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RNA interference (RNAi) technology may be useful for developing new crop protection

strategies against the soybean pod borer (SPB; Leguminivora glycinivorella), which is a

critical soybean pest in northeastern Asia. Immune-related genes were recently identified

as potential RNAi targets for controlling insects. However, little is known about the

immune-related genes or mechanism underlying their expression in the SPB. In this study,

we completed a transcriptome-wide analysis of immune-related genes. We identified 41

genes associated with L. glycinivorella microbial recognition proteins, immune-related

effectors, or signalling molecules of immune response pathways (e.g., Toll and immune

deficiency pathways). Eleven of these genes were selected for a dsRNA artificial feeding

assay. The down-regulated expression of LgToll-5a, LgPGRP-LB2a, and Lgitype-1 resulted

in relatively high larval mortality rates and abnormal development.Our data may be useful

as a comprehensive genetic resource for immune-related L. glycinivorella genes, and may

contribute to the elucidation of the mechanism regulating innate immunity in Lepidoptera

species. Furthermore, three L. glycinivorella genes were identified as potential RNAi

targets, which may be relevant for the development of RNAi-mediated methods to control

SPB infestations.
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Abstract 1 

RNA interference (RNAi) technology may be useful for developing new crop protection 2 

strategies against the soybean pod borer (SPB; Leguminivora glycinivorella), which is a 3 

critical soybean pest in northeastern Asia. Immune-related genes were recently identified as 4 

potential RNAi targets for controlling insects. However, little is known about the 5 

immune-related genes or mechanism underlying their expression in the SPB. In this study, we 6 

completed a transcriptome-wide analysis of immune-related genes. We identified 41 genes 7 

associated with L. glycinivorella microbial recognition proteins, immune-related effectors, or 8 

signalling molecules of immune response pathways (e.g., Toll and immune deficiency 9 

pathways). Eleven of these genes were selected for a dsRNA artificial feeding assay. The 10 

down-regulated expression of LgToll-5a, LgPGRP-LB2a, and Lgitype-1 resulted in relatively 11 

high larval mortality rates and abnormal development.Our data may be useful as a 12 

comprehensive genetic resource for immune-related L. glycinivorella genes, and may 13 

contribute to the elucidation of the mechanism regulating innate immunity in Lepidoptera 14 

species. Furthermore, three L. glycinivorella genes were identified as potential RNAi targets, 15 

which may be relevant for the development of RNAi-mediated methods to control SPB 16 

infestations.  17 

Keywords: Leguminivora glycinivorella, immune-related gene, RNA interference, 18 

double-stranded RNA (dsRNA), artificial feeding assay  19 
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INTRODUCTION 1 

Leguminivora glycinivorella (Mats.) obraztsov [i.e., soybean pod borer (SPB)] belongs to 2 

the order Lepidoptera and family Olethreutidae. The SPB is the major economic pest 3 

of soybean in northeastern Asia (Zhao et al., 2008; Meng et al., 2017a). The larvae use the 4 

immature beans as a food source until they develop into mature larvae, resulting in soybean 5 

yield losses of up to 40% (Meng et al., 2017b). Insecticides have been used to control SPB 6 

infestations over the past three decades. However, larvae within soybean pods under a closed 7 

canopy are often not exposed to the applied insecticides. Additionally, because of a lack of 8 

effective SPB-resistant germplasm, conventional breeding has not resulted in the production 9 

of new SPB-resistant cultivars. Therefore, the SPB remains a considerable pest responsible 10 

for substantial soybean yield losses (Wang et al., 2014; Song et al., 2015). Consequently, 11 

soybean breeders and growers are interested in developing new strategies for controlling SPB 12 

infestations, with RNA interference (RNAi) representing a promising option (Khajuria et al., 13 

2015; Fishilevich et al., 2016). 14 

RNA interference involves the degradation of specific endogenous mRNAs by 15 

homologous double-stranded RNA (dsRNA) (Fire et al., 1998). Depending on the function of 16 

the targeted gene, RNAi can inhibit insect growth or result in death (Joga et al., 2016; 17 

Christiaens et al., 2014). RNA interference is conserved in nearly all eukaryotic organisms 18 

and recent studies have indicated that feeding insect pests dsRNA molecules may be useful 19 
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for protecting agriculturally important crops (i.e., feeding RNAi or plant-mediated RNAi) 1 

