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ABSTRACT
Gene expression profiling data provide useful information for the investigation of
biological function and process. However, identifying a specific expression pattern
from extensive time series gene expression data is not an easy task. Clustering, a
popular method, is often used to classify similar expression genes, however, genes
with a ‘desirable’ or ‘user-defined’ pattern cannot be efficiently detected by clustering
methods. To address these limitations, we developed an online tool called GEsture.
Users can draw, or graph a curve using amouse instead of inputting abstract parameters
of clustering methods. GEsture explores genes showing similar, opposite and time-
delay expression patterns with a gene expression curve as input from time series
datasets. We presented three examples that illustrate the capacity of GEsture in gene
hunting while following users’ requirements. GEsture also provides visualization tools
(such as expression pattern figure, heat map and correlation network) to display the
searching results. The result outputs may provide useful information for researchers to
understand the targets, function and biological processes of the involved genes.

Subjects Bioinformatics, Computational Biology
Keywords Bioinformatics, Gene expression, Time series, Hand-drawing, Microarrays

INTRODUCTION
Gene expression profiling (such as Microarray and RNA-seq) data provides important
information for researchers to investigate biological function and process. Many
public databases including gene expression omnibus (GEO) (Barrett & Edgar, 2006),
gene signatures database (GeneSigDB) (Culhane et al., 2012), and molecular signatures
database (MSigDB) (Liberzon, 2014) are available to identify the relationship between gene
expression and biological functions/processes. For many biological studies, researchers
hope to find genes showing ‘‘anticipated’’ expression patterns. For example, biologists
know that during a day, the expression levels of light rhythm genes change (increase or
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decrease) with the intensity of light, and change back with the darkness of night. However,
it is hard for them to find the genes with this particular pattern from large gene expression
datasets without a strong bioinformatics background.

Multiple approaches have been developed to find genes showing similar expression
patterns across all samples (Androulakis, Yang & Almon, 2007; Sharan & Shamir, 2000).
Of these approaches, clustering is mainly used to solve the problem (Eisen et al., 1998;
Jiang, Tang & Zhang, 2004; Schliep et al., 2005; Wen et al., 1998). Clustering algorithms
include hierarchical clustering (Jiang, Pei & Zhang, 2003), self-organizing maps (Tamayo
et al., 1999), K-means clustering (Tavazoie et al., 1999; Wu, 2008) and so on. And many
clustering approaches indeed performed well in grouping genes with similar expression
patterns without any prior knowledge. Balasubramaniyan (Balasubramaniyan et al., 2005)
proposed the CLARITY algorithm using a local shape-based similarity measurement to
dig for similar expression genes. Qian et al. (2003) proposed a local clustering algorithm
to identify genes with time-delayed and inverted expression patterns (‘time-delayed’ is
defined as gene expression with a time difference, but the overall expression trend is the
same, and ‘inverted’ refers to the fact that genes show high expression levels while some
other genes show low expression levels at the same time). Xia designed the eLSA package
(Xia et al., 2013), which filters out insignificant results and constructs a partial and directed
association network.

Unfortunately, the clustering algorithms have some disadvantages. First, the
computation complexity of clustering algorithms exponentially increases as the dataset
becomes larger. Second, the issue of determining the optimum cluster number is not
yet rigorously solved (Yeung, 2001). Third, during the data processing, expression data
vary greatly. Clustering algorithms generally require pre-processing the original data, and
different clustering algorithms will choose different initial partition, which may cause
loss of useful information (Ye et al., 2015). Fourth, unrelated groups may be merged into
one cluster. Fifth, not always can clustering algorithms cluster all the categories, and
even a category will be divided into several categories. For example, classical K-means
clustering extracts categories of a given number from the gene expression profile. However,
it often separates a big similar category into different categories. Because a time-delayed
phenomenon often appears in gene expression, K-means clustering cannot recognize it
and mistakenly divides it into many categories instead of classifying only one category.
Last but not least, they cannot guarantee that they can always find a gene expression
pattern that users want to search at any time. In a word, clustering methods can help to
understand global profiles of gene expression, but not efficiently enough to detect genes
with user-defined expression patterns.

