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ABSTRACT
Background. Animal mitochondrial genomes typically encode 37 genes: 13 proteins,
22 tRNAs and two rRNAs. However, many species represent exceptions to that rule.
Bivalvia along with Nematoda and Platyhelminthes are often suspected to fully or
partially lack the ATP synthase subunit 8 (atp8) gene. This raises the question as to
whether they are really lacking this gene or is thismaybe an annotation problem?Among
bivalves,Mytilus edulis has been inferred to lack anATP8 gene since the characterization
of its mitochondrial genome in 1992. Even though recent bioinformatic analyses
suggested that atp8 is present in Mytilus spp., due to high divergence in predicted
amino acid sequences, the existence of a functional atp8 gene in this group remains
controversial.
Results. Here we demonstrate that M. edulis mitochondrial open reading frames
suggested to be atp8 (in male and female mtDNAs) are actively translated proteins.
We also provide evidence that both proteins are an integral part of the ATP synthase
complex based on in-gel detection of ATP synthase activity and two-dimensional Blue-
Native and SDS polyacrylamide electrophoresis.
Conclusion. Many organisms (e.g., Bivalvia along with Nematoda and Platy-
helminthes) are considered to be lacking certain mitochondrial genes often only based
on poor similarity between protein coding gene sequences in genetically closed species.
In some situations, this may lead to the inference that the ATP8 gene is absent, when it
is in fact present, but highly divergent. This shows how important complementary
role protein-based approaches, such as those in the present study, can provide to
bioinformatic, genomic studies (i.e., ability to confirm the presence of a gene).

Subjects Genetics, Marine Biology, Molecular Biology
Keywords ATP8, Western blot, Bivalvia, Blue Native, Mitochondrial DNA, Doubly uniparental
inheritance

INTRODUCTION
The blue mussel Mytilus edulis is one of the bivalve species possessing the unusual system
of doubly uniparental inheritance (DUI) of mitochondria (Skibinski, Gallagher & Beynon,
1994; Boore, Medina & Rosenberg, 2004). Contrary to strictly maternal inheritance (SMI)
of mtDNA found in other animal species, male Mytilus spp. mussels have two different
mitogenomes. One is inherited from the father (M-type mtDNA; located mainly in male
germ line cells), and the second from the mother (F-type mtDNA; located in female germ
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Table 1 Mean pairwise distance betweenmale and femaleM. edulismitochondrial proteins (GenBank
HM489874 andMF407676) (Zbawicka, Burzyński &Wenne, 2007;Kumar, Stecher & Tamura, 2016).

Protein Mean pairwise distance

COX1 0.047
COX3 0.093
COX2 0.112
ND3 0.112
CYTB 0.140
ND4 0.143
ATP6 0.155
NAD4L 0.172
ND1 0.186
ND5 0.196
ND2 0.210
ND6 0.221
*ATP8 0.386

Notes.
*The atp8 gene lacks annotation.

line cells and in somatic cells of both sexes) (Zouros et al., 1994). Estimated K2P genetic
distance (Kimura two-parameter corrected for multiple substitutions) between M and
F mtDNAs reaches 0.245 (Zbawicka, Burzyński & Wenne, 2007), and while the presence
of two mitogenomes (heteroplasmy) has been demonstrated several times using DNA-
based methods (Garrido-Ramos et al., 1998; Dalziel & Stewart, 2002; Zbawicka, Skibinski &
Wenne, 2003; Obata et al., 2006; Kyriakou, Zouros & Rodakis, 2010), proteomic approaches
have not been much explored yet (Chakrabarti et al., 2006). Table 1 shows mean pairwise
distance between male and female M. edulis mitochondrial proteins, which reaches 0.386
for ATP8.

M. edulis was the first bivalve species with a nearly completely sequenced mitogenome
(Hoffmann, Boore & Brown, 1992). The F-type mtDNA was annotated with 37 genes: two
ribosomal RNAs, 23 tRNAs (with an additional tRNAmet gene) and only 12 protein-coding
genes, i.e., the mitogenome was lacking the atp8 gene (GenBank Acc. No. AY484747
(Hoffmann, Boore & Brown, 1992)). This publication created a belief that bivalves might
lack atp8, although a few bivalvian mitogenomes published later had this gene annotated.
Putative atp8 gene in Mytilus F and M mitochondrial genomes was identified in 2010
(Breton, Stewart & Hoeh, 2010; Smietanka, Burzyński & Wenne, 2010). Difficulties with the
annotation of this gene most probably originated from the interspecies differences in coded
protein amino acid sequence.