(Mao & Zeng., 2014; Ulrich et al., 2015). The effectiveness of the RNAi technique for 2 

controlling pests depends on whether appropriate candidate genes are targeted because RNAi 3 

efficacy and transmission of the RNAi signal varies among genes (Huvenne & Smagghe., 4 

2010). To date, applying RNAi technology to control Lepidoptera insects (i.e., moths and 5 

butterflies) has been problematic (Shukla et al., 2016). However, the available information 6 

regarding the highly efficient of RNAi to lepidopterans has recently increased, and RNAi is 7 

particularly successful when targeting genes involved in immune responses (Terenius et al., 8 

2011).  9 

Insects such as Drosophila melanogaster and Bombyx mori have a vigorous innate 10 

immune system with which to defend against microbial infections (Bao et al., 2013). 11 

Peptidoglycan recognition proteins (PGRPs) are important pattern recognition receptors 12 

(PRRs) that detect peptidoglycan (PGN) in the cell wall of gram-negative and gram-positive 13 

bacteria, activate the Toll or immune deficiency (IMD)/JNK pathways, or induce proteolytic 14 

cascades that generate antimicrobial peptides (Gao et al., 2015; Chen et al., 2014), which are 15 

critical for defending against invading pathogens and for protecting insects against infections 16 

(Tamura et al., 2011). However, little is known about SPB immune-related genes or the 17 

associated immune responses. 18 
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We generated SPB transcriptome datasets based on Illumina sequencing. These 1 

datasets were used to identify many genes associated with microbe recognition, 2 

immune-related signalling, and defence effectors. Furthermore, RNAi was applied to study 3 

the effects of silencing immune-related genes on first instar larvae. A feeding assay involving 4 

an artificial diet supplemented with dsRNA was used to identify candidate target genes for 5 

controlling the SPB by RNAi.  6 

MATERIALS AND METHODS  7 

Insect rearing  8 

Leguminivora glycinivorella eggs collected from a naturally infested soybean field at the 9 

experimental station of Northeast Agricultural University in Harbin, China were hatched at 10 

26 °C. The resulting larvae were reared on an artificial diet prepared in our laboratory (Meng 11 

et al., 2017a). Adult moths were fed a 5% honey solution, and were allowed to oviposit on 12 

young bean pods. The first instar larvae were selected and subjected to artificial diet feeding 13 

experiments. 14 

Illumina sequencing  15 

The DN50 plants (provided by the Key Laboratory of Soybean Biology of the Chinese 16 

Education Ministry, Harbin, China) were grown in a greenhouse at 24 ± 1 °C with 60% 17 

relative humidity under a 16-h light/8-h dark cycle
3
. At the R5 soybean stage (fully developed 18 

pods), three replicates of 50 first-instar larvae were reared on soybean pods of DN50 plants. 19 
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The larvae were collected 3 days later. Total RNA was extracted from pooled larvae using the 1 

TRIzol reagent (Invitrogen, Carlsbad, CA, USA). The cDNA library constructed as described 2 

by Chen et al were sequenced using the Illumina HiSeq 2000 system (Chen et al., 2014)
.
 The 3 

unigenes from three samples were combined to create the SPB unigene database. All raw 4 

transcriptome data have been deposited in the NIH Short Read Archive (accession number 5 

SRR5985986, SRR5985987, SRR5985984, SRR5985985, SRR5985988, SRR5985989). 6 

Identification of immune-related genes 7 

A list of immune-related genes was compiled based on the available relevant literature 8 

(Table S2), while homologous B. mori and D. melanogaster genes in the GenBank database 9 

were identified. The tBLASTn tool was used to complete sequence similarity searches of the 10 

SPB transcriptome database (Tamura et al., 2011; Guan & Mariuzza, 2007). 11 

Phylogenetic and domain analyses  12 

Amino acid sequences were aligned with the Multiple Alignment program clustal omega 13 

(https://www.ebi.ac.uk/Tools/msa/clustalo/) and phylogenetic tree was constructed in MEGA 14 

5 based on neighbour-joining method with 1000 bootstrap replicates (Xu et al., 2012). The 15 

architecture of protein domains was analysed using the SMART program 16 

(http://smart.embl-heidelberg.de/).   17 

dsRNA synthesis 18 
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We synthesised dsRNAs using the T7 RiboMAX Express Large Scale RNA Production 1 