In this paper, we presented an online tool, GEsture, short for Gene Expression gesture.
The program searches specific gene expression pattern from time-series gene expression
data using an anticipated gene expression pattern drawn by the user instead of using
clustering algorithms. GEsture addresses the current shortcomings of the clustering
algorithm and allows users to analyze time-series data from a different angle. This method
not only can identify co-expression genes but also can detect opposite and time-delayed
expression genes. Furthermore, it provides a user-friendly interface for users to input and
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visualize the results. The output results may provide useful information for researchers to
understand the targets, function and biological processes of the genes of interest.

MATERIALS & METHODS
The workflow of GEsture
The primary function of GEsture is to identify genes showing specific patterns from
gene expression data. The workflow is illustrated in Fig. 1. The first step is uploading
time-series gene expression data. Two modes of operations, user-defined pattern and
K-means clustering, are then provided for pattern searching. For user-defined pattern,
users can either draw an expression curve by the mouse on the drawing board or select a
pre-defined gene expression pattern in the system to search. Classical K-means clustering
method extracts expression patterns from the gene expression profile based on the category
number assigned by the users.

There are three functions for gene expression pattern searching in GEsture: brush pattern
search, contrast pattern search, and shift pattern search.
1. Brush pattern search (co-expression pattern search). It is the default pattern search

function in GEsture. Users can draw a gene expression curve with mouse on the
drawing board. GEsture will identify the genes showing similar patterns (co-expression
genes) with the drawn curve. It is noted that users should include as many time points
as possible in curve drawing to achieve accurate matching.

2. Contrast pattern search. This function searches the genes showing opposite expression
pattern to the user’s input. It aims at helping users to explore negatively regulated genes.
For example, target genes of a transcription factor that inhibits expression can be found
using this function.

3. Shift pattern search. This function is designed to find genes showing similar but
time-delayed (or advanced) expression patterns. It will help users to identify possible
downstream/upstream genes. The range of −6 to 6 can be chosen for the shifting gene
expression search.
The expression levels of output genes are shown by the heat maps. The network map is

generated to display the relationship of the search results.

Data analysis process
GEsture takes a curve as an input, and it allows the user to search genes with similar
expression patterns. As a result, users can see the gene expression curves intuitively
rather than in abstract parameters and data. A raw dataset uploaded by the user will be
checked to filter low-quality (such as missing and low entropy) data in the uploaded file
by GEsture. The search process includes the drawing of an anticipated curve, followed by
fitting the system in a line and sampling the data. Afterwards, genes are compared with
each other in the gene expression file to calculate the similarity between them. Lastly, an
assessment function is adopted using the Pearson correlation coefficient (Horyu & Hayashi,
2013; Wang, Mo &Wang, 2015) to select closely-related genes. It may take a while when
performing this kind of search on a large dataset, but it is significantly faster than clustering.
GEsture only compares every gene expression curve in the file, while clustering needs to
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Figure 1 The workflow of GEsture. Lists the the main operation procedures of this tool. Rectangular
boxes with the same color represent that they are in a parallel relationship.

Full-size DOI: 10.7717/peerj.4927/fig-1
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Figure 2 Filtered result gene curves and the result gene table. (A) Result gene curves. A slider for users
to change the correlation value, enable users to filter data and focus on high correlation genes. (B) The re-
sult gene table. With the change of the result curves, table content get changed with it.

Full-size DOI: 10.7717/peerj.4927/fig-2

determine the initial centers and iteration numbers of the algorithm, inevitably leading
to higher computation and time complexity. The cutoff for the correlation coefficient for
gene outputs can be adjusted by users if too many or too few genes are identified.

Output of GEsture
As shown in Fig. 2, the output of GEsture includes a gene expression pattern figure and
gene information table. To clearly show the expression patterns, a slider is provided for
users to adjust the correlation coefficient cutoff value. At the same time, the information of
the output genes in the figure is also shown in a table. In the output table, each row of data
represents a gene. The information of gene name, p-value, correlation value and detailed
time-series expression data is included. If a user clicks on the gene name in the table, the
corresponding gene expression curve will be shown in the expression pattern figure. The
gene information table can be exported as a CSV file.

