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ABSTRACT
A robust and accurate gene expression signature is essential to assist oncologists
to determine which subset of patients at similar Tumor-Lymph Node-Metastasis
(TNM) stage has high recurrence risk and could benefit from adjuvant therapies.
Here we applied a two-step supervised machine-learning method and established
a 12-gene expression signature to precisely predict colon adenocarcinoma (COAD)
prognosis by usingCOADRNA-seq transcriptome data fromTheCancerGenomeAtlas
(TCGA). The predictive performance of the 12-gene signature was validated with two
independent gene expression microarray datasets: GSE39582 includes 566 COAD cases
for the development of six molecular subtypes with distinct clinical, molecular and
survival characteristics; GSE17538 is a dataset containing 232 colon cancer patients
for the generation of a metastasis gene expression profile to predict recurrence and
death in COAD patients. The signature could effectively separate the poor prognosis
patients from good prognosis group (disease specific survival (DSS): Kaplan Meier
(KM) Log Rank p = 0.0034; overall survival (OS): KM Log Rank p = 0.0336) in
GSE17538. For patients with proficient mismatch repair system (pMMR) in GSE39582,
the signature could also effectively distinguish high risk group from low risk group
(OS: KM Log Rank p = 0.005; Relapse free survival (RFS): KM Log Rank p = 0.022).
Interestingly, advanced stage patients were significantly enriched in high 12-gene score
group (Fisher’s exact test p= 0.0003). After stage stratification, the signature could still
distinguish poor prognosis patients in GSE17538 from good prognosis within stage
II (Log Rank p= 0.01) and stage II & III (Log Rank p = 0.017) in the outcome of
DFS. Within stage III or II/III pMMR patients treated with Adjuvant Chemotherapies
(ACT) and patients with higher 12-gene score showed poorer prognosis (III, OS: KM
Log Rank p= 0.046; III & II, OS: KM Log Rank p= 0.041). Among stage II/III pMMR
patients with lower 12-gene scores in GSE39582, the subgroup receiving ACT showed
significantly longer OS time compared with those who received no ACT (Log Rank p
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= 0.021), while there is no obvious difference between counterparts among patients
with higher 12-gene scores (Log Rank p= 0.12). Besides COAD, our 12-gene signature
is multifunctional in several other cancer types including kidney cancer, lung cancer,
uveal and skinmelanoma, brain cancer, and pancreatic cancer. Functional classification
showed that seven of the twelve genes are involved in immune system function and
regulation, so our 12-gene signature could potentially be used to guide decisions about
adjuvant therapy for patients with stage II/III and pMMR COAD.

Subjects Bioinformatics, Gastroenterology and Hepatology, Oncology, Data Mining and Machine
Learning
Keywords Colon adenocarcinoma, Gene expression signature, Immune system regulation,
Prognosis prediction, Supervised machine learning method

INTRODUCTION
Colorectal cancer (CRC) is one of the most common cancers in men and women,
representing almost 10% of the global cancer incidents and the third leading cause
of cancer death worldwide (McGuire, 2016). CRC comprises three different subtypes
according to distinct pathway operate: chromosomal-instable, microsatellite-instable,
and CpG island methylator phenotype, all of which differ in morphology, genetic
background, molecular profile, clinical behavior, and response to therapy (De Sousa et
al., 2013). Current prognostic model based on the classic tumor-node-metastasis (TNM)
staging is the standard prognosis factor for CRC in clinical practice. However, due to the
high heterogeneity of disease, the patients at similar stage behave differently in terms of
recurrence and response to chemotherapy often differs. Better parameters to guide patients’
prognostic stratification and personalized medicine are urgently needed. Currently, some
prognostic and predictivemolecularmarkers have been developed.Microsatellite instability
(MSI) is the molecular hallmark of DNA mismatch repair (MMR) deficiency. In stage II
of the disease, MSI status helps select patients with high risk of developing recurrence
(Brychtova et al., 2017). MSI status can also be a predictor of the benefit of adjuvant
chemotherapy with fluorouracil in stage II and stage III colon cancer (Ribic et al., 2003).
KRAS mutation status has been validated as a molecular marker for prediction of non-
response to EGFR targeted drugs in metastatic CRC (Cunningham et al., 2010; Karapetis
et al., 2008; Siena et al., 2009). However, due to complex pathways contributing to cancer
progression, single molecular marker might not be efficient enough to predict prognosis
and individualize in selecting adjuvant therapy.