System (Promega, Madison, WI, USA). The T7 RNA polymerase promoter sequence was 2 

added to each end of DNA templates during PCR amplifications. All primers containing the 3 

T7 RNA polymerase promoter were designed using Primer-BLAST 4 

(https://www.ncbi.nlm.nih.gov/tools/primer-blast/) (Table S3). For the negative control, the 5 

GFP (green fluorescent protein) gene was amplified from the PCAMBIA1302 vector as 6 

templates for GFP dsRNA synthesis. The template DNA and single-stranded RNA were 7 

eliminated from the transcription reaction by DNase I and RNase A, respectively. The 8 

prepared dsRNAs were purified by a phenol/chloroform extraction followed by an ammonium 9 

acetate precipitation. The dsRNAs were ultimately suspended in ultrapure water and 10 

quantified using the Nano Drop 2000 spectrophotometer (Thermo Scientific, Waltham, MA, 11 

USA).  12 

Soybean pod borer feeding bioassay 13 

The first instar larvae were fed an artificial diet containing dsRNA (10 μg/g) for specific 14 

target genes as described by Meng et al. (2017) (Meng et al., 2017a). Control larvae were 15 

treated with the same concentration of GFP dsRNA. The feeding bioassay was completed in 16 

triplicate with 50 larvae per treatment or control. Three biological replicates were used for 17 

each treatment. The larvae were reared for 15 days at 26 °C under a 16-h light/8-h dark cycle 18 

with 65% relative humidity. The dsRNA-supplemented artificial diet was refreshed every 3 19 
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days. Body weight, mortality, and phenotypic abnormalities were recorded every 3 days. The 1 

resulting data underwent a one-way analysis of variance to compare the effects of the dsRNA 2 

treatment on larval mortality and body weight between treated and control larvae (Student’s 3 

t-test, n = 3).  4 

Quantitative real-time polymerase chain reaction  5 

Two surviving larvae were randomly collected at each time point of per biological 6 

replicates of each treatment from 0 to 15 days after larvae were fed the artificial diet 7 

containing the dsRNA for target genes. Total RNA was extracted from pooled larvae using 8 

the RNApure Tissue Kit (DNase I) (CWBIO, Beijing, China). Additionally, primer sets were 9 

synthesised (Table S4). The extracted RNA samples were treated with DNase I (Invitrogen, 10 

Carlsbad, CA, USA) to remove any contaminating genomic DNA prior to being used as the 11 

template for first-strand cDNA synthesis with the TIANScript RT Kit (Tiangen, Beijing, 12 

China). The efficiencies of the qRT-PCR primer pairs were greater than 90% (Table S4). The 13 

SPB β-actin expression levels were used to normalize the Ct values obtained for each gene, 14 

and the qRT-PCR was completed with three biological replicates, each of which comprised 15 

two technical replicates. Significant differences in the data for the control and treatment 16 

groups were determined based on a one-way analysis of variance (Student’s t-test, n =3).  17 

RESULTS 18 

Identification of Leguminivora glycinivorella immune-related genes  19 
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Amino acid sequences encoded by D. melanogaster, B. mori, and Manduca sexta 1 

(Lepidoptera) immune-related genes were used to search L. glycinivorella transcriptome 2 

sequences. The 41 putative L. glycinivorella immune-related genes that were identified were 3 

functionally classified into three groups, namely microbial recognition, immune signalling, 4 

and immune effector molecules (Table S1).  5 

Microbial recognition molecules  6 

The PGRPs recognize conserved molecular patterns present in pathogens, but absent in 7 

the host, including PGNs, which are essential cell wall components of almost all bacteria. The 8 

PGRPs are encoded by a highly conserved gene family in insects, and are generally classified 9 

as one of two types (i.e., short or long) ( Dziarski & Gupta, 2006; Yang et al., 2017). After 10 

specific ligands are detected, microbial recognition molecules activate or modulate various 11 

immune response pathways. We identified eight L. glycinivorella PGRPs, with an equal 12 

number of short and long forms, with similarities to D. melanogaster PGRP-SC, PGRP-SD, 13 

and PGRP-LB (Fig. 1). Five (i.e., LgPGRP-SC1a, LgPGRP-SC1b, LgPGRP-SD1b, 14 

LgPGRP-LB1, and LgPGRP-LB2b) of the eight identified PGRPs were predicted to be 15 

secreted proteins (based on the presence of putative signal peptides) that function as amidases. 16 

