504 

Both osteological and ichnological evidence indicates that very large to giant theropod dinosaurs were 505 

widespread in Europe in the Late Jurassic, and the largest representatives seem to have been close to 506 

the maximum body size recorded for theropods. Given that Europe represented an assemblage of larger 507 

and smaller islands at that time, this is surprising, as maximum body size is usually correlated with 508 

available land mass in vertebrates (Marquet & Taper, 1998; Burness et al., 2001), and island dwarfing 509 

has been reported in dinosaurs (e.g. Sander et al., 2006; Stein et al., 2010). A possible solution to this 510 

apparent contradiction might be that short time sea level changes allowed faunal interchange between 511 

the different islands that constituted Europe repeatedly during the Late Jurassic. Dinosaur tracks 512 

preserved in shallow marine carbonate platform environments might be direct evidence for this (Marty 513 

et al., 2017). The preference of nearshore environments in megalosaurids, possibly in search for 514 

suitable food (Razzolini et al., 2016) might furthermore explain the wide distribution of this group in 515 

the European archipelago. 516 
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Figure 1

Geological map of the eastern Asturian sector, including the location of Vega beach

(Ribadesella).

Modified after Merino-Tomé et al. (2013).
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Figure 2

Geology of the Asturian Jurassic.

A, General stratigraphic log of the Asturian Jurassic along the Tazones-Ribadesella sector. Not

to scale. Modified after García-Ramos et al. (2011). B, Detailed log of the lower part of the

Vega Formation (after García-Ramos et al., 2010c). The level where the vertebra was found is

indicated by an asterisk.
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Figure 3

Tip of a large megalosaurid tooth from the Vega Formation.

A, general view in lingual or labial view. B, detail of distal serrations and anastomosing

enamel ornamentation. Scale bars are 10 mm.
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Figure 4

Anterior caudal vertebra of a giant megalosaurid from the Vega Formation, MUJA-1913.

A, left lateral view. B, posterior view. C, ventral view. D, dorsal view. ch, chevron facet; d,

depression on anterior end of dorsal surface of transverse process; l, lamina dividing the

conical postzygocentrodiapophyseal fossa from a shallow dorsal depression; pcd,

pleurocentral depression; pcdf, postzygocentrodiapophyseal fossa; pcdl, posterior

centrodiapophyseal lamina; vg, ventral groove. Scale bar is 50 mm.
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Figure 5

Asturian Jurassic footprints with a weak mesaxony and probably related to very large or

giant megalosaurid theropod trackmakers (Morphotype A).

A, B and C specimens still on Argüero, Oles and Tazones sea cliffs, respectively. Noted track

C does not preserved the end of the digit IV. D, MUJA-1889.
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Figure 6

Giant Asturian Jurassic footprints, strongly mesaxonic (Morphotype B).

A, MUJA-1263. B, MUJA-0213, scale bar: 1 m. C, specimen still on Argüero sea cliffs.
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Table 1(on next page)

Measurements of the Asturian tracks.

R (Right foot) L (Left foot) FL (Footprint length), WL (Footprint width), II^IV total divarication

angle. For the specimens see Figs. 5 and 6.
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1 Table 1 

2

Morphotype A Foot FL WL FL/WL II^IV

Argüero R 62 70 0.88 36

Oles L 82 66 1.24 38

Tazones L 57 >47 >1.16 38

MUJA-1889 L 53 53 1 40

Morphotype B

MUJA-1263 R 62 38 1.63 15

MUJA-0213 R 78

Argüero R 67

3
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