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ABSTRACT
We evaluated allometric relationships in length, diameter, and mass of branches
for two variably managed orchard tree species (tart cherry, Prunus cerasus; apple,
Malus spp.). The empirically estimated allometric exponents (a) of the orchard trees
were described in the context of two processed-based allometry models that make
predictions for a: the West, Brown and Enquist fractal branching model (WBE) and
the recently introduced Flow Similarity model (FS). These allometric models make
predictions about relationships in plant morphology (e.g., branch mass, diameter,
length, volume, surface area) based on constraints imposed on plant growth by physical
and physiological processes. We compared our empirical estimates of a to the model
predictions to interpret the physiological implications of pruning and management in
orchard systems.Our study found strong allometric relationships among the species and
individuals studied with limited agreement with the expectations of either model. The
8/3-power law prediction of themass∼ diameter relationship by theWBE, indicative of
biomechanical limitations, was marginally supported by this study. Length-including
allometric relationships deviated from predictions of both models, but shift toward the
expectation of flow similarity. In this way, managed orchard trees deviated from strict
adherence to the idealized expectations of the models, but still fall within the range of
model expectations in many cases despite intensive management.

Subjects Agricultural Science, Computational Biology, Ecology, Plant Science
Keywords Malus spp., Prunus cerasus, Flow Similarity, Canopy structure, Biomass, WBE model,
Allometry, Tree architecture

INTRODUCTION
The physical structure of a plant emerges from species-specific growth strategies for
accessing scarce environmental resources such as light, water, and nutrients (Pacala &
Tilman, 1994; Grossman & DeJong, 1995; Kobe, 2006). While species vary in their strategies
for growing in resource-limited environments, even when resources are not limited, growth
is constrained by physiological limits on processes such as photosynthesis and resource
transport (Murneek & Logan, 1932; Niklas & Kerchner, 1984). The diversity of plant form
that exists in nature reveals the many ways that plants evolved to balance trade-offs between
external environmental and internal physiological limitations (Niklas, 1997). Despite the
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diversity of plant form, however, there are still emergent patterns in plant structure that
may reflect the impact of underlying constraints on plant physiology (Price et al., 2010).

One aspect of plant formwhere physiological constraints on plant growthmay be evident
is aboveground morphology or architecture (Niklas, 2004). Aboveground morphology of
plants often exhibits regular patterns referred to as allometric relationships (Huxley &
Teissier, 1936; Lacointe, 2000). Allometric relationships describe how plant size (e.g., mass
or diameter) relates to other dimensions of morphology such as branch length, surface area,
or volume. These relationships are often highly constrained (i.e., show limited variance)
and are typically well described by power law equations of the form:

y = bxa

where y is the measurement of some trait of interest, x is a measure of plant size, and a
and b represent values that describe the form of the relationship, the allometric exponent
and multiplier, respectively. This equation is often expressed in log–log space which then
expresses a as the slope of a linear relationship and b as the y-intercept.

Although powerful for generalizing patterns in plant architecture, allometries are often
established for specific species of plants grown in specific conditions (Brown, 1997; Niklas,
2004). Various models exist attempting to explain why allometries often take the general
form of a power law and why we often see a narrow range of allometric exponent values
(a) in empirical data. The exact value and importance of a remains debated (Thompson,
1942; Enquist et al., 2007; Coomes, Lines & Allen, 2011; Price et al., 2012) as is the usefulness
of an allometric approach to describing plant form, especially in applied settings (Le Roux
et al., 2011). Applied models of plant architecture require detailed information for plant
response to growing conditions andmanagement (Le Roux et al., 2011; Lang & Lang, 2008).
Therefore, the future improvement of morphological plant modeling requires availability
of detailed information of plant growth and management linked with models that provide
detailed plant information with mathematical perspective (Bucksch et al., 2017).

