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Abstract

Gene  expression  profiling  data  provide  useful  information  for  the  investigation  of

biological  function  and  process.  However,  identifying  a  specific  expression  pattern  from

bigextensive time series gene expression data is not easy. Clustering is a popular method to

classify  similar  expression  genes.  H;  however,  genes  with  a  ‘desirable’ or  ‘user-defined’

pattern cannot be efficiently detected by clustering methods. To address these limitations, we

developed an online tool called GEsture.  Users can draw, or graph, a curve using  a  mouse

instead of inputting abstract parameters.  GEsture explores genes showing similar, opposite,

time-delay or aheadpredicted expression patterns with the input from time series data sets. We

presented three examples that illustrate the capacity of GEsture in hunting for genes while

conforming  to  users’  expectations.  GEsture also  provides  visualization  tools  (such  as

expression pattern figure, heat map and correlation network) to display the searching results.

The output results may provide useful information for researchers to understand the targets,

function and biological processes of the input genes. 
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 Introduction

Gene expression profiling (such as  Microarray  and RNA-seq)  data  provide  important

information  for  researchers  to  investigate  biological  function  and  process.  Many  public

databases including gene expression omnibus (GEO) (Barrett & Edgar, 2006), gene signatures

database (GeneSigDB) (Culhane et al., 2012), and molecular signatures database (MSigDB)

(Liberzon,  2014)  are  available  to  identify  the  relationship  between  gene  expression  and

biological  functions/process.  For  many  biological  studies,  researchers  hope  to  find  genes

showing “anticipated” expression patterns. For example, biologists know that during a day,

the expression levels of light rhythm genes change (increase or decrease) with the intensity of

light, and change back with the darkness of night. However, it is hard for them to find the

genes  showing  this  pattern  from  large  gene  expression  data  studies  without  strong

bioinformatics background. 

Multiple approaches have been developed to find genes expressing similarly expression

patterns across all samples (Androulakis, Yang, & Almon, 2007; Sharan & Shamir, 2000).

Clustering is widely used to solve the problem.(Eisen et al., 1998; Wen et al., 1998; Jiang,

Tang,  &  Zhang,  2004;  Schliep  et  al.,  2005).  Clustering  algorithms  include  hierarchical

clustering (Jiang, Pei, & Zhang, 2003), self-organizing maps (Tamayo et al., 1999), K-means

clustering  (Tavazoie  et  al.,  1999;  Wu,  2008)  and  so  on.  Clustering  approaches  indeed

performed  well  in  grouping  genes  with  similar  expression  patterns  without  any  prior

knowledge.  Balasubramaniyan  (Balasubramaniyan  et  al.  ,  2005)  proposed  a  CLARITY

algorithm using a local shape-based similarity measurement to dig for similarly expressed

genes  (Balasubramaniyan  et  al.  ,  2005). Qian  et  al.  (2003)  proposed  a  local  clustering

algorithm to identify time-delayed and inverted expression genes. (time-delayed means gene

expression has a time difference but the expression trend is the same, and inverted refers to

some genes  that  are high expression while the other genes are low expression at the same

time) (Qian et al., 2003). Xia designed an eLSA package (Xia et al, 2013), which filters out

insignificant results and constructs a partial and directed association network.

However,  the  clustering  algorithm has  some  disadvantages.  First,  the  computation

complexity of clustering algorithms exponentially increases as the dataset becomes larger.

Second, the issue of determining the optimum cluster number is not yet rigorously solved

(Yeung, 2001). Third,  during the data processing, as Ye  et al. (2015)  says, ‘expression data
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vary greatly, clustering algorithms generally require pre-processing of the original data which

may cause loss  of useful  information’(Ye et  al.,  2015).  Fourth,  clustering algorithms will

discard some clusters with smaller number of genes. Fifth, unrelated groups may be merged

into one cluster.  For example,  classical  K-means clustering extracts  categories  of  a  given

number from the gene expression profile. However, it cannot always cluster a category wethat

is expected. Because a time-delayed phenomenon often appears in gene expression., K-means

clustering  cannot  recognize  it  and  mistakenly  divides  it  into  many  categories  instead  of

classifying  only  one category. Therefore, clustering methods can help to understand global

profiles  of  gene  expression, but  not  efficiently  enough  to  detect  genes  with  user-defined

expression patterns. 

In this paper,  we presented an online tool, GEsture, short for Gene Expression gesture.