The development of gene expression profiling technologies such as microarray and
Next Generation Sequencing (NGS) provide further opportunities to comprehensively
characterize the molecular features of cancer. Gene-expression profiling has been used
to develop genomic tests that may provide better predictions of clinical outcomes in
combination with traditional clinicopathologic factors (Gray et al., 2007; Venook et al.,
2011; Meropol et al., 2011; Ebata, Hirata & Kawauchi, 2016; Guinney et al., 2015; Marisa et
al., 2013; Smith et al., 2010; Gentles et al., 2015). Some commercially genomic assays are
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available for the prediction of clinical outcome in CRC patients. The most well-known one
is the Oncotype DXColon Cancer Assay, which is a 12-gene (seven cancer related genes and
five reference genes) genomic test that has been used to help identify individuals with high
recurrence risk from stage II colon cancer patients with T3 and MMR proficient tumors
(Gray et al., 2007; Venook et al., 2011; Meropol et al., 2011). However, the five reference
genes in Oncotype DX Assay contain PGK1 and GPX1, which are important players in
the process of energy metabolism and cellular oxidative stress, both of which are actively
involved in cancer development and metastasis (Ebata, Hirata & Kawauchi, 2016;Moloney
& Cotter, 2017). Normalization with PGK1 and GPX1 might have diluted the tumorous
heterogeneities among cancer patients. In this work, we applied two steps of supervised
machine-learning method and established a 12-gene expression signature to precisely
predict colon adenocarcinoma (COAD) prognosis by exhaustively using expression of all
genes of The Cancer Genome Atlas (TCGA) COAD patients.

MATERIALS AND METHODS
TCGA and GEO datasets
RNA-seq data and clinic information for all cancer types were obtained from TCGA
RNA-seq database (https://cancergenome.nih.gov/). Microarray expression data and clinic
information for COAD patients were retrieved from Gene Expression Omnibus (GEO)
database (https://www.ncbi.nlm.nih.gov/geo/).

Development of the gene expression signature
The development process has a training and validation phase.

Training stage has two phases
Phase I
Grouping
The TCGA COAD patients were used for the development of prototype of the 118-gene
signature that could predict COAD prognosis. We applied a similar supervised machine
learning method that was used for MammaPrint (Van et al., 2002). Forty-two patients
that experienced relapse within three years were designated as poor prognosis. Forty-nine
patients who were relapse free for at least three years were categorized as good prognosis.
The gene expression values were centered and scaled before grouping. For the training
dataset, 32 and 39 patients were randomly chosen from poor and good prognosis category,
respectively. The rest of the patients were grouped as test dataset. Detailed clinic information
is listed in Table S1.

Selection of genes with high correlation to real prognosis status
Overall, there are 20,530 genes in the raw RNA-seq data. The Pearson correlation
coefficients with real prognosis status were calculated for all genes. Genes with absolute
correlation coefficient greater than 0.3 were selected. To test whether such correlation
coefficient distribution could be found by chance, a permutation method was used to
generate 10,000 Monte-Carlo simulations randomizing the correlation between gene
expression data of the 71 training patients and corresponding prognostic categories.
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Supervised machine-learning method
Gene number incorporated in the signature needs to be optimized. One thousand,
five hundred and ten genes were reordered by absolute coefficients from maximum to
minimum. Starting from the top two genes on the list, 755 signatures were generated by
adding twomore genes from the top list each time until all the 1,510 genes were exhaustively
used as reporters. A Leave-One-Out Cross-Validation (LOOCV) method was employed to
check the performances of these signatures:

Step 1: leave one tumor out;
Step 2: calculate the good- and poor-prognosis expression template by averaging the
expression values for each gene incorporated in good-prognosis group and poor-
prognosis group, respectively. Then we defined a parameter called risk coefficient
(risk-coef.). For a tumor, risk coefficient was calculated with its gene expression profile
and good- and poor-prognosis expression template:
Risk-coef = cor-coef. to good template − cor-coef. to poor template;
Step 3: calculate the risk-coefs for all the remaining 70 training samples and the left
out sample. Reorder the 71 samples by ranking their risk-coefs from small to large.
Determine the genomic risk by taking first 32 tumors as high genomic risk and the rest
39 as low genomic risk. Check the consistency between genomic risk and real risk for
the left out sample;
Step 4: repeat step 1–3 iteratively until all the 71 samples have been left out once.
Collect the error counts when there is a disagreement between genomic risk and real
risk for the left out sample.
Better signatures with least error counts were selected.

