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18 Abstract

19 Gene expression profiling data provides useful information for the investigation of
20 biological function and process. However, identifying a specific expression pattern from
21 extensive time series gene expression data is not an easy task. Clustering, as a popular method, is
22 often used to classify similar expression genei however, genes with a ‘desirable’ or ‘user-
23  defined’ pattern cannot be efficiently detected by clustering methods. To address these
24 limitations, we developed an online tool called GEsture. Users can draw, or graph a curve)using
25 amouse instead of inputting abstract parameters of clustering methods. GEsture explores genes
26  showing similar, oppositeyand time-delay expression patterns with a gene expression curve as
27 input from time series data sets. We presented three exam%e@)hat illustrate the capacity of
28 GEsture in gene hunting while following to users’j; cLirements. GEsture also provides
29 visualization tools (such as expression pattern figure, heat mapyand correlation network) to
30 display the searching results. The result outputs may provide useful information for researchers

31 to understand the targets, functionj and biological processes of the involved genes.
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32 Introduction

33 Gene expression profiling (such as Microarray and RNA-seq) data provides important
34 information for researchers to investigate biological function and process. Many public databases
35 including gene expression omnibus (GEO) (Barrett & Edgar 2006), gene signatures database
36 (GeneSigDB) (Culhane et al. 2012), and molecular signatures database (MSigDB) (Liberzon
37 2014) are available to identify the relationship between gene expression and biological
38 functions/processes. For many biological studies, researchers hope to find genes showing
39 “anticipated” expression patterns. For example, biologists know that during a day, the expression
40  levels of light rhythm genes change (increase or decrease) with the intensity of light, and change
41 back with the darkness of night. However, it is hard for them to find the genes with this
42 particular pattern from large gene expression datasets without strong bioinformatics background.
43 Multiple approaches have been developed to find genes showing similar expression patterns
44 across all samples (Androulakis et al. 2007; Sharan & Shamir 2000). Of these approaches,
45  clustering is mainly used to solve the probleréﬁisen et al. 1998; Jiang et al. 2004; Schliep et al.
46  2005; Wen et al. 1998). Clustering algorithms include hierarchical clustering (Jiang et al. 2003),
47  self-organizing maps (Tamayo et al. 1999), K-means clustering (Tavazoie et al. 1999; Wu 2008)
48 and so on. And many clustering approaches indeed performed well in grouping genes with
49  similar expression patterns without any prior knowledge. Balasubramaniyan {Balasubramanivan
50 et alf:2005) proposed the CLARITY ‘algorithm using a local shape-based similarity measurement
51 to dig for similar expression genes&iQiau et al.(2003)proposed a local clustering algorithm to
52 identify genes with time-delayed and inverted expression patterns’) (time-delayed is defined as
53  gene expression with a time difference but the overall expression trend is the same and inverted
54 refers that genes show high expression levels while some other genes show low expression levels
55 at the same time). Xia designed the eLSA package (Xia et al. 2013), which filters out

56 insignificant results and constructs a partial and directed association network.
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57 Unfortunately, the clustering algorithms have some disadvantages. First, the computation
58 complexity of clustering algorithms exponentially increases as the dataset becomes larger.
59  Second, the issue of determining the optimum cluster number is not yet rigorously solved
60 (Yeung 2001). Third, during the data_ [;:B%esgg, expression data vary greatly, clustering

61 algorithms generally require 16 pre-proces\ the ig)inal data, and different clustering algorithms
(J=\7?

62 will choose different initial partition",m\}/hiéh may cause loss of useful informationf(Ye et al.
63 2015). Fourth, unrelated groups may be merged into one cluster. Fifth, not always can clustering
64" algorithms cluster all the categories, and even a category will be divided into several categories.
65 For example, classical K-means clustering extracts categories of a given number from the gene
66 expression profile. However, it often separates a big similar category into different categories.
67 Because a time-delayed phenomenon often appears in gene expression, K-means clustering
68 cannot recognize it and mistakenly divides it into many categories instead of classifying only one
69 category. Lastfbut not least, thf.:)(‘ cannot guarantee that-ﬁny({can jlways 'ﬁn ‘,1 a‘;ene expression
70  pattern that users want to searc;‘h‘ at any time. In a word, élustering methods can help to
71  understand global profiles of gene ~é&i‘pressicm, but not efficiently enough to detect genes with
72 user-defined expression patterns.