The program searched specific gene expression pattern from time-series gene expression data

using  anticipated  gene  expression  patterns  drawn  by  users  instead  of  using  clustering

algorithms. GEsture addresses the current shortcomings of the clustering algorithm and allows

users to analyze time-series data from a different angle. This method not only can identify co-

expression  genes  but  also  can  detect  opposite  and  time-delayed expression  genes.

Furthermore, it provides user-friendly interface for users to input and visualize the results.

The output results may provide useful information for researchers to understand the targets,

function and biological processes of the input genes. 

Materials & Methods

The workflow of GEsture

The primary function of GEsture is to identify genes showing specific patterns from gene

expression data. The workflow is illustrated in Figure 1. The first step is uploading time-series

gene expression data. Two modes of operations, user-defined pattern and K-means clustering,

are then provided for pattern searching. For user-defined pattern, users can either draw an

expression curve by the mouse in the drawing board or select a pre-defined gene expression

pattern  in  the  system to  search.  Classical  K-means  clustering  method extracts  expression

patterns from the gene expression profile based on the given number of data points (?). 
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There are three functions for gene expression pattern searching in GEsture: brush pattern

search, contrast pattern search, and shift pattern search.

1.  Brush pattern search (co-expression pattern search). It  is  the default  pattern search

function in GEsture.  Users can draw a gene expression curve with mouse in the drawing

board. GEsture will identify the genes showing similar pattern (co-expression genes) with the

input curve.  It is noted that users should include as many time points as possible in curve

drawing to achieve accurate matching. 

2.  Contrast pattern search. This function searches the genes showing opposite expression

pattern to the user’s input. It aims at helping users to explore negative regulated genes. For

example, target genes of a transcription factor that inhibits expression can be founded using

this function. 

3.  Shift pattern search.  This function is designed to find genes showing similar but with a

time-delayed (or  ahead)  expression  pattern.  It  will  help  users  to  identify  possible

downstream/upstream genes. The range of -4 to 4 can be chosen for the shifting of the gene

expression pattern.

The expression levels of output genes are shown by the heat maps. The network map is

generated to display the relationship of output genes.

Data analysis process

GEsture takes a curve as an input, and it allows the user to  search genes with similar

expression patterns. As a result, users can see the gene expression curves intuitively rather

than in abstract parameters and data.  RA raw data set uploaded by user will be checked to

filter low-quality (such as missing and low entropy) data in the uploaded file. The process of

searching includes the drawing of an anticipated curve, followed by fitting the system in a line

and sampling the data. Afterwards, genes are compared with each other in the gene expression

file to calculate the similarity between them. Lastly, an assessment function is adopted using

the  Pearson correlation coefficient (Horyu & Hayashi, 2013; Wang, Mo, & Wang, 2015) to

select closely-related genes.  It may take a while when  performing this kind of search on a

large dataset, but it is significantly faster than clustering. GEsture only compares every gene

expression curve in the file, while clustering,; on the other hand,  it  needs to determine the

initial  centers  and  iteration  numbers  of  the  algorithm,  inevitably  leading  to  higher

computation and time complexity. The cutoff offor the correlation coefficient for gene outputs

can be adjusted by users if too many or too lessfew genes are identified. 
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Output of GEsture

As shown in Figure 2, the output of GEsture includes a gene expression pattern figure

and gene information table. To clearly show the expression patterns, a slider is provided for

users to adjust the correlation  coefficient  cutoff value. At the same time, the information of

the output genes in the figure is also shown in a table. In the output table, each row of data

represents a gene. The information of gene name, p-value, correlation value and detailed time-

series  expression  data  is  included.  If  a  user  clicks  on  the  gene  name  in  the  table,  the

corresponding gene expression curve will be shown in the expression pattern figure. The gene

information table can be exported as a CSV file. 

Two visualization tools, a heat map and a comprehensive relationship network map were

provided  to  visualize  the  search  results.  Figure  3  shows  the  co-expression  genes  of

YNL309W. Each row in the heat map represents one gene and different colors to display the

gene expression level. In GEsture, the maximum number of genes for a heat map is 500. The

heat map can be exported as  a  PNG formated file. In addition,  the  comprehensive network

map (shown in Figure 4) was also generated to shows the relationship of output genes. The

center point is the searched gene or the most similar gene to the drawn-curve in the figure.

ItThe software was built  on  the  Cytoscape.js  program,  and the size of  the figure can be

adjusted by users using the mouse interface.