Cross-validation without information leak
The 1,510 genes were obtained using all training samples including the one left out for
cross validation, so there might be an over-fitting issue due to information leak. Amodified
LOOCV with no information leak was performed as below:

Step 1: leave one patient out;
Step 2: calculate the Pearson correlation coefficients with real prognosis status for all
genes with the reminding 70 training samples. Filter the genes with |coefficient| ≥ 0.3.
Step 3: generate the signature with the genes selected and predict the genomic risk for
the left out sample.
Step 4: repeat step 1–3 iteratively until all the 71 samples have been left out once.

Phase II
Further machine learning process was applied to generate a concise scoring system. Before
machine learning, the RPKM (Reads Per Kilobase per Million mapped reads) values need
normalization, which was done through dividing them by geometric mean of RPKM values
of TFRC, GUSB, and RPLP0. Firstly, the TCGA COAD patients (Table S2) were split into
training and test dataset. There is no significant difference between the clinicopathologic
factors of these two groups (Table 1). For each of the 118 genes, we calculated the coefficient
and p-value in univariate Cox Proportional Hazard regression model (CPH) with training
dataset. Then we reordered the gene list by sorting the univaraite Cox-regression p-value
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Table 1 Clinicopathologic features of 240 TCGA COAD patients.

Characteristic Training set (N = 119) Testing set (N = 121) p value
No. of patients (%) No. of patients (%)

;Age (mean± SD) 66.4± 13.0 63.2± 13.8 0.069a

;Gender
;Male 60 (50.4%) 54 (44.6%)
;Female 59 (49.6%) 67 (55.4%)

0.438b

;Stage
;I 20 (16.8%) 20 (16.5%)
;II 47 (39.5%) 48 (39.7%)
;III and IV 52 (43.7%) 53 (43.8%)

0.998c

;Primary tumor
;T1 and T2 20 (16.8%) 23 (19.0%)
;T3 and T4 99 (83.2%) 98 (81.0%)

0.737b

;Microsatellite status
;MSI-L 23 (19.3%) 23 (19.0%)
;MSI-H 20 (16.8%) 20 (16.5%)
;MSS 76 (63.9%) 78 (64.4%)

0.995c

;Lymphatic_invasion
;No 77 (64.7%) 77 (63.6%)
;Yes 33 (27.7%) 34 (28.1%)

0.999b

;Unknown 9 (7.6%) 10 (8.3%) Excluded

Notes.
at test.
bFisher’s exact test.
cChi-squared test.

from minimum to maximum. So the top genes have stronger correlations with cancer
prognosis. Starting from the top one gene in the list, we added one more gene iteratively
from the top for multivariate CPH analysis. In every iteration step, the fitness of established
signature on test dataset was checked by calculating Kaplan Meier Log Rank p-value
(KM-p). At the end of iteration, signature incorporating the top 12 genes has the minimum
test dataset KM-p and was deemed as the optimal one. The multivariate Cox coefficient of
each gene in the final signature was extracted to generate the scoring system:

Riskscore=
n∑

i=1

Ei∗βi.

Ei: expression level of gene i; βi: multivariate Cox-regression coefficient of gene i.

Validation stage
The GEOmicroarray datasets were used to validate the final gene expression signature. For
genes with more than one probe, the probe showing minimum univariate CPH p-value was
selected. Relative expression level was obtained via dividing the probe signal by geometric
mean of signals of TFRC, GUSB, and RPLP0. For each tumor, a risk score was obtained by
calculating the weighted summation of relative expressions of the 12-gene. For a certain
dataset, patients with risk scores below the median value of the population were designated
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Figure 1 The flow chart of the development process of the COAD gene expression signature.
Full-size DOI: 10.7717/peerj.4942/fig-1

as the low risk group, while the rest of the patients were categorized as the high risk group.
Survival comparisons between high and low risk groups were conducted by Kaplan–Meier
plotting. Log Rank p value <0.05 was considered as significantly different. Other cancer
types in TCGA library were also retrieved to validate the 12-gene signature.