We observed that LgPGRP-LB lacks a putative signal peptide, but consists of a 17 

transmembrane region and amidase domain, suggesting that it serves as a transmembrane 18 
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PGN receptor. In contrast, we revealed that LgPGRP-SD1a and LgPGRP-LB2a carry only the 1 

PGRP domain, implying they are intracellular proteins (Table S1).  2 

The gram-negative bacteria-binding proteins (GNBPs) and β-1,3-glucan recognition 3 

proteins (βGRPs) belong to a subfamily of PRRs, and have a strong affinity for the 4 

β-1,3-glucan of fungi and for the lipopolysaccharide of gram-negative bacteria, but not for the 5 

PGN of gram-positive bacteria. Of the three GNBPs produced by D. melanogaster (i.e., 6 

GNBP1, GNBP2, and GNBP3), GNBP1 interacts with PGRP-SA to form a hydrolytic 7 

complex that activates the Toll pathway in response to gram-positive bacteria, while GNBP3 8 

is required for detecting fungi and activating the Toll pathway (Hughes, 2012; Rao et al., 9 

2017). We identified one GNBP gene and one βGRP gene in the L. glycinivorella 10 

transcriptome datasets. The neighbour-joining phylogenetic analysis indicated that LgGNBP3 11 

is a homologue of DmGNBP3 (Fig. S1). A comparison between the deduced amino acid 12 

sequences and the D. melanogaster GNBP sequences indicated that LgGNBP3 contains a 13 

putative N-terminal β-1,3-glucan-recognition domain (CBM39) and a C-terminal 14 

glucanase-like domain (glycosyl hydrolase family 16), suggesting LgGNBP3 may be able to 15 

bind to fungal β-1,3-glucan.  16 

Immune signalling molecules 17 

We also identified genes associated with the Toll and IMD pathways, which are the 18 
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major signalling pathways that mediate the innate immunity of insects. The Toll pathway 1 

regulates the production of antimicrobial peptides in response to infections by fungi or 2 

gram-positive bacteria with lysine-type PGNs in their cell walls (Roh et al., 2009). The Toll 3 

receptor, which is responsible for the signal transduction associated with the Toll pathway, is 4 

vital for insect innate immune responses and embryo development (Takeda & Akira, 2004; 5 

Benton et al., 2016). In this study, we identified 10 genes encoding Toll receptors in the L. 6 

glycinivorella transcriptome datasets. The TIR domain is highly conserved in insect Toll 7 

families. To investigate the orthologous relationships among these genes, we constructed a 8 

phylogenetic tree based on an alignment of the TIR domains from all L. glycinivorella and D. 9 

melanogaster Toll proteins. The Toll receptors analysed in this study formed five major 10 

clusters, namely Toll5, Toll-6, Toll-7, Toll-8, and Toll-9 (Fig. 2A).  Based on the 11 

phylogenetic tree, the L. glycinivorella Toll genes were designated as Toll-5a, Toll-5b, Toll-6a, 12 

Toll-6b, Toll-6c, Toll-7a, Toll-7b, Toll-8, Toll-9a, and Toll-9b. All 10 predicted proteins contain 13 

the extracellular LRR domain as well as the transmembrane and cytoplasmic TIR domains 14 

(Fig. 2B). We also identified sequences matching the intracellular components, ECSIT and 15 

Tollip, which affect the Toll signalling pathway (Table S1) 16 

The IMD pathway is mainly activated by gram-negative bacterial infections. 17 

Additionally, IMD signal transduction is reportedly mediated by IMD, fas-associated death 18 
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domain protein (FADD), death-related ced-3/Nedd2-like caspase (Dredd), inhibitor of 1 

apoptosis protein 2 (IAP2), transforming growth factor β-activated kinase (TAK1), 2 

TAK1-binding 2 (Tab2), ubiquitin conjugating 13 (Ubc13), and an inhibitor of nuclease factor 3 

B kinase subunits b and g (IKKb and IKKg)( Bao et al., 2013; Myllymäki et al., 2014). 4 

Although we did not detect L. glycinivorella orthologues of TAK1, Tab2, Ubc13, IKKb, and 5 

IKKg, we identified sequences that were homologous to FADD, Dredd, and IAP2 (Table S1).  6 