This study contributes detailed information about plant morphology for mature orchard
fruit species and links the physiological information with two process-based plant allometry
models that provide expected ranges of allometric exponent values that should be consistent
across the diversity of plant species. However, orchard trees experience unique growing
conditions that may be expected to deviate from the general patterns described in the
process-based plant allometry models. The genetic material and management regimen of
orchard trees provides a distinct manipulated environment and set of growing conditions.
Clonal rootstocks that influence tree growth and partitioning are grafted to scion wood that
produces favorable fruit (Robinson, 2007). The orchard environment is heavily subsidized
with water and nutrients, reducing the effect of resource limitation on plant architecture.
With high subsidies of water and nutrients, physiological constraints should be the primary
influence on plant growth (Deng et al., 2012). However, tree architecture is also directly
manipulated by pruning and training to improve light penetration, airflow, and fruit
production (Lauri et al., 2011). Dormant season pruning, the destructive removal of
branches in winter months, impacts the growth trajectory of trees by removing growing
nodes and displacing growth hormones. Trees respond to pruning the following growing
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season with localized invigoration of retained buds and branches and an overall dwarfing
of tree size (Ferree & Schupp, 2003). How controlled genetic material, environmental
manipulation, and pruning interact to affect the overall allometry of an orchard tree is
unknown.

We compare two variably managed orchard tree species using process-based allometry
models as context to describe the effects of human manipulation on allometry. Allometries
have been widely used in themanagement of orchard systems to predict carbon partitioning
to fruit (Westwood & Roberts, 1970; Lacointe, 2000). However, the allometric relationships
used in horticulture can be rigid and lack linkages to the underlying processes generating
estimates of a. In contrast, a recently proposed process-based allometry model called
Flow Similarity (FS) attempts to explicitly explain the variation in a by incorporating two
fundamental physical processes constraining plant growth: hydraulics and biomechanics
(Price et al., 2015). The hydraulic constraint is described as ‘flow similarity’, which is the
condition where a constant flow rate and velocity of water is maintained through the
plant vascular network by area-preserving branching (Shinozaki et al., 1964; McCulloh &
Sperry, 2005). The biomechanical constraint is described as ‘elastic similarity’, where each
branch grows to the structural limit at which if it were to grow any larger it would break
under its own weight (McMahon & Kronauer, 1976; Niklas, 1992). The FS model explicitly
recognizes that a tree grows dynamically in order to optimize water use while providing a
sufficient structural architecture. New growth and branches at the distal end of a plant are
likely to express flow similarity, while the trunk and basal structural branches that bear the
majority of weight of the plant are likely to express elastic similarity. From this dynamic
view of interacting physical constraints, FS predicts a range of a that falls within the bounds
of hydraulic and biomechanical constraints (Table 1). The FS approach to expressing
dynamic constraints between hydraulic and biomechanical limits is included as context for
the interpretation of our analysis in addition to a more established model derived by West,
Brown and Enquist that is built on similar processes but makes different predictions (WBE;
1997). WBE assumes that the interaction between biomechanical and hydraulic processes
is fixed within and across species, but still offers a range of a predictions in some cases that
recognizes the various physiological constraints between small and young growth that is
constrained by water versus large and old growth that is constrained by weight (Table 1;
Enquist et al., 2007).

The application of process-based allometry models to interpret the plant architecture of
orchard trees provides the opportunity to understand how human management impacts
the fundamental physiological constraints described by allometry and how these constraints
on plant growth and morphology influence how managed trees respond to human
manipulation. Are the allometric relationships of managed trees still consistent with
expectations from process-based allometric models built to explain plant architecture
of unmanaged trees? Or, does human manipulation of the natural architecture push
orchard trees away from basic physical and biological constraints to exhibit forms with
little comparison in unmanaged systems?
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Table 1 Predicted allometric relationships between (a) length, diameter, surface area and volume as
formulated by the Flow Similarity model (FS) and (b) length, diameter, andmass as formulated by the
West, Brown, Enquist model (WBE). Y and X variables are listed in the first two columns. An expres-
sion for each relationship is in the third column, where αF is the expected exponent for the FS length to
diameter prediction and where αM represents the set of expected exponents for the WBE predictions. The
following columns represent the predicted exponents. For FS, the predictions are broken down into flow
similarity, elastic similarity, and the change in exponent expected going from small to large plants (flow to
elastic). This table is modified from Price et al. (preprint) with permission.