73 In this paper, we presented an online tool, GEsture, short for Gene Expression gesture. The
74  program searches specific gene expression pattern from time-series gene expression data using
75  an anticipated gene expression pattern drawn by the user instead of using clustering algorithms.
76  GEsture addresses the current shortcomings of the clustering algorithm and allows users to
77  analyze time-series data from a different angle. This method not only can identify co-expression
78  genes but also can detect opposite and time-delayed expression genes. Furthermore, it provides a
79  user-friendly interface for users to input and visualize the results. The output results may provide
80 useful information for researchers to understand the targets, function and biological processes of

81 the genes of interest.
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82 Materials & Methods

83 The workflow of GEsture

84 The primary function of GEsture is to identify genes showing specific patterns from gene
85 expression data. The workflow is illustrated in Figure 1. The first step is uploading time-series
86 gene expression data. Two modes of operations, user-defined pattern and K-means clustering,
87 are then provided for pattern searching. For user-defined pattern, users can either draw an
88 expression curve by the mouse on the drawing board or select a pre-defined gene expression
89  pattern in the system to search. Classical K-means clustering method extracts expression patterns
90  from the gene expression profile based on the category number assigned by the users.

91 There are three functions for gene expression pattern searching in GEsture: brush pattern
92  search, contrast pattern search, and shift pattern search.

93 1. Brush pattern search (co-expression pattern search). It is the default pattern search
94  function in GEsture. Users can draw a gene expression curve with mouse on the drawing board.
95  GEsture will identify the genes showing similar patterns (co-expression genes) with the drawn
96  curve. It is noted that users should include as many time points as possible in curve drawing to
97 achieve accurate matching.

98 2. Contrast pattern search. This function searches the genes showing opposite expression
99  pattern to the user’s input. It aims at helping users to explore negatively regulated genes. For
100 example, target genes of a transcription factor that inhibits expression can be found using this
101  function.

102 3. Shift pattern search. This function is designed to find genes showing similar but time-
103 delayed (or ahead) expression pattern. It will help users to identify possible

104 downstream/upstream genes. The range of -6 to 6 can be chosen for the shifting gene expression
105 search_.-{ { oA n
/1w
/ LA

]
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106 The expression levels of output genes are shown by the heat maps. The network map is

107  generated to display the relationship of the search results.

108 Data analysis process

109 GEsture takes a curve as an input, and it allows the user to search genes with similar
110 expression patterns. As a result, users can see the gene expression curves intuitively rather than
111. in abstract parameters and data. A raw dataset uploaded by the user will be checked to filter low-
112 quality (such as missing and low entropy) data in the uploaded file by GEsture. The search
113 process includes the drawing of an anticipated curve, followed by fitting the system in a line and
114  sampling the data. Afterwards, genes are compared with each other in the gene expression file to
115 calculate the similarity between them. Lastly, an assessment function is adopted using the
116 Pearson correlation coefficient (Horyu & Hayashi 2013; Wang et al. 2015) to select closely-
117 related genes. It may take a while when performing this kind of search on a large dataset, but it is
118 significantly faster than clustering. GEsture only compares every gene expression curve in the
119 file, while clustering needs to determine the initial centers and iteration numbers of the algorithm,
120  inevitably leading to higher computation and time complexity. The cutoff for the correlation

121  coefficient for gene outputs can be adjusted by users if too many or too few genes are identified.

122 Output of GEsture

123 As shown in Figure 2, the output of GEsture includes a gene expression pattern figure and
124  gene information table. To clearly show the expression patterns, a slider is provided for users to
125 adjust the correlation coefficient cutoff value. At the same time, the information of the output
126  genes in the figure is also shown in a table. In the output table, each row of data represents a
127 gene. The information of gene name, p-value, correlation value and detailed time-series
128 expression data is included. If a user clicks on the gene name in the table, the corresponding gene
129  expression curve will be shown in the expression pattern figure. The gene information table can

130 be exported as a CSV file.
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131 Two visualization tools, a heat map and a comprehensive relationship network map were
132 provided to visualize the search results. Figure 3 shows the co-expression genes of YNL309W.
133 Each row in the heat map represents one gene and different colors to display the gene expression
134 levels. In GEsture, the maximum number of genes for a hegk\nap is 500. The heat map can be
135 exported as a PNG form_gtted file. In addition,Agene networlj‘_{s used for representing the complex
136 functions or traits ofrpiological system, especially the network based on co-expression genes can
137_ annotate the unknown gene fun&t)im(Serin et al. 2016). But here, we build a simple ‘network’ to
138 show the output genes may have the latent biological relationship searched by three
139 searching patterns, which is shown as Figure 4. In Figure 4, circles in same color represent they
140  are similar expression genes and the{center point ;satpe ﬁsarched gene or the most similar gene to
141  the drawn-curve. It was built on the Cyt?scape.jshand the size of the Figure 4 can be adjusted by