Immune-related effector genes 7 

The PGRPs and βGRPs detect PGNs and β-1,3-glucans, which activates a clip-domain 8 

serine protease (CLIP) cascade that converts prophenoloxidase to active phenoloxidase, 9 

leading to the melanisation responses involved in eliminating pathogens(Monwan et al., 2017; 10 

Li et al., 2016). We identified two CLIP genes (LgSnake-1 and LgSnake-2) in the L. 11 

glycinivorella transcriptome datasets. The deduced amino acid sequences contain a clip 12 

domain at the N-terminus and a serine protease domain at the C-terminus (Fig. S2A). Serine 13 

protease inhibitors (i.e., serpins) negatively regulate prophenoloxidase activation, which 14 

prevents the excessive activation of the CLIP cascade. In this study, we identified three serpin 15 

genes in the L. glycinivorella transcriptome datasets (i.e., Lgserpin1, Lgserpin2, and 16 

Lgserpin3). Their deduced amino acid sequences consist of a putative signal peptide sequence 17 

and a core serpin domain, suggesting they are secreted proteins (Fig. S2B). 18 
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Immune response effector genes 1 

Antibacterial peptides are immune response effectors whose production is induced by 2 

immune challenges and are important for defence responses against insects. Diverse 3 

antibacterial peptide genes have been identified in many insect species, including genes 4 

encoding defensins, reeler, and lysozyme (Imler & Bulet, 2005; Bao et al., 2011). In this study, 5 

we identified one defensin gene in the L. glycinivorella transcriptome datasets (i.e., 6 

Lgdefensin1). The encoded amino acid sequence consists of a putative signal peptide 7 

sequence and a core Knot1 domain (Table S2). We also identified seven chicken (C-type) 8 

lysozymes and two invertebrate (I-type) lysozymes in the L. glycinivorella transcriptome (Fig. 9 

S3). The C-type lysozymes are bacteriolytic enzymes that hydrolyse the β (1-4) bonds 10 

between N-acetylglucosamine and N-acetylmuramic acid in the PGN of prokaryotic cell walls. 11 

We observed that with the exception of the C-type 3 protein, the predicted L. glycinivorella 12 

C-type proteins include an N-terminal signal peptide sequence (Table S1). Additionally, we 13 

detected eight conserved cysteine residues in the L. glycinivorella C-type lysozymes (Fig. 14 

S3A) as well as 12 conserved cysteine residues in the deduced L. glycinivorella I-type 15 

lysozyme sequences (Fig. S3B). These cysteine residues possibly form intramolecular 16 

disulfide bonds to enhance stability and resistance against proteolytic degradation. 17 

Potential RNA interference targets identified in an artificial feeding assay and effects of 18 

PeerJ reviewing PDF | (2018:02:24130:0:3:NEW 14 Feb 2018)

Manuscript to be reviewed



double-stranded RNA on soybean pod borer development and mortality  1 

Eleven genes representing the immune-related SPB genes were selected and analysed to 2 

identify potential new RNAi targets useful for controlling the SPB. We synthesised the 3 

corresponding dsRNAs in vitro and mixed them in an artificial diet. The mortality rates 4 

3-days after larvae were fed an artificial diet containing 10 µg/g dsRNA for LgToll-5a, 5 

LgSerpin2, LgPGRP-LB, LgPGRP-LB2b, or LgChaoptin were 42.86–92%. These mortality 6 

rates were significantly higher than those of control larvae treated with PBS or GFP dsRNA. 7 

Additionally, mortality rates were even higher at day 15. In contrast, the artificial diets 8 

containing dsRNA targeting Lgitype-1, LgToll-5b, LgToll-9b, LgToll-6b, LgToll-7b, or 9 

LgPGRP-LB2a did not have any considerable effects on larval mortality (Fig. 3). Moreover, 10 

we detected three main phenotypic differences among the surviving larvae after 15 days of 11 

feeding. First, the weight of the larvae fed LgToll-5b dsRNA increased more slowly than that 12 

of larvae fed GFP dsRNA, and was ultimately lower after 15 days of feeding (Fig. 4). 13 

Additionally, the cuticles of larval bodies were black (Fig. 5). Second, larvae treated with 14 