Y -variable X -variable Expression Flow
similarity

Elastic
similarity

Predicted
exponent

(a) FS
Length Diameter L=DαF 2 2/3 2 to 2/3
Surface area Volume SA=V (α+1F )/(α+2F ) 3/4 5/8 3/4 to 5/8
Diameter Volume D=V 1/(α+2F ) 1/4 3/8 1/4 to 3/8
Length Volume L=V αF/(α+2F ) 1/2 1/4 1/2 to 1/4
Diameter Surface Area D= SA1/(α+1F ) 1/3 3/5 1/3 to 3/5
Length Surface Area L= SAαF /(α

+1
F ) 2/3 2/5 2/3 to 2/5

Y -variable X -variable Expression Predicted Exponent

(b) WBE
Length Diameter L=DαM >1 to 2/3
Length Mass L=Mα

M 1/4
Mass Diameter M =DαM 8/3

MATERIALS & METHODS
System
Two Rosaceous species from experimental orchard blocks at the Utah State University
Kaysville Research Farm (2011–2013) in Davis County, Utah were used in this study: tart
cherry (Prunus cerasus) and apple (Malus spp.). The production systems sampled for tart
cherry and apple differ in management intensity and genetic complexity.

The sampled tart cherry orchard block was twenty-four years-old, near the end of peak
production age for similar orchard systems. Individuals consisted of a clonal scion (cultivar:
‘Montmorency’) grafted on to closely related seedling rootstocks (Prunus mahaleb).
These individuals are described generally by vigorous growth and wide crotch angles
(57.1◦±27.9). Fruit-bearing spurs, stubby twigs that grow off of main branches, tend
to be located on the proximal two-thirds of parent branches (Maguylo, Lang & Perry,
2004). A multiple leader ‘open-vase’ canopy was developed in the first few years of growth
by selecting three to five main structural branches for ideal orientation and branching
angle. Following initial canopy development, individuals received relatively minor annual
pruning, ∼10% total biomass, to improve light penetration, air flow, and fruit set. No
pruning occurred for five years prior to the study.

The apple block was ten years-old and part of the NC-140 Regional Rootstock Research
Project - 2003 ‘Golden Delicious’ Trial (Marini et al., 2014). The individual trees consisted
of clonal scions (cultivar: ‘Golden Delicious’) grafted on to several clonal rootstocks
(‘Budagovsky 9’, ‘Geneva R©41’, ‘Geneva R©210’, ‘Malling 26’, ‘Japan-Morioka 8’, ‘Pi-AU
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56-83’). The ‘Golden Delicious’ cultivar is described as moderately vigorous with wide
crotch angles (56.4◦±36.6) and bears fruit on spurs or terminals of short shoots (Ferree
& Schupp, 2003). Rootstocks primarily drive growth potential and disease resistance and
provide a gradient in tree size, introduced from smallest to largest. Budagovsky 9 (B.9)
is highly dwarfing, highly productive, and winter hardy (Budagovsky, 1974; Stehr, 2007;
Hoover et al., 2011). Geneva R©41 (G.41) is a dwarf rootstock with wide crotch angles that
expresses good yield and fruit size, disease resistance, and winter hardiness (Robinson &
Hoying, 2004; Fazio, Aldwinkle & Robinson, 2013). Geneva R©210 (G.210) is a semi-dwarf
with wide crotch angles that is disease resistant, free standing, precocious and productive
(Fazio, Aldwinkle & Robinson, 2013). Malling 26 (M.26) is one of the most common dwarf
rootstocks in commercial planting but is susceptible to disease and winter freezing (Hoover
et al., 2011; Marini et al., 2009; Robinson, 2007). In the western United States it grows
more like a semi-dwarf, as observed in our study as an intermediate-sized rootstock.
Japan-Morioka 8 (JM.8) is reported as a dwarfing rootstock that is disease resistant;
however, it also expresses a semi-dwarf size in some environments, as we observe in our
study (Marini et al., 2009; Soejima et al., 2010). Pi-AU 56-83 is reported as a dwarfing
rootstock from trials in Germany (Fischer, 2001), but other reports suggest it expresses
as a semi-dwarf with high survival, vigor and fruit weight, but low production (Marini
et al., 2009). All apple trees were trained, pruned, and managed consistently according to
NC-140 protocols (http://www.nc140.org). Individuals were trellised and pruned heavily
each year, ∼25% total biomass, to maintain one dominant central trunk, or single leader,
and whorled terraces of lateral branches for bearing fruit.