. b /\
142 users using the mouse. b \

143 Datasets used in GEsture

144 We used 3 examplek ;o demonstrate the effectiveness of GEsture. In example 1, a yeast cell-
145 cycle data set was chosen to assess the performance of GEsture. The data set contains 6187
146 genes and 18-time points (Spellman et al. 1998), and it is available at http://genome-
147 www.stanford.edu/cellcycle/data/rawdata/. The same yeast data set was also used in example 2
148  to identify the target genes of transcription factors In example 3, the circadian rhythm genes of
149 Arabidopsis thaliana were identified using GEsture %\umbla diurnal gene expression data of
150  Arabidopsis thaliana (Mockler Lab) measured in the condition of growing with 12h-light 12h-
151  dark/24h-hot (COL_LDHH) was chosen (Mockler et al. 2007).
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152 Results

153 Example 1: searching anticipated expression genes

154 Here, we used two methods, a user-defined pattern searching in GEsture and a K-means
155 clustering method, to identify genes whose expression levels increased over time in the cell cycle.
156  K-means clustering was first applied to cluster different gene expression categories. As shown in
157  Figure 5, a variety of gene expression patterns were identified at k=16 and 25. However, the
158 pattern of interest did not present itself in the results.

159 GEsture was then applied to find the genes showing the increasing pattern over time. We
160  drew the anticipated expression curve in GEsture (Figure 6A) and eleven genes were detected to
161 express increasingly over time (Figure 6B). Among these genes, four genes (YORO010C,
162 YDRS534C, YOR382W, and YNL066W) are the cellular component: cell wall proteins. Three
163 genes are transporters (YHL047C, YMRO58W, and YBR102C) (Chervitz et al. 1999), which
164 may provide some hints for biologists to study biological processes of these genes and the
165 transcriptional mechanisms of cell cycle regulation. In summary, this example demonstrated that

'\}

167 L,Such as an expression pattern whose expression levels increase with time during the cell cycle.

166  GEsture was more straightforward and efficient to identify genes that biologists are interested in

&

168 Example 2: identifying target genes of transcriptional factors

169 As shown in the Saccharomyces Genome Database (SGD hitps://www.yeastgenome.org/),
170 YNL309W(STBI) encodes a protein that contributes to the regulation of SBF and MBF target
171 genes (Chervitz et al. 1999). During the G1/S transition in the cell cycle of yeast, SBF and MBF
172 play the role of sequence-specific transcription factors in activating the gene expressiork(lyer et
173 al. 2001).We hypothesized that the genes showing similar, contrast, or time-delayed expression

174 patten%nay be controlled by a similar regulatory mechanism. In this example, we searched genes
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175  using GEsture and explored whether there were other genes regulated by the same transcription
176 factor. X

177 We have drawn a curve like the expression of YNL309W (shown in Figure 7) with the mouse
178  and searched GEsture using three different patterns. Then we found 155 co-expression genes, 15
179  contrast expression genes and 44 one-interval shift expression genes. More detail information
180 about these genes can be found in Table S1. YNL309W was detected in the co-expression gene
181 list, which shows the accuracy of the tool.

IS’i We then used a database, YEASTRACT (Yeast Search for Transcriptional Regulators and

183  Consensus Tracking http://www.yeastract.com) (Teixeira et al. 2006), to assess which identified

184 genes were regulated by the same TFs as YNL309W. YEASTRACT provides the known TF-
185  target genes association of yeast in the cell-cycle process. TECIp and STE12p were known TFs
186  of YNL309W in the cell cycle (Madhani et al. 1999), TEC1p is responsible for positive regulation,
187 and STE12p is responsible for negative regulation. After comparing the result, we found that 124
188  similar expression genes, 5 contrast expression genes and 27 shift expression genes (one interval)
189  of above results were regulated by TEC1p and STE12p (Table 1). Detailed gene information is
190  listed in the Table S2. The example indicated that similar expression genes may be regulated by

191 the same transcription factors and GEsture can efficiently identify target genes associated with

192  related transcription factors.

193 Example 3: identifying circadian rhythm genes of Arabidopsis

194 thaliana

195 In higher plants, the circadian rhythm phenomenon is a universal, intrinsic and autonomous
196 timing mechanism of approximately 24-hours. This mechanism allows organisms to adapt to
197  daily external changes in the environment, such as light, temperature and so on (Bass &
198  Takahashi 2010; Bellpedersen et al. 2005; Hardin & Panda 2013: Joska et al. 2014). The most
199 noticeable characteristic of circadian rhythms is that the period of rhythm is close to 24 hours in