Lgitype-1 dsRNA were more sensitive to pathogens, with approximately 50% of the larvae 15 

infected by bacteria even in the absence of an artificial pathogen inoculation. Third, larvae fed 16 

dsRNA targeting LgPGRP-LB or LgPGRP-LB2a underwent early pupation, with pupation 17 
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rates of 25 and 50%, respectively. The remaining larvae developed abnormally with stunted 1 

and twisted bodies (Fig. 5).   2 

To investigate how larval mortality and abnormal development are correlated with the 3 

relative expression levels of specific target genes, we completed a quantitative real-time 4 

polymerase chain reaction (qRT-PCR) using total RNA extracted from the surviving larvae at 5 

different time points after feeding on the artificial diet. We observed that the LgPGRP-LB2b, 6 

LgToll-5b, LgToll-7b, LgToll-9b, and LgItype-1 expression levels decreased significantly in 7 

larvae 3 days after being treated with the respective dsRNA, while the expression levels of the 8 

remaining genes decreased significantly after 6 or 9 days (p < 0.01; Student’s t-test, n = 3) 9 

(Fig. 6). These results imply that the increased mortality and abnormal development of larvae 10 

fed dsRNA were due to the down-regulated expression of specific target genes. Moreover, we 11 

propose that unigenes LgToll-5a, LgPGRP-LB2a, and Lgitype-1 may represent good RNAi 12 

targets for controlling the SPB.   13 

DISCUSSION 14 

Insects possess an efficient innate immune system that protects insects from 15 

microorganisms helps insects overcome abiotic stresses (Hillyer, 2015; Parsons& Foley, 16 

2016).
 
The immune-related genes have recently garnered interest among entomologists 17 

(Gendrin et al., 2017). In this study, 41 genes were identified in the L. glycinivorella 18 

transcriptome, including genes encoding components of the conserved immune signalling 19 
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pathways (i.e., Toll and IMD pathways) as well as pathogen recognition and immune response 1 

effectors. Most of these genes include conserved sequences that exist in orthologous D. 2 

melanogaster and B. mori genes (Table S1). However, immune-related gene families have 3 

expanded or contracted in different taxa. For example, the PGRP gene families in D. 4 

melanogaster, B. mori, and L. glycinivorella include 13, 12, and 8 members, respectively 5 

(Hillyer, 2015; Yang et al., 2015). Along with the differences in the sequences of 6 

immune-related genes, we observed that the encoded proteins exhibit diverse activities. For 7 

example, four of the L. glycinivorella PGRPs are closely related to each other and form an 8 

independent cluster with D. melanogaster PGRP LB (Fig. 1). Two of them contain a putative 9 

signal peptide and a conserved Ami_2 domain, whereas the others lack a signal peptide (Table 10 

S1). Furthermore, silencing LgPGRP-LB and LgPGRP-LB2a induced early pupation and 11 

abnormal larval development, while silencing LgPGRP-LB2b had no significant effect on 12 

larval development (Fig. 5). Previous studies revealed that PGRP-LB is a catalytic amidase 13 

that can degrade PGN and regulate host immune responses to infectious microorganisms by 14 

down-regulating the IMD pathway (Zaidman-Rémy et al., 2006; Troll et al., 2009), which 15 

protects the beneficial microbes in insects and prevents host-inflicted damage during 16 

development (Hashimoto et al., 2007). In the Tsetse fly (Diptera: Glossinidae), silencing 17 

PGRP-LB by RNAi decreases host fecundity because of the associated cost of activating the 18 
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host immune response (Wang & Aksoy, 2012).  1 

L. glycinivorella is a univoltine insect. The mature larvae make cocoons in the soil and 2 

enter diapause during the winter and pupate in mid-July, for a diapause period of about 10 3 

months
2
. In our study, LgPGRP-LB and LgPGRP-LB2a were silenced by RNAi, which broke 4 

the diapause and caused mature larvae to pupate. This termination of diapause may be due to 5 

an immune response that is initiated to prevent host-inflicted damage. Nevertheless, further 6 

research is needed to confirm that LgPGRP-LB influences the activation of host immune 7 

responses.  8 

The Toll pathway is not only critical for innate immunity against bacteria, it also 9 

affects embryonic development, olfactory neuron processes, and TNF-induced 10 

JNK-dependent cell death in D. melanogaster (Yang et al., 2015; Valanne et al., 2011; Wu 11 