Data collection
We sampled five tart cherry trees for a total of 449 branches and 19 apple trees for a total of
375 branches. The five tart cherries were chosen from a stratified random sample of over
300 available trees in the block while excluding senescent or diseased individuals. Six apple
rootstocks were chosen from the experimental block to represent a gradient in tree size
and superior survivorship. Three to four individuals of each rootstock were then chosen
randomly, except for the industry standard rootstock, M.26, which only had one individual
surviving. For each individual sampled, all branches were identified and measured for
diameter and length. Branches were defined as a continuous stem between two branching
nodes, while twigs were defined as stems supporting only buds or short fruit-bearing stems
less than two centimeters in diameter. Branches and twigs were removed from the tree and
dried in a large oven for a minimum of one week at 65 ◦C and weighed for biomass. Twig
length and biomass measurements were limited to one random individual for cherry and
each apple rootstock. Sampling occurred at least one full growing season following the last
pruning event.

Branch classification
Branch morphology was classified in three ways to explore allometric patterns below the
individual-level: segment, path and subtree (Fig. 1). Segment values are the data gathered
directly for each branch. Segment length, for instance, is the distance between the proximal
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Segment PathBranch-level Classification: Subtree

Figure 1 An illustration of the branch-level classifications: segment, path and subtree. The allometric
analysis was conducted at segment, path and subtree branch classifications for each relationship.

Full-size DOI: 10.7717/peerj.4949/fig-1

end of the branch at one branching node and its distal end at the next branching node.
Path values are the data gathered for a given branch and the longest continuous length of
distil branches. Path values are the unit of branch length most closely associated with the
predictions of WBE (Smith et al., 2013). Subtree values are the diameter of a given branch
and the total length or mass of that branch and all distil branches. Subtree values are a
unit of branch classification associated with FS. The multi-dimensional morphological
characteristics, surface area (π * diameter * length) and volume (π * (diameter/2)2 *
length), are calculated at a segment level with path and subtree level values generated as
the appropriate sum of segment level calculations.

Data analysis
To estimate a, log–log transformed linear relationships for combinations of morphological
characteristics were evaluated using reducedmajor axis regression (Warton et al., 2006). For
each pairwise relationship and branch classification, an estimated a with 95% confidence
intervals and an r2 value were determined using the ‘SMATR’ package in R (R Core Team,
2014). Estimates of a were evaluated by aggregating all branches at the individual and
species level.

Because these relationships are not always linear on log–log plots, we also examined
whether polynomial fits to the data performed better (Niklas & Hammond, 2014).
Polynomial fits were tested against linear fits by comparing the AICc values, but did
not strongly alter the analysis. Only results of the linear models are reported in the paper.
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Table 2 The length∼ diameter andmass∼ diameter branch level allometries for all branches col-
lected for: (a) five 24-year-old tart cherry, (b) nineteen 10-year-old ‘Golden Delicious’ apple. The values
reported are the empirically estimated allometric exponent (a) and multiplier (b) or slope and intercept in
log–log space, respectively, 95% confidence intervals (CI), and r2 for each branch classification (segment,
path, and subtree).