RESULTS
Development of signature prototype
The development process was shown as the flow chart in Fig. 1. With the TCGA COAD
data, an unbiased screening method was used to obtain 1,510 genes showing absolute
correlations greater than 0.3 with disease outcomes. The frequency distribution of number
of genes with absolute coefficient no less than 0.3 in the 10,000 Monte-Carlo trials was
displayed in Fig. S1. The probability of obtaining 1,510 genes or more with an absolute
correlation coefficients of at least 0.3 with prognosis categories purely by chance was 0.0019
(p< 0.05), which was fair for us to reject the null hypothesis.

During the (Leave-One-Out Cross Validation) LOOCV process, 755 signatures were
generated. Least violation times were observed when signature employed the top 16, 36, 40,
42, 44, 46, 48, 50, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, or 118 genes.
We further found that the predictive accuracy rates were high towards the 71 training
samples with the signature containing the top 118 genes (Fig. 2). We had the luxury to
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Figure 2 Prototype of the gene expression signature. Expression heatmap plotting of 118 prognostic
marker genes in training dataset and 20 patients in test dataset. Each row represents an observation (pa-
tient) and each column is a gene, whose name is labeled at the bottom. Tumors are ordered by the corre-
lation to the average expression pattern of the good and poor prognosis group. Genes are ordered by their
correlation coefficients with the two prognosis categories. The real prognosis status for each tumor is dis-
played in the middle panel.

Full-size DOI: 10.7717/peerj.4942/fig-2

further validate the established signatures using the remaining 20 independent samples in
test dataset. For each signature, receiver operating characteristic curve (ROC) was plotted
with the information of risk-coefs and real risk of the 91 TCGA patients to compare
the performances of the 25 signatures. There was no significant difference among the
performances of these signatures (Fig. 3 and Table 2).

Because the above 1,510 genes were obtained using all the training samples including
the one left out for cross validation, a modified LOOCV without information leak was
performed. Seventy-one additional signatures were created. The vast majority of the
original 1,510 genes were shared by most of the 71 signatures (Fig. S2). So there was very
limited information leak introduced during the previous training process.

Development of 12-gene signature
For the purpose of concise and simplicity, we further established a 12-gene expression
signature based on the 118 genes obtained in phase I training stage. Expressional coefficients
were assigned to respective genes. Each patient has a risk score by calculating the weighted
summation of expression values of the 12 genes. The Kaplan–Meier (KM) survival analysis
showed that among TCGA COAD patients, the high risk group displayed significantly
poorer prognosis than low risk group regarding to disease free survival (DFS) (training
dataset: KM Log Rank p= 0.0001; test dataset: KM Log Rank p= 0.0005) (Fig. 4).
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Figure 3 ROC plotting for the 25 signatures generated during phase I training process. ROC with the
information of risk-coefs and real risk of the 91 TCGA patients. ROC, receiver operating characteristic
curve. TPR, true positive rate. FPR, false positive rate.

Full-size DOI: 10.7717/peerj.4942/fig-3

Prognostic values of the 12-gene signature in other COAD datasets
GSE17538 (GSE17536 and GSE17537) was used to validate the 12-gene expression
signature. With both clinic information and microarray gene expression of 232 colon
cancer patients, Smith et al. (2010) established a metastasis gene expression profile to
predict recurrence and death in COAD patients. The 12-gene signature could effectively
separate the poor prognosis patients from good prognosis group (Figs. 5A–5C, Disease
specific survival (DSS): KM Log Rank p= 0.0034; Overall survival (OS): KM Log Rank
p= 0.0336; Disease free survival (DFS): KMLog Rank p= 0.0004). After stage stratification,
the signature could still distinguish poor prognosis patients from good within stage II (Fig.
5D, Log Rank p= 0.01) and stage II & III (Fig. 5E: Log Rank p= 0.017) in terms of DFS.

GSE39582 is a dataset including 566 COAD cases and 19 non-tumoral colorectal
mucosas. With this dataset, Marisa et al. developed gene expression classification of
colon cancer defining six molecular subtypes with distinct clinical, molecular and survival
characteristics (Marisa et al., 2013). In patients with proficient mismatch repair system
(pMMR), our 12-gene signature could effectively distinguish high risk group from low
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Table 2 Statistics of the ROC analysis.