Two visualization tools, a heat map and a comprehensive relationship network map
were provided to visualize the search results. Figure 3 shows the co-expression genes of
YNL309W. Each row in the heat map represents one gene and different colors to display
the gene expression levels. In GEsture, the maximum number of genes for a heat map is
500. The heat map can be exported as a PNG formatted file. In addition, a gene network
is used for representing the complex functions or traits of biological system, especially the
network based on co-expression genes can annotate the unknown gene function (Serin et
al., 2016). But here, we build a simple ‘network’ to show the output genes who may have
the latent biological relationship searched by three searching patterns, which is shown as
Fig. 4. In Fig. 4, circles in the same color represent they are similar expression genes and
the center point is the searched gene or the gene most similar to the drawn-curve. It was
built on the Cytoscape.js, and the size of Fig. 4 can be adjusted by users using the mouse.
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Figure 3 The heat map of co-expression genes of YNL309W. The darker the red color, the higher the
gene expression level and the darker the blue, the lower the gene expression level.

Full-size DOI: 10.7717/peerj.4927/fig-3
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Figure 4 The network map of YNL309W. The red circle are genes searched out by similar pattern. The
purple circles represent opposite expression genes. The yellow circles are time-delay expression genes and
the blue circles are time-ahead expression genes.

Full-size DOI: 10.7717/peerj.4927/fig-4

Datasets used in GEsture
We used three examples to demonstrate the effectiveness of GEsture. In example 1, a
yeast cell-cycle dataset was chosen to assess the performance of GEsture. The dataset
contains 6187 genes and 18-time points (Spellman et al., 1998), and it is available at
http://genome-www.stanford.edu/cellcycle/data/rawdata/. The same yeast dataset was
also used in example 2 to identify the target genes of transcription factors. In example
3, the circadian rhythm genes of Arabidopsis thaliana were identified using GEsture.
Columbia diurnal gene expression data of Arabidopsis thaliana (Mockler Lab) measured
in the condition of growing with 12h-light 12h-dark/24h-hot (COL_LDHH) was chosen
(Mockler et al., 2007).
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Figure 5 The resulting gene expression patterns of K-means clustering. (A) represents 16 categories of
clustering. (B) represents 25 categories of clustering.

Full-size DOI: 10.7717/peerj.4927/fig-5

RESULTS
Example 1: searching anticipated expression genes
Here, we used two methods, a user-defined pattern searching in GEsture and a K-means
clustering method, to identify genes whose expression levels increased over time in the cell
cycle. K -means clustering was first applied to cluster different gene expression categories.
As shown in Fig. 5, a variety of gene expression patterns were identified at k = 16 and 25.
However, the pattern of interest did not present itself in the results.

GEsture was then applied to find the genes showing the increasing pattern over time. We
drew the anticipated expression curve in GEsture (Fig. 6A) and eleven genes were detected
to express increasingly over time (Fig. 6B). Among these genes, four genes (YOR010C,
YDR534C, YOR382W, and YNL066W) are the cellular component: cell wall proteins.
Three genes are transporters (YHL047C, YMR058W, and YBR102C) (Chervitz et al., 1999),
which may provide some hints for biologists to study biological processes of these genes
and the transcriptional mechanisms of cell cycle regulation. In summary, this example
demonstrated that GEsture was more straightforward and efficient for identifying genes
that biologists are interested in, such as expression patterns whose expression levels increase
with time during the cell cycle.

Example 2: identifying target genes of transcriptional factors
As shown in the Saccharomyces Genome Database (SGD https://www.yeastgenome.org/),
YNL309W(STB1) encodes a protein that contributes to the regulation of SBF and MBF
target genes (Chervitz et al., 1999). During the G1/S transition in the cell cycle of yeast,
SBF and MBF play the role of sequence-specific transcription factors in activating the gene
expression (Iyer et al., 2001). We hypothesized that the genes showing similar, contrasting,
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Figure 6 The hand-drawn curve and the results GEsture searched. (A) represents the hand-drawn
curve. (B) represents the result curves GEsture searched. (C) represents the result gene names GEsture
searched.

Full-size DOI: 10.7717/peerj.4927/fig-6

or time-delayed expression pattern may be controlled by a similar regulatory mechanism.
In this example, we searched genes using GEsture and explored whether there were other
genes regulated by the same transcription factor.

We have drawn a curve like the expression ofYNL309W (shown in Fig. 7) with themouse
and searched GEsture using three different patterns. Then we found 155 co-expression
genes, 15 contrast expression genes and 44 one-interval shift expression genes. More detail
information about these genes can be found in Table S1. YNL309W was detected in the
co-expression gene list, which shows the accuracy of the tool.