Estimated a 95% CI Estimated b 95% CI r2

(a) Cherry
Length∼ Diameter Segment 0.83 0.76–0.91 0.51 0.40–0.62 0.006

Path 0.99 0.93–1.05 0.64 0.56–0.73 0.605
Subtree 1.53 1.45–1.62 0.08 −0.05–0.20 0.613

Mass∼ Diameter Segment 2.09 2.01–2.17 −0.75 −0.87–0.64 0.825
Path 2.33 2.27–2.40 −0.90 −0.99–0.81 0.920
Subtree 2.49 2.43–2.55 −1.05 −1.14–0.96 0.926

(b) Apple
Length∼ Diameter Segment −1.15 −1.27–1.04 3.63 3.45–3.82 0.024

Path 1.10 1.02–1.19 0.32 0.19–0.46 0.442
Subtree 1.65 1.54–1.76 −0.43 −0.61–0.26 0.577

Mass∼ Diameter Segment 2.11 1.99–2.23 −0.67 −0.87–0.48 0.688
Path 2.36 2.28–2.45 −0.93 −1.07–0.79 0.867
Subtree 2.57 2.49–2.66 −1.21 −1.35–1.07 0.892

The addition of twig lengths andmass to branch-level calculations were evaluated among
the subset of individuals with the extra sampling effort, with only minor shifts in estimated
a. Results of this supplemental analysis are not presented in the paper.

Data, programming code, and supplemental information for this analysis can be
found freely available online at https://github.com/weecology/branch-arch/tree/master/
GeneralAllometry.

RESULTS
Allometries
Branch-level allometries for all branches collected for each species are reported for the
length ∼ diameter and mass ∼ diameter relationships (Table 2). The allometries represent
empirical estimates of plant architecture for mature cherry and apple trees. All but five
estimated 95% confidence intervals of estimated a at the species level for path and subtree
branch classifications overlap and are therefore interpreted as statistically indistinguishable
(Table 2; Fig. 2). Apple and cherry trees differ in their estimated a at the path level for
length ∼ volume (Fig. 2D), length ∼ area (Fig. 2F) and mass ∼ volume (Fig. 2I). Apple
and cherry trees differ in their estimated a at the subtree level for surface area ∼ volume
(Fig. 2B) and mass ∼ volume (Fig. 2I).

Branch classification
Across all morphological characteristics, allometric relationships at the path and subtree
levels tended to have equal or higher r2 values relative to the same relationship calculated
at the segment-level (Table 2, Fig. 2). Allometric relationships of multi-dimensional
morphological characteristics, like surface area and volume, tend to exhibit higher r2
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Figure 2 Estimates of allometric exponent (a) and 95% confidence intervals for five 24-year-old tart
cherry and nineteen 10-year-old ‘Golden Delicious’ apple for each branch-level classification. Segment
level estimates are marked by triangles, path by diamonds, and subtree by squares with tart cherry shaded
and apple open symbol. The predicted a from the process-bases models are marked as horizontal lines.
(A–F) The predicted a from the FS model: elastic similarity is marked by a dashed line and flow similarity
by a dot-dash line. (G–H) The predicted a from the WBE model is marked by a dashed line.

Full-size DOI: 10.7717/peerj.4949/fig-2

values than allometric relationships using linear morphological characteristics, like length
and diameter (Fig. 2).

Model expectations
When compared to the predictions of the FS model, five of six species-level a estimations
at the path level and four of six at the subtree level fall within the expected ranges described
by flow similarity and elastic similarity constraints (Fig. 2). The relationship that does not
fall within the expected range at the path level is diameter ∼ volume (Fig. 2C), while the
two relationships that do not fall within the expected range at the subtree level are length
∼ volume (Fig. 2D) and length ∼ surface area (Fig. 2F). Only one set of species-level a
estimations at the segment level (length∼ volume) narrowly falls within the expected range
of FS for both species (Fig. 2D). Estimated a tend to shift among segment, path and subtree
level branch classification in the direction towards the flow similarity expectation of FS.
At a species level, the path and subtree level mass ∼ diameter relationships express a very
strong relationship with an estimated a close to the expected value from WBE (Fig. 2H).
The subtree level relationship confidence intervals overlap with the empirical estimation
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of 2.53 by Brown (1997; Table 2). The length ∼ mass relationship estimated a at a species
level appears to deviate significantly from the WBE prediction (Fig. 2G).