Signature AUC SE Progressive p Progressive 95% CIs

Lower bound Upper bound

;16-gene 0.7517 0.0531 0.0000 0.6476 0.8558
;36-gene 0.7600 0.0529 0.0000 0.6562 0.8637
;40-gene 0.7653 0.0520 0.0000 0.6634 0.8672
;42-gene 0.7609 0.0525 0.0000 0.6581 0.8638
;44-gene 0.7604 0.0525 0.0000 0.6576 0.8633
;46-gene 0.7614 0.0524 0.0000 0.6588 0.8641
;48-gene 0.7575 0.0528 0.0000 0.6540 0.8610
;50-gene 0.7541 0.0530 0.0000 0.6503 0.8580
;56-gene 0.7493 0.0532 0.0000 0.6450 0.8536
;58-gene 0.7488 0.0533 0.0000 0.6444 0.8532
;60-gene 0.7483 0.0532 0.0000 0.6439 0.8527
;62-gene 0.7478 0.0533 0.0000 0.6433 0.8524
;64-gene 0.7468 0.0534 0.0001 0.6421 0.8515
;66-gene 0.7459 0.0535 0.0001 0.6409 0.8508
;68-gene 0.7449 0.0534 0.0001 0.6402 0.8496
;70-gene 0.7459 0.0534 0.0001 0.6412 0.8505
;72-gene 0.7468 0.0534 0.0001 0.6422 0.8514
;74-gene 0.7444 0.0535 0.0001 0.6395 0.8493
;76-gene 0.7444 0.0535 0.0001 0.6396 0.8492
;78-gene 0.7430 0.0537 0.0001 0.6377 0.8482
;80-gene 0.7410 0.0539 0.0001 0.6354 0.8467
;82-gene 0.7420 0.0538 0.0001 0.6365 0.8474
;84-gene 0.7410 0.0539 0.0001 0.6353 0.8467
;86-gene 0.7410 0.0539 0.0001 0.6354 0.8466
;118-gene 0.7347 0.0542 0.0001 0.6284 0.8410

Notes.
AUC, Area-Under-Curve; SE, Standard Error; 95% CIs, 95% Confidence Intervals.

risk group (Figs. 6A and 6B, Relapse free survival (RFS): KM Log Rank p= 0.022; OS:
KM Log Rank p= 0.005). No significant difference was found in KM analysis performed
among dMMR patients. Further survival analysis was performed within stage III or II & III
and pMMR patients treated with Adjuvant Chemotherapies (ACT): patients with higher
12-gene score showed poorer prognosis (Figs. 6C and 6D: III, OS: KM Log Rank p= 0.046;
III & II, OS: KM Log Rank p= 0.041). Interestingly, among stage II & III pMMR patients
with lower 12-gene scores, subgroup receiving ACT showed significantly longer OS time
compared with those who received no ACT (Fig. 6E: Log Rank p= 0.021), while there is
no obvious difference between counterparts among patients with higher 12-gene scores
(Fig. 6F: Log Rank p= 0.12).

Interestingly, advanced stage patients were significantly enriched in high 12-gene score
group (Table 3).
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Figure 4 Prognostic values of the 12-gene signature. Kaplan–Meier analysis of the high and low 12-gene
risk score patients among TCGA COAD patients in training (A) and test dataset (B) in phase II training
stage.