We then used a database, YEASTRACT (Yeast Search for Transcriptional Regulators
and Consensus Tracking http://www.yeastract.com/) (Teixeira et al., 2006), to assess which
identified genes were regulated by the same TFs as YNL309W. YEASTRACT provides the
known TF-target genes association of yeast in the cell-cycle process. TEC1p and STE12p
were known TFs of YNL309W in the cell cycle (Madhani et al., 1999), TEC1p is responsible
for positive regulation, and STE12p is responsible for negative regulation. After comparing
the result, we found that 124 similar expression genes, five contrast expression genes and
27 shift expression genes (one interval) of the results above were regulated by TEC1p and
STE12p (Table 1). Detailed gene information is listed in Table S2. The example indicated
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Figure 7 Basic search results of three patterns of the curve like YNL309W. In the coordinate system,
the abscissa represents the count of sample and the ordinate represents gene expression value. (A) repre-
sents the expression curve like YNL309W. (B) represents the results of co-expression genes. (C) represents
the results of opposite expression genes. (D) represents one interval shift expression genes. Blue line rep-
resents one time-delay interval co-expression genes and red line represents one time-ahead interval co-
expression genes.

Full-size DOI: 10.7717/peerj.4927/fig-7

that similar expression genes may be regulated by the same transcription factors and
GEsture can efficiently identify target genes associated with related transcription factors.

Example 3: identifying circadian rhythm genes of Arabidopsis
thaliana
In higher plants, the circadian rhythm phenomenon is a universal, intrinsic and
autonomous timing mechanism of approximately 24-hours. This mechanism allows
organisms to adapt to daily external changes in the environment, such as light, temperature
and so on (Bass & Takahashi, 2010; Bellpedersen et al., 2005; Hardin & Panda, 2013; Joska,
Zaman & Belden, 2014). The most noticeable characteristic of circadian rhythms is that the
period of rhythm is close to 24 h in the absence of environmental stimuli. The expression
pattern of circadian rhythms genes in the period of rhythm almost does not vary (Hsu
& Harmer, 2014; Wijnen & Young, 2006). As of now, some circadian rhythms-associated
genes of the Arabidopsis thaliana have been identified and cataloged by The Arabidopsis
Information Resource (TAIR https://www.arabidopsis.org) (Swarbreck et al., 2008). Here,
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Table 1 The ratio of target genes of TEC1p and STE12p in the total genes. In the column Search Pat-
tern, the numbers in the bracket represent the count of genes searched by GEsture which were recognized
by YEASTRACT. In the column of numbers of genes, the number represents the count of target genes we
searched out which were regulated by TFs. For example, 109 genes in co-expression genes were regulated
by TEC1p and it accounted for 0.879 of total co-expression genes.

Method Search pattern TF Count Ratio (%)

TEC1p 109 87.9
STE12p 91 73.4

Co-expression (124)

TEC1p, STE12p 76 61.3
TEC1p 3 60.0
STE12p 5 100

Contrast expression (5)

TEC1p, STE12p 3 60.0
TEC1p 25 92.6
STE12p 22 81.5

Draw the curve like
YNL309W

One interval shift
expression (27)

TEC1p, STE12p 20 74.1

Table 2 Circadian rhythm genes searched by 3 patterns.

Search pattern Count Genes

Similar expression 14 AT5G02840, AT5G25830, AT4G24500, AT5G67380, AT5G15850,
AT3G57040, AT5G05660, AT2G18915, AT3G50000, AT1G80820,
AT5G56860, AT2G47700, AT3G55960, AT3G56480

Contrast expression 11 AT3G06500, AT3G46640, AT2G42540, AT4G02630, AT3G52180,
AT1G68050, AT4G26700, AT2G21660, AT3G46780, AT5G61380,
AT2G18170

Shift expression 15 AT4G24470, AT4G25100, AT4G30350, AT3G22170, AT1G10470,
AT5G02120, AT1G27450, AT5G37260, AT1G15950, AT5G59560,
AT3G07650, AT4G09970, AT2G25930, AT4G34680, AT3G61070

we input the expression pattern of known circadian rhythms genes and checked whether
GEsture could efficiently identify genes related to circadian rhythm. As shown in Fig. 8,
we drew an expression curve approximating circadian rhythm gene expression patterns.
Three pattern searches were attempted for gene identification. The TAIR database was
finally used to check whether the resulting genes from the pattern searches were related to
circadian rhythm.