Valanne et al., 2015). Knocking down the fusilli and cactin genes, which are part of the Toll 12 

pathway, is lethal for the red flour beetle (Tribolium castaneum). Meanwhile, the silencing of 13 

cactin is 100% lethal at all developmental stages (i.e., larva to adult). Additionally, the 14 

knockdown of pelle and dorsal prevents eggs from hatching in the next generation (Bingsohn 15 

et al., 2017)
.
 In our study, an artificial diet containing dsRNA for LgToll-5a was 93% lethal to 16 

larvae 3 days after feeding. Furthermore, knocking down LgToll-5b decreased body weight 17 

and prevented old cuticles from separating from larval bodies. These results suggest that 18 
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LgToll-5a and LgToll-5b influence larval development.  1 

Lysozymes are widely distributed immune effectors that exhibit muramidase activity 2 

against the PGNs in the bacterial cell wall to induce cell lysis (Zhou et al., 2017). In our study, 3 

the knockdown of LgI-type-1 resulted in bacterial infections of larvae. The LgI-type-1 gene 4 

encodes a destabilase domain, which is associated with isopeptidase and antibacterial 5 

activities. Meanwhile, the pI of LgI-type-1 is 7.93 (Table 2). Researchers have proposed that 6 

I-type lysozymes with a high pI influence immunity (Kurdyumov et al., 2015; Xue et al., 7 

2004). Thus, LgI-type-1 exhibits isopeptidase activity and contributes to L. glycinivorella 8 

immunity.  9 

CONCLUSION 10 

We identified 41 genes associated with L. glycinivorella microbial recognition proteins, 11 

immune-related effectors, or signalling molecules of immune response pathways (e.g., Toll 12 

and immune deficiency pathways). This would be useful as a comprehensive genetic resource 13 

for immune-related L. glycinivorella genes, and may contribute to the elucidation of the 14 

mechanism regulating innate immunity in Lepidoptera species. In addition, the in vivo 15 

functions of 11 genes were analysed in RNAi experiments, which indicated that three genes 16 

may be appropriate RNAi targets for controlling the SPB. The observations described herein 17 

may be useful for future analyses of the mechanisms underlying the L. glycinivorella immune 18 

response pathways and for developing RNAi-mediated methods to control SPB infestations.  19 
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Figure 1

Phylogenetic relationships among PGRPs from Leguminivora glycinivorella and

Drosophila melanogaster

The phylogenetic tree was constructed using MEGA5.0 with a neighbour-joining approach.

The bootstrap values (1000 replicates) are provided next to the branches. The first two

letters of each PGRP name indicates the species (Dm, D. melanogaster; Lg, L. glycinivorella).
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Figure 2

The analysis of Toll receptors of the L. glycinivorella

(A) Phylogenetic relationships among Toll receptors from Leguminivora glycinivorella and

Drosophila melanogaster. The phylogenetic tree was constructed using MEGA5.0 with a

neighbour-joining approach. The bootstrap values (1000 replicates) are provided next to the

branches. Lg, L. glycinivorella; Dm, D. melanogaster. (B) Predicted domains of the L.

glycinivorella Toll receptors. The domain organization was predicted using the SMART

program (http://smart.embl.de/). The extracellular leucine-rich repeats (LRRs) are presented

as rectangles and the LRR C-terminal domain is indicated with small ellipses. The

intracytoplasmic TIR domains are presented as big ellipses and signal peptide are shown with

red rectangles

PeerJ reviewing PDF | (2018:02:24130:0:3:NEW 14 Feb 2018)

Manuscript to be reviewed



Figure 3

Mortality of larvae fed an artificial diet supplemented with dsRNA (10 μg/g) for 11

candidate RNA interference target genes.

*p < 0.05, **p < 0.01 (Student’s t-test, n = 3).
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Figure 4

Body weight of larvae fed an artificial diet supplemented with dsRNA (10 μg/g) for 11

candidate RNA interference target genes.
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Figure 5

Images of larvae fed an artificial diet supplemented with dsRNA (10 μg/g) for 11

candidate RNA interference target genes for 15 days.

Of the larvae fed an artificial diet containing dsRNA for LgToll-5a, only one survived after 15

days.
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Figure 6

Relative expression levels of 11 candidate RNA interference target genes at different

time points after larvae were fed an artificial diet containing dsRNA (10 μg/g).

Quantitative real-time polymerase chain reactions were completed using total RNA extracted

from surviving larvae. *p < 0.05, **p < 0.01 (Student’s t-test, n = 3).

PeerJ reviewing PDF | (2018:02:24130:0:3:NEW 14 Feb 2018)

Manuscript to be reviewed