Full-size DOI: 10.7717/peerj.4942/fig-4

Predictive performances of the 12-gene signature in other
cancer types
We also tested the performance of the signature in other cancer types. TCGA RNA-seq data
and corresponding clinic information for 24 cancer types were retrieved for validation.
Surprisingly, KM results showed that our signature successfully separated good prognosis
patients from poor prognosis patients in several other cancer types including pan-kidney
cohort (KIPAN) (Fig. 7A, OS: KM Log Rank p= 6.815e− 6), kidney renal clear cell
carcinoma (KIRC) (Fig. 7B, DFS: KM Log Rank p= 0.0480), kidney renal papillary
cell carcinoma (KIRP) (Fig. 7C, DFS: KM Log Rank p= 0.0027; Fig. 7D OS: Log Rank
p= 0.0129), lung squamous cell carcinoma (LUSC) (Fig. 7E, DFS: Log Rank p= 0.0071),
and skin cutaneous melanoma (SKCM) (Fig. 7F, DFS: Log Rank p= 0.01117), brain lower
grade glioma (LGG) (Fig. 8A, OS: Log Rank p= 0.0031), uveal melanoma (UVM) (Fig. 8B,
OS: Log Rank p= 0.0054), glioblastoma (GBM) (Fig. 8C, OS: Log Rank p= 0.0074),
cervical and endocervical cancers (CESC) (Fig. 8D, OS: Log Rank p= 0.0090), pancreatic
adenocarcinoma (PAAD) (Fig. 8E, OS: Log Rank p= 0.0127), stomach adenocarcinoma
(STAD) (Fig. 8F, OS: Log Rank p= 0.0456).

DISCUSSION
Numerous attempts have been made to establish gene expression signatures for the
purpose of precise prediction of colorectal cancer prognosis (Gray et al., 2007; Venook et
al., 2011;Meropol et al., 2011; Ebata, Hirata & Kawauchi, 2016;Guinney et al., 2015;Marisa
et al., 2013; Smith et al., 2010; Gentles et al., 2015). A meta-analysis was done to assess the
clinical value of several published prognosis gene expression signatures in colorectal cancer
(Sanz-Pamplona et al., 2012). Althoughmost of the published signatures showed significant
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Figure 5 Prognostic values of the 12-gene signature in other COAD datasets. (A)–(C) Kaplan–Meier
curves showing patients (stage I–IV) with high and low 12-gene risk score in endpoints of DSS, OS, and
DFS, respectively; Kaplan–Meier curves showing patients at stage II (D) or II & III (E) with high and low
12-gene risk score in terms of DFS. DFS, disease free survival; DSS, disease specific survival; OS, overall
survival.

Full-size DOI: 10.7717/peerj.4942/fig-5

Sun et al. (2018), PeerJ, DOI 10.7717/peerj.4942 11/23

https://peerj.com
https://doi.org/10.7717/peerj.4942/fig-5
http://dx.doi.org/10.7717/peerj.4942


Figure 6 Prognostic values of the 12-gene signature in GSE39582. (A) and (B) Kaplan–Meier curves
showing patients (stage I–IV) with high and low 12-gene risk score in endpoints of RFS and OS, respec-
tively; Kaplan–Meier curves showing stage III (C) or II & III (D) pMMR patients (treated with ACT) with
high and low 12-gene risk score in respect to the endpoint of OS; (E) in stage II & III pMMR patients with
low 12-gene scores, ACT subgroup displayed better OS outcome than control; (F) in stage II & III pMMR
patients with high 12-gene scores, ACT and control group displayed no significant difference in the out-
come of OS. RFS: relapse-free survival; OS: overall survival; pMMR: proficient mismatch repair system.

Full-size DOI: 10.7717/peerj.4942/fig-6
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Table 3 Distribution of advanced stage patients between high- and low-score group. Fisher’s exact test
was used for statistical analysis.

Dataset Group Stage I & II Stage III & IV p value

; High score group 19 (20%) 78 (80%)
;
GSE17538

Low score group 43 (44%) 54 (56%)
0.0003

; High score group 53 (49%) 55 (51%)
;
TCGA

Low score group 69 (64%) 38 (36%)
0.0277

statistical association with prognosis, their accuracy to classify independent tumor samples
into high-risk and low-risk group is limited. So we need more robust and accurate gene
expression signature that can predict prognosis cross independent COAD datasets. Here
we established a gene expression signature by applying two steps of supervised machine-
learning method. The predicative accuracy of our gene expression signature was proven
by validation in two large independent gene expression microarray datasets (GSE39582,
N = 459; GSE17538, N = 232). Decision making regarding adjuvant therapy has been a
debate among professional clinical organizations over the past 20 years (Dotan & Cohen,
2011;Meropol, 2011; Vachani, 2013). Currently speaking, uncertainty is present in adjuvant
chemotherapeutic effects among stage II COAD patients who are mismatch repair system
proficient. The Scottish Intercollegiate Guidelines Network (SIGN), ASCO, and NCCN
are following different guidelines regarding this issue (Gao et al., 2016). Resectable COAD
patients with pMMR routinely receive 5-FU based postoperative adjuvant chemotherapy
(POCT) which has been shown to provide a relatively small absolute benefit (Andre et
al., 2009; Gill et al., 2004; Sargent et al., 2009; Gray et al., 2011; Alex et al., 2017), indicating
that many COAD patients might have been over-treated due to the lacking of an effective
test to stratify the patients further. Our gene signature showed important prognostic
value for stage II or/and III pMMR COAD patients. There validation results in GSE39582
indicate that lower 12-gene score patients have gained survival benefit from adjuvant
chemotherapies, while high score patients treated with adjuvant chemotherapies didn’t
receive survival benefit. So our 12-gene signature could potentially be used to guide
decisions about adjuvant therapy for patients with stage II & III and pMMR colon cancer.