GEsture found 40 circadian rhythm genes using three search patterns (Table 2). Detailed
information was listed in the Table S3. In these 40 circadian rhythm genes 14, 11, and 15
genes showing similar, contrast and shift patterns with the input mouse-entered pattern.
Among the co-expression circadian rhythm genes, we have foundAT5G25830,AT5G15850,
AT5G56860, which are TFs of Arabidopsis. We also found some genes with an expression
pattern similar to circadian rhythm but are not recognized as rhythm genes, such as
AT2G31990, AT1G32630, AT1G05320 and so on. The expression curves of these genes are
similar to circadian rhythm genes, but their biological process is still shown as annotated
in the TAIR database. The results may provide some hints for biologists to study biological
functions and processes of these genes.
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Figure 8 Search circadian rhythm genes using three patterns. In the coordinate system, the abscissa
has 12 points representing the time point of every 4 h of 48 h, and the ordinate represents gene expression
value. (A) a drawing curve which is acquired by imitating the expression of circadian rhythm genes (B) the
result of similar expression genes, (C) the opposite expression genes (D) the shift expression genes.

Full-size DOI: 10.7717/peerj.4927/fig-8

DISCUSSION
Two datasets, one from a yeast dataset, and the other from Arabidopsis thaliana were
selected to assess the performance of our program. Three examples demonstrated the
effectiveness of GEsture in searching co-expression, contrast and time-delay expression
genes. The biological meaning of the output genes was explored. For reference, the two
datasets, which are applied in the three examples are provided on the GEsture website.

GEsture is built for searching specific gene expression pattern from time-series gene
expression data. The program was written in PHP, JAVASCRIPT, HTML5, and Bootstrap.
Also, two plugins of cytoscape.js (Franz et al., 2016) and Echart.js were utilized for graphical
visualization. Here, we used three examples to show that GEsture can search anticipated
expression genes, target genes of transcriptional factors and circadian rhythm genes of
Arabidopsis thaliana. The results of the first example indicate that clustering algorithms
cannot efficiently dig out all gene expression patterns, some of which are hard to be
clustered. Perhaps it is possible to identify the pattern by increasing the cluster number.
However, it may require more time to attempt different cluster numbers and the process
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is not efficient. While GEsture was shown more straightforward and efficient to identify
genes by the way of drawing gene expression curves and it would be a good supplement
tool of other clustering methods.

In the second example, GEsture searched similar expression genes by drawing a familiar
gene expression curve rather than one concrete gene, such as an annotated gene name. It
showed that GEsture was effective and efficient in exploring other genes with the similar
expression patterns. Furthermore, about 73% ((124+5+27)/(155+15+44)) of overall
result genes GEsture searched were controlled by the same TFs. The third example showed
another function of GEsture, that not only was it capable of seeking target genes of the TFs,
but it also performed well in detecting genes with similar functions by curves.

In short, GEsture provides an interactive interface for pattern searching and is
convenient and easy for users to edit the gene expression curve, then further explore
the similar expression genes matching the drawn expression curve. In contrast to inputting
abstract parameters and data, it provides a visualization searching method to detect
target genes and visualizes the result in heat map and network map furtherly. GEsture
enriches the diversity of methods analyzing time-series expression data. It is available at
http://bio.njfu.edu.cn/GEsture.

CONCLUSIONS
In conclusion, GEsture is a web-based and user-friendly tool, which can detect gene
expression patterns from time series gene expression data. It has some advantages over
conventional analysis. First, users can quickly identify genes showing three expression
patterns (similar, opposite, and shift) using a gene expression curve. Three examples
showed that GEsture performedwell. It can detect some expression patternsmore efficiently
than K-mean clustering. Therefore, GEsture will be an alternative method for users if the
clustering methods failed. Second, GEsture provides an easy-to-use input interface. Users
can draw a curve using a mouse instead of inputting abstract parameters from defined
algorithms. Lastly, GEsture provides visualization tools (such as expression pattern figure,
heatmap and correlation network) to display the searching results. The output results may
provide useful information for users to understand the targets, function and biological
processes of the input gene of choice.
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All the code of the website can be viewed at GitHub: https://github.com/15720613282/
GEsture, and the raw data of examples can be found at:

https://github.com/15720613282/GEsture/tree/master/uploads/WCY. The files are
also available at Figshare: Wang, Chunyan (2018): GEsture code.zip. figshare. Code.
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