Datasets used in GEsture

We used 3 examples to demonstrate the effectiveness of GEsture. In example 1, a yeast

Cell-cycle data set was chosen to  assess the performance of GEsture. The data set contains

6187  genes  and  18-time  points  (Spellman  et  al.,  1998).  ItThe  data is  available  at

http://genome-www.stanford.edu/cellcycle/data/rawdata/.  The same yeast  data  set  was  also

used in  example 2 to  identify the target  genes of transcription factors.  In example 3,  the

circadian rhythm genes  of  Arabidopsis  thaliana  were identified  using GEsture.  Columbia

diurnal gene expression data of Arabidopsis thaliana (Mockler Lab) which is  measured in the

condition of growing with 12h-light 12h-dark/24h-hot (COL_LDHH) was chosen (Mockler et

al., 2007).
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Results 

Example 1: identifying anticipated expression genes 

Here, we used two methods, a user-defined pattern searching in GEsture and a K-means

clustering method, to identify genes whose expression levels increased over time in the cell

cycle. K-means clustering was firstly applied to cluster different gene expression categories.

As shown in Figure 5, a variety of gene expression patterns were identified at k=16 and 25.

However, the pattern of interest did not showpresent itself in the results. 

GEsture was then applied to find the genes showing the increasing pattern over time. We

drew the anticipated expression curve in GEsture (Figure 6A) and eleven genes were detected

to express increasingly over time (Figure 6B). Among these genes, four genes (YOR010C,

YDR534C, YOR382W, and YNL066W) are the cellular component: cell wall proteins. Three

genes are transporters (YHL047C, YMR058W, and YBR102C) (Chervitz et al., 1999). This

example showeddemonstrated that GEsture was more straightforward and efficient to identify

genes  wethat were expected. The results may also provide important information about the

transcriptional mechanisms of cell cycle regulation.

Example 2: identifying target genes of transcriptional factors

As  shown  in  the  Saccharomyces Genome  Database  (SGD

https://www.yeastgenome.org/), YNL309W(STB1) encodes a protein that contributes to the

regulation  of  SBF  and  MBF  target  genes  (Chervitz  et  al.,  1999).   ‘SBF  and  MBF  are

sequence-specific  transcription  factors  that  activate  gene  expression  during  the  G1/S

transition of the cell cycle in yeast’, as  suggested by Iyer  VR et al. (2001) says.(Iyer et al.,

2001). We hypothesized that the genes showing similar, contarrast, or time-delay expression

pattern may be controlled by a similar regulatory mechanism. In this example,  we searched

genes using GEsture and explored whether there arewere other genes regulated by the same

transcription factor.

We have drawn a curve like the expression of  YNL309W (shown in Figure 7) with  the

mouse and searched GEsture using three different patterns. Then we found 155 co-expression

genes, 15 contrast expression genes and 44 one -interval -shift expression genes. More detail
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information  ofabout these genes can be found in Table S1. YNL309W werewas detected in

the co-expression gene list, which shows the accuracy of the tool. 

We then used a database, YEASTRACT (Yeast Search for Transcriptional Regulators and

Consensus  Tracking  http://www.yeastract.com)  (Teixeira  et  al.,  2006), to  assess  which

identified  genes  we acquired  were regulated by the same TFs as YNL309W. YEASTRACT

provides the known TF-target genes association of yeast in the cell-cycle process.  We knew

TEC1p and STE12p arewere known TFs of YNL309W in the cell cycle (Madhani et al. , 1999),

TEC1p  is  responsible  for  positive  regulation,  and  STE12p  is  responsible  for  negative

regulation.  According  to  YEASTRACT,  we  found  that  124  similar  expression  genes,  5

contrast expression genes and 27 shift expression genes (one interval)  arewere regulated by

TEC1p and  STE12p  (Table  1).  Detailed  gene  information  is  listed  in  the  Table  S2.  The

example indicated that GEsture can efficiently identify the target genes of the sameassociated

with related transcription factors. 

Example 3: identifying circadian rhythm genes of Arabidopsis 

thaliana

In  higher  plants, the  circadian  rhythm  phenomenon  is  a  universal,  intrinsic  and

autonomous timing mechanism of approximately 24-hours. This mechanism allows organisms

to adapt to daily external changes in the environment, such as light, temperature and so on

(Bass & Takahashi, 2010; Bellpedersen et al., 2005; Hardin & Panda, 2013; Joska, Zaman, &

Belden, 2014). The most noticeable characteristic of circadian rhythms is that the period of

rhythm is close to 24 hours in the absence of environmental stimuli. The expression pattern of

circadian rhythms genes in the period of rhythm almost does not vary (Hsu & Harmer, 2014;

Wijnen  &  Young,  2006).  As  of  now,  some  circadian  rhythms-associated  genes  of  the