Seven of the proteins encoded by the 12 genes were related to immune system, they
are TREML2, PADI4, NCKIPSD, PTPRN, PGLYRP1, C5orf53, and TREML3, indicating
the essential roles of deregulated immune response in COAD progression and metastasis
(Table S3). TREML2, acting as the counter-receptor for B7-H3, promotes T cell responses
(Hashiguchi et al., 2008). PADI4 protein catalyzes the conversion of arginine to citrulline
residue. With specific high expression in blood lymphocytes (Asaga et al., 2001; Anzilotti
et al., 2010), PADI4 is believed to be an active autoimmune player in synovial tissue of
rheumatoid arthritis (Chang et al., 2005). It is reported that cell free circulation PADI4
mRNA level (together with cfDNA, PPBP, and haptoglobin) in peripheral blood of non-
small cell lung cancer patients was significantly higher than that in healthy donors, so PADI4
may serve as a potential marker for NSCLC diagnosis (Ulivi et al., 2013). As a member
of protein tyrosine phosphatase (PTP), PTPRN is an autoantigen in the sera of insulin-
dependent diabetes mellitus (IDDM) patients, making it a promising therapeutic target
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Figure 7 KM analysis of the high and low 12-gene risk score patients for the major outcomes in other
cancer types. (A) OS in pan-kidney cohort (KIPAN); (B) DFS in kidney renal clear cell carcinoma (KIRC).
(C) & (D) DFS and OS in kidney renal papillary cell carcinoma (KIRP), respectively. (E) DFS in lung
squamous cell carcinoma (LUSC). (F) DFS in skin cutaneous melanoma (SKCM). OS, overall survival.
DFS, disease free survival.

Full-size DOI: 10.7717/peerj.4942/fig-7
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Figure 8 Kaplan–Meier analysis of the high and low 12-gene risk score patients for the major
outcomes in other cancer types. (A) OS in brain lower grade glioma (LGG). (B) OS in uveal melanoma
(UVM). (C) OS in glioblastoma (GBM). (D) OS in cervical and endocervical cancers (CESC). (E) OS in
pancreatic adenocarcinoma (PAAD). (F) OS in stomach adenocarcinoma (STAD). OS, overall survival.