DISCUSSION
Our study describes the allometry of two variably managed orchard tree species
drawing context from existing process-based allometry models (Table 2). The allometric
relationships of the sampled orchard trees are broadly consistent with each other and the
expectations of the process-based allometry models. We find overlap in 95% confidence
intervals of estimated a for tart cherry and apple for most of the allometric relationships
evaluated at the path-level (6/9) and subtree-level (7/9) indicating a consistent pattern
in growth and resulting tree architecture (Fig. 2). The allometric relationships evaluated
for tart cherry and apple individuals sampled are well described by a power law and the
empirical estimates of a tend to fall within the bounds of the expectations of FS and overlap
with WBE particularly for the relationships defined by diameter and mass. Management
of these orchard trees does appear to have some effect on the allometric relationships in
the manipulation of the length dimension and the relaxation of biomechanical constraints
(Shinozaki et al., 1964). Estimates of a shift significantly for both species between segment,
path and subtree branch classifications blurring the scale at which these allometries are
consistent within individuals.

Strong allometric relationships in orchard trees provide support for similar patterns
in plant growth, despite different genetic material and management approaches driving
growth and architecture among cherry and apple systems. Allometric relationships with
multi-dimensional branch dimensions (i.e., surface area and volume) are stronger than
relationships with linear dimensions (i.e., length and diameter; Fig. 2). This could be
because these multi-dimensional branch dimensions better reflect resource transport and
environmental exposure (Price et al., 2015; West, Brown & Enquist, 1997). For instance,
surface area might relate to the number of leaves distributed on a branch, dictating the
photosynthetic capacity of that location on the plant (Allen, Prusinkiewicz & DeJong,
2005). The volume of a branch might be a better predictor of water use than either
length or diameter independently (McCulloh & Sperry, 2005). Better performance of
multi-dimensional parameters linked to environmental exposure could explain why we
find strongermorphological relationships also emerge at the path and subtree level; though,
many of the strongest allometric relationships are represented by the highest r2 values for
all branch classifications (Figs. 2B, 2C, 2H, 2I).

Existing process-based allometric models, WBE and FS, derive expectations of a for
idealized plants. These models provide context for understanding how physiological
mechanisms drive the conservation or deviation of plant growth from the idealized
expectations (Table 1). The mass∼ diameter relationship is most consistent among species
and individuals within our study and is in general agreement with the expected a of
the WBE, despite genetic and management differences (Table 2, Fig. 2H). The diameter
∼ volume and diameter ∼ area also tend to confer the elastic similarity expectation (Figs.
2C 2E). The other allometric relationships explored including length dimensions are
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consistently described by estimated a that shift within the expectations of idealized plants
towards flow similarity and away from the biomechanical constraint of elastic similarity
(Fig. 2).

The shift in a towards flow similarity for allometries including length dimensions may
be attributed to the genetic selection for improved production efficiency or to substantial
manipulation of tree architecture for commercial fruit production. This study represents
two distinct species with clonal genetic material developed through selective breeding. The
cherries are clonal scion material with closely related seedling rootstocks, while the apples
are clonal scion with five distinct clonal rootstocks that were selected for known differences
in tree growth, architecture, and production efficiency (Marini et al., 2014). Manipulation
of tree architecture through pruning directly influences length and length-including branch
dimensions (i.e., surface area, volume). As much as 25% of total aboveground biomass
is removed annually, which reduces the growth potential of a tree by reducing leaf area
and altering the root:shoot balance (Ferree & Schupp, 2003). Localized effects of pruning
changes the load-bearing status and growth potential in basal branches. Remaining branches
are mainly structurally important branches with wide crotch angles and relatively stubby
dimensions suited for bearing a commercial fruit load (Ferree & Schupp, 2003). Regrowth
is invigorated with increased investment in nearby fruit-bearing spurs and lateral branches,
potentially driving the shift in a towards flow similarity (Grochowska et al., 1984; Fumey et
al., 2011). In addition, training of tree architecture with structural supports may influence
branch dimensions and localized constraints on branch physiology. Though not statistically
significant, we observe that apple is described by an a that shifts slightly more towards flow
similarity in relation to tart cherry. The greater shift towards flow similarity in apple is
consistent with a relaxation of biomechanical constraints due to direct structural support
provided by trellises in the apple system and more intensive ‘length-reducing’ pruning
cuts. In contrast, the tart cherries are free standing and receive minimal ‘branch-removing’
pruning cuts that may be less of a factor in relaxing biomechanical constraints.