200 the absence of environmental stimuli. The expression pattern of circadian rhythms genes in the
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201 period of rhythm almost does not vary (Hsu & Harmer 20 14; Wijnen & Young 2006). As of now,
202 some circadian rhythms-associated genes of ﬂ Arabidopsis thaliana have been identified and
203 cataloged by The Arabidopsis Information Resource (TAIR https://www.arabidopsis.org) (David
204 et al. 2008). Here, we input the expression pattern of known circadian rhythms genes and
205  checked whether GEsture could efficiently identify genes related to circadian rhythm. As shown
206 in Figure 8, we drew an expression curve approximating circadian rhythm gene expression
207  patterns. Three pattern searches were attempted for gene identification. The TAIR database was
208 finally used to check whether the resulting genes from the pattern searches were related to
209  circadian rhythm,

210 GEsture found 40 circadian rhythm genes using three search patterns (Table 2). Detailed
211 information was listed in the Table S3. In these 40 circadian rhythm genes 14, 11, and 15 genes
212 showing similar, contrast and shift patterns with the input mouse-entered pattern. Among the co-
213 expression circadian rhythm genes, we have found AT5G25830, AT5G15850, AT5G56860),
214 which are TFs of Arabidopsis. We also found some genes with an expression pattern similar to
215 circadian rhythm but not recognized as rhythm genes, such as A72G31990, ATI1G32630,
216  AT1G05320 and so on. The expression curves of these genes are similar to circadian rhythm
217 genes, but their biological process is still shown as annotated in the TAIR database. The results

218 may provide some hints for biologists to study biological functions and processes of these genes.

219 Discussion

220 Two data sets, one from a yeast dataset, and the other from Arabidopsis. _L_t_l_aliana'.were
221  selected to assess the performance of our program. Three e:;l;lples demonstrated the
222 effectiveness of GEsture in searching co-expression, contrast and time-delay expression genes.
223 The biological meaning of the output genes was explored. For reference, the two data sets, which

224 are applied in the three examples are provided on the GEsture website.
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225 GEsture is built for searching specific gene expression pattern from time-series gene
226 expression data. The program was written in PHP, JAVASCRIPT, HTMLS, and Bootstrap. Also,
227 two plugins of’ cytoscape Js (Franz et al. 2016) andﬁEchart Js were utilized for graphical
228  visualization. Here we used three examples to show that GEsture can search anticipated
229  expression genes, target genes of transcriptional factors and circadian rhythm genes of
230 Arabidopsis thaliana. The results of the first example indicate that clustering algorithms cannot
231  efficiently dig out all gene expression patterns, some of which are hard to be clustered. Perhaps it
232 is possible to identify the pattern by increasing the cluster number. However, it may require more
233 time to attempt different cluster numbers and the process is not efficient. While GEsture was
234 shown more straightforward and efficient to identify genes by the way of drawing gene
235  expression curves and it would be good supplement tool of other clustering methods.

236 In the second example, GEsture searched similar expression genes by drawing a familiar
237  gene expression curve rather than one concrete gene, such as an annotated gene name. It showed
238 that GEsture was effective and efficient in exploring other genes with the similar expression
239  patterns. Furthermore, about 73% ((124+5+27)/(155+15+44)) of overall result genes GEsture
240 searched were controlled by the same TFs. The third example showed another function of
241  GEsture, not only was it capable of seeking target genes of the TFs, but it also performed well in
242 detecting genes with similar functions by curves.

243 In short, GEsture provides an interactive interface for pattern searching and is convenient
244 and easy for users to edit the gene expression curve, then further explore the similar expression
245 genes matching the drawn expression curve. In contrast to inputting abstract parameters and data,
246 it provides a visualization searching method to detect target genes and visualizes the result in
247 heat map and network map furtherly. GEsture enriches the diversity of methods analyzing time-

248  series expression data. It is available at http://bio.njfu.edu.cn/GEsture.

Peer] reviewing PDF | (2018:02:24288:2:0:NEW 8 May 2018)



PeerJ Manuscript to be reviewed

249 Conclusions

250 In conclusion, GEsture is a web-based and user-friendly tool, which can detect gene
251 expression patterns from time series gene expression data. It has some advantages over
252 conventional analysis. First, users can quickly identify genes showing three expression patterns
253  (similar, opposite, and shift) using a gene expression curve. Three examples showed that GEsture
254 performed well. It can detect some expression patterns more efficiently than K-mean clustering.
255 Therefore, GEsture will be an alternative method for users if the clustering methods failed.
256  Second, GEsture provides an easy-to-use input interface. Users can draw a curve using mouse
257 instead of inputting abstract parameters from defined algorithms. Lastly, GEsture provides
258 visualization tools (such as expression pattern figure, heatmap‘land correlation network) to
259 display the searching results. The output results may provide useful information for users to

260 understand the targets, function and biological processes of the input gene of choice.
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