Full-size DOI: 10.7717/peerj.4942/fig-8
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of autoimmunity in IDDM (Rabin et al., 1994; Solimena et al., 1996). Hypermethylation in
PTPRN was associated with longer progression-free survival in ovarian cancer (Bauerschlag
et al., 2011). If that is the case, hypomethylation (upregulated mRNA expression level)
in PTPRN may be associated with poor prognosis, which is consistent with our results.
NCKIPSD is a protein containing SH3 and proline-rich domains. Reports have shown that
NCKIPSD is involved in the maintenance of sarcomeres and assembly of myofibrils into
sarcomeres (Lim et al., 2001). A very recent study reported that NCKIPSD downregulation
and increased α-tubulin acetylation promotes stiffness of tumor stroma, which in turn,may
inhibit chemotherapeutic drug uptake and regulate tumor sensitivity to chemotherapy,
resulting in high risk of breast cancer recurrence within 5 years (You et al., 2017).
Consistently, our findings also showed decreased NCKIPSD expression is associated
with high risk of colon cancer recurrence. PGLYRP1 is a member of peptidoglycan
recognition proteins which are conserved innate immunity proteins, recognize bacterial
peptidoglycan, and play a role in antibacterial immunity and inflammation (Dziarski
& Gupta, 2010). PGLYRP1 interacts with Hsp70 to induces cytotoxic activity in tumor
cells via TNFR1 receptor (Yashin et al., 2015). C5orf53 is also called a IgA inducing
protein, which enhances IgA secretion from B-cells stimulated via CD40 (Endsley et al.,
2009). TREML3 is a inhibitory receptor involved in antigen processing (Cella et al., 1997).
Numerous studies have shown that cancer patients’ prognosis and sensitivity to therapy
are closely associated with infiltration and density of immunologic cells within primary
tumors (Wels et al., 2008; McConnell & Yang, 2009; McLean et al., 2011; Sethi & Kang,
2011; Smith & Kang, 2013). Of particular note, by applying a novel machine-learning
method, called Cell-type Identification By Estimating Relative Subsets of known RNA
Transcripts (CIBERSORT), Gentles et al. developed several gene expression signatures to
inferring distinct leukocyte subsets representation in bulk tumor transcriptomes (Gentles
et al., 2015). In several solid tumors including colon cancer, the signatures relating to
plasma cells and polymorphonuclear cells were the most significant favorable and adverse
module to cancer outcomes, respectively. The broad spectrum involvement of lymphocyte
infiltration and intra-tumor immune-suppression implies that this could be the main
reason why our 12-gene signature could also predict patient prognosis in several other
cancer types including kidney cancer, lung cancer, uveal and skin melanoma, brain cancer,
and pancreatic cancer.

Other five genes (NOG, VIP, RIMKLB, NKAIN4, and FAM171B) in the 12-gene
signature are functionally sporadic. NOG is related to mesodermal commitment and
differentiation pathway (Costamagna et al., 2016). High expressing of gene signature
including NOG showed a strong trend for a worse prognosis of patients with lung
adenocarcinomas (Rajski, Saaf & Buess, 2015). VIP, a member of glucagon/secretin
superfamily, is the ligand of class II G protein-coupled receptor (Umetsu et al., 2011). It
causes vasodilation and lowers arterial blood pressure. VIP signaling is enhanced in human
prostate cancer (Fernandez-Martinez et al., 2012). Elevated VIP secretion is associated with
advanced tumor stage in colorectal carcinoma (Hirayasu et al., 2002). RIMKLB is involved
in alanine, aspartate and glutamate metabolism. RIMKLB up-regulation is associated with
radio-resistance in nasopharyngeal carcinomas (Li et al., 2016). NKAIN4 may interact
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with the beta subunit of Na, K-ATPase (Gorokhova et al., 2007). FAM171B which is a
single-pass type I membrane protein, belongs to the FAM171 family. It is up-regulated
in gemcitabine-resistant pancreatic cancer cell line (Zhou et al., 2015). The associations of
these genes with cancer and cancer outcomes are very relevant to our findings in this study.

Our signature generated a novel scoring system with relative gene expression values by
dividing the raw expression with geometric mean of RPKM values of three house-keeping
genes (TFRC, GUSB, and RPLP0). In order to preserve the heterogeneities among tumors
to the most extent, ACTB and GAPDH were avoided using as reference genes due to the
fact that cytoskeleton and energy metabolism might be greatly deregulated among cancer
individuals (Xiang, Chen & Fu, 2017; Stine & Dang, 2013). A recent study overcomes
hypoxia-induced tumor cell resistance by synergistic GAPDH-siRNA and chemotherapy
(Guan et al., 2017), indicating the important roles of GAPDH in tumor cell resistance. Our
normalization process also makes the gene expression scoring system very friendly to dif-
ferent gene expression detection systems including qPCR, RNA-seq, and QuantiGene Plex.

CONCLUSION
A robust and accurate gene expression signature is essential to assist oncologists to
determine which subset of patients at similar TNM stage has high recurrence risk and
could benefit from adjuvant therapies. Here we report a new 12-gene expression signature
that could separate resectable COAD patients into poor- and good-prognosis group in
several independent TCGA and microarray datasets. Functional classification showed that
seven of the twelve genes are involved in immune system function and regulation. Our
gene expression signature could potentially serve as an effective genomic test in helping
identify resectable COAD patients with high risk of poor prognosis. The accuracy and
robustness of the signature as a prognostic classification requires further confirmation with
large prospective patient cohorts.
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