Arabidopsis  thaliana have been identified  and cataloged by The Arabidopsis  Information

Resource  (TAIR  https://www.arabidopsis.org)  (David  et  al.,  2008).  Here,  we  input  the

expression pattern of known circadian rhythms genes and checked whether GEsture could

efficiently  identify genes related to  circadian rhythm. As shown in Figure 8,  we drew an

expression  curve  thatapproximating circadian  rhythm genes  show patterns.  Three  pattern

searches were  appliedattempted for gene identification.  The TAIR database  werewas finally

used to check whether output genes were related to circadian rhythm.
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GEsture found 40 circadian rhythm genes using three search patterns (Table 2). Detailed

information was listed in the Table S3. In these 40 circadian rhythm genes 14, 11, and 15

genes showingdemonstrated similar, contrast and shift patterns with the input mouse-entered

patterns.  Among  the  co-expression  circadian  rhythm  genes,  we  have  found  AT5G25830,

AT5G15850,  AT5G56860 are  TFs  of  Arabidopsis.  We  also  found  some  genes  with  an

expression pattern likesimilar to circadian rhythm but are notnot classified as rhythm genes,

such as  AT2G31990,  AT1G32630, AT1G05320 and so on. Their expression curves  of these

genes are similar to circadian rhythm genes, but their biological process is still  annotated as

unknown in  the  TAIR database. The results may provide some hints for biologists to study

biological functions and processes of these genes. 

 Discussion

Two data sets, theone from a yeast dataset, and the other from Arabidopsis thaliana were

selected  to  assess  the  performance  of  our  program.  Three  examples  demonstrated  the

effectiveness  of  GEsture  in  searching  co-expression,  contrast  and  time-delay  expression

genes. The biological meaning of the output genes waswere explored. For reference, the three

example data sets are provided on the GEsture website. 

GEsture is built for searching specific gene expression patterns from time-series gene

expression data.  And it  isProgramming  was written  in  PHP,  JAVASCRIPT,  HTML5,  and

Bootstrap. Also, two plugins of cytoscape.js (Franz et al., 2016) and Echart.js arewere utilized

for graphical visualization.  Here,  we used GEsture to identify anticipated expression genes,

target genes of transcriptional factors and  circadian rhythm genes of  Arabidopsis thaliana.

The results of the first example indicate that clustering algorithms cannot efficiently dig out

all  gene  expression  patterns  because  the  algorithm will  discard  some clusters  with  small

number  of  genes.  It  is  possible  to  identify  the  pattern  by  increasing  the  cluster  number.

However,  it  needmay  require more  time  to  tryattempt different  cluster  numbers  and  the

process is not efficient. It showed that GEsture was shown more straightforward and efficient

to identify genes wewhich were expected and it would be good supplement to test options of

other clustering methods.

In the second example, GEsture searched  the similarly expressioned genes by drawing

thea familiar gene expression curve  not according to concrete oneusually associated with a

more characterized gene, such as annotated gene names. iIt showed that GEsture was effective
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1

and  efficient  toin exploreing  other  genes  with the  similar  expression  genespatterns.  And

further,  after  checking,  about  73%  of  similarly expressioned genes  GEsture  searched out

areidentified related genes controlled by the same TFs. The third example showed another

function of GeEsture. It; not only was it capable of seeking target genes of the TFs, but it also

performed well in detecting genes with similar functions by curves.

In short, GEsture provides an interactive interface for pattern searching and is convenient

and  easy  for  users  to  edit  the  gene  expression  curve,  then  further  explore  the  similar

expression  genes.  In  contrast  to  abstract  parameters  and  data,  it  provides  a  visualization

searching method to detect target genes and visualizes the result in heat map and network map

furtherly. GEsture enriches the diversity of methods analyzing time-series expression data. It

is available at http://bio.njfu.edu.cn/GEsture.

Conclusions

In conclusion, GEsture is a web-based and user-friendly tool, which can detect expression

genes from time series gene expression data. It has some advantages. First, users can quickly

identify genes showing three expression patterns (similar, opposite, and shift) with input gene

expression pattern. Three examples showed that GEsture performed well. It can detect some

expression patterns more efficiently than K-mean clustering. Therefore, GEsture will be an

alternative method for users if the clustering methods failed. Second,  GEsture provides an

easy-to-use input interface. Users can draw a curve using mouse instead of inputting abstract

parameters from defined algorithms. Thirdly,  GEsture provides visualization tools (such as

expression pattern figure, heatmap and correlation network) to display the searching results.

The output results may provide useful information for users to understand the targets, function

and biological processes of the input gene of choice. 
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