The biological process behind strong and consistent allometric relationships is linked
to physiological limitations of plant growth in unmanaged plants (McMahon & Kronauer,
1976; Niklas & Spatz, 2004; Savage et al., 2010). It has remained difficult to disentangle
the limiting effects of biomechanical and hydraulic processes, but the insights of
the processed-based allometry models provide the opportunity for a first attempt at
exploring these constraints in domesticated plants. From this study, it appears that both
biomechanical and hydraulic constraints are limiting plant function in orchard systems.
Biomechanical constraints may define the diameter of branches while branch length may
respond to a relaxation of biomechanical constraints to be hydraulically limited (Fig. 2).
Biomechanical and hydraulic constraints may also be acting at different levels of branch
classification as represented by the shift in estimated a among scales. Individual segments
are more constrained by load-bearing than what is observed at the path and subtree levels
demonstrated by the segment level estimated a shift towards the biomechanically driven
elastic similarity expectation while the path and subtree levels estimated a generally shift
towards the hydraulically driven flow similarity expectation (Fig. 2). This within-canopy
shift from elastic similarity to flow similarity may support the concept of ‘incomplete
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branch autonomy’ by which branches organize themselves independently due to the
localized distribution of leaves and the resulting photosynthetic material but ultimately
interact within a tree-wide network of nutrient transport and hormone signaling pathways
(Marsal et al., 2003). The development of theory that disentangles biomechanical and
hydraulic constraints provides the opportunity for further exploration of these physiological
mechanisms as they relate to plant allometry.

Continued use of a process-based allometric approach in orchard systems may lead
to a more general understanding of plant growth that can be linked to physiology and,
in the case of orchard trees, can inform management techniques and research programs
designed to maintain plant health, increase yields, and reduce resource use (Costes, 2004;
Niklas, 2004; Lauri & Claverie, 2008). Describing common allometric relationships and
physiological limitations for orchard systems can reveal a boundary where constraints
from physics drive plant function more than human intervention. This study finds that
allometric relationships are largely invariant between the two orchard species tested, but
that the estimated a vary within the idealized expectations of process-based allometric
models likely due to the extreme human influence on the plants studied. Both tart cherries
and apples were heavily pruned at some stage of their development and received fertilizer,
water, and agrochemical applications at levels optimal for reproductive growth. We found
that the architecture of the two orchard species are described by allometries indicative of
plant growth with reduced biomechanical demands, consistent with the large removal of
biomass from the plant during pruning. Despite the large removal of biomass for each
of these species, growth following management appears compensatory in such a way that
the mass ∼ diameter relationship returns to consistent and expected relationships, while
length∼ diameter relationships fluctuate potentially according to pruning intensity. Future
research might focus on the facets of management that drive allometry the farthest from
model expectations or use measurements of body size to standardize treatments that could
provide improved analysis of competing orchard systems and varieties. Breeding programs
might better identify varieties that are approaching the yield ceiling while optimizing for
resource use efficiency and yield improvements in the varieties with greatest potential for
improvement.

CONCLUSIONS
Our study finds strong allometric relationships in two variably managed orchard species
that are broadly consistent among the species. Two process-based models provide context
for understanding the potential effects of growing conditions and management on growth
and physiology of orchard trees. Agreement with idealized model expectations is limited
to the mass ∼ diameter relationship of WBE though the empirical estimates of allometric
relationships tend to fall within the bounds of the FS towards the flow similarity expectation.
This study reveals the potential for continued use of process-based allometry within
agricultural systems; however, expectations derived for idealized plants may be insufficient
alone for the description of orchard systems due the human manipulation of plants’
physiology and growing conditions. Although orchard trees are particularly complex
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candidates due to genetic, environmental and physical manipulation, process-based
allometry may still provide a mechanistic understanding of the effects of management for
optimal reproductive growth.
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