ATP8 is a part of the non-catalytic hydrophobic membrane component (Fo) of the
ATP synthase (F1Fo) complex (Rak, Gokova & Tzagoloff, 2011; Lee et al., 2015). It is a short
protein composed of 37–70 amino acids (6,784 out of 7,301 ATP8 protein sequences
deposited in Genbank RefSeq database), and 94% of known sequences (i.e., 6,873 out of
7,301) start with a conserved MPQ tripeptide and possess one predicted transmembrane
domain (Papakonstantinou et al., 1996; Gissi, Iannelli & Pesole, 2008). The predicted ATP8
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Figure 1 Mytilus. spp. ATP8 protein alignment. JX486123; JX486124; KJ577549; AY363687, *Protein
sequences extracted from mtDNAs without annotated atp8 gene. Alignment colored with BoxShade Ex-
PASy online tool with 0.6 shading parameter (grey color). Red color represents FATP8-antigen peptide
sequence used for immunisation; violet color represents MATP8-antigen protein sequence used for im-
munisation (Mizi et al., 2005; Ort & Pogson, 2007; Smietanka, Burzyński & Wenne, 2010; Lee & Lee, 2014;
Sańko & Burzyński, 2014; Gaitán-Espitia et al., 2016; Zbawicka, Wenne & Burzyński, 2014).

Full-size DOI: 10.7717/peerj.4897/fig-1

in Mytilus mitochondrial genomes also possesses one predicted transmembrane domain
but lacks the MPQ sequence at the N-terminus of the peptide and the length of the protein
varies from 84 aa in the F-type mtDNA to 106–128 aa in the M-type mtDNA (Fig. 1).

Bioinformatic analyses of Mytilus spp. mitogenomes (Breton, Stewart & Hoeh, 2010;
Smietanka, Burzyński & Wenne, 2010) have shown that this ‘‘putative atp8 gene’’ in both
F and M mtDNAs possesses a pattern of evolution expected for a protein-coding gene
evolving under purifying selection (i.e., the 3rd>1st>2nd codon pattern of evolution).
Furthermore, both F and M sequences are actively transcribed inMytilus species (based on
EST sequences), and comparison of protein hydropathy predictions with ATP8 proteins
from other bivalves revealed similar profiles (Breton, Stewart & Hoeh, 2010; Smietanka,
Burzyński & Wenne, 2010). However, due to its high divergence in predicted amino acid
sequences compared to other ATP8, the existence of a functional atp8 gene inMytilus spp.
remains controversial. In fact, some authors have suggested that sequences annotated as
atp8 in Mytilus spp. could represent a pseudogene (Uliano-Silva et al., 2016).

Here we demonstrate that the open reading frames (ORFs) suggested to be atp8 in both
M. edulis F and M mtDNAs are actively expressed and effectively represent parts of the
ATP synthase complex.

MATERIALS AND METHODS
Western blot
Living specimens of M. edulis mussels were bought at a local market in January
and September 2016 (Collecting area: the Oosterschelde and the Waddenzee bay;
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Netherlands). The sex of each individual was determined by examination of gonadal
tissues for the presence of sperm or eggs under light microscope. Ten pairs of male
and female individuals where checked during the course of the experiment. Mantle
with gonads, gill, foot and hepatic gland tissues of male and female specimens were
carefully sectioned with sterile scalpels to minimize possibility of cross contamination of
tissue samples and subsequently washed in sterile water and stored frozen at −20 ◦C for
further analyses. Approximately 100 mg of every tissue type were suspended in 1 ml of
Radioimmunoprecipitation assay (RIPA) lysis buffer (50 mM Tris–HCl, 150 mM NaCl,
1 mM ethylenediaminetetraacetic acid, 1% Triton X-100, 0.5% Na-deoxycholate, 0.1%
SDS, pH 7,6) supplemented with 5 µl of protease inhibitors cocktail (Sigma-Aldrich, St.
Louis, MO, USA), homogenized at 20,000 RPM for 20 s (Heidolph SilentCrusher M;
tool 8F; Sigma-Aldrich, St. Louis, MO, USA) and sonicated (Vibra-Cell; Sonics, Newton,
CT, USA) for 20 s; amplitude 50%. Samples were kept on ice during the whole protein
isolation process. Isolates were then centrifuged at 15,000× g for 4 min, to separate
insoluble residues, transferred into new vials and stored frozen or used immediately in
further steps. 40–60 µg of crude protein isolates per sample were separated by SDS-
PAGE electrophoresis (5% stacking gel; 10% separating gel in 6 M urea to protect
low molecular weight bands from diffusing and smearing during electrophoresis; 30
min at 80 V and 1 h at 150 V) with cooling (BlueStar; DNAGdansk; Gdańsk, Poland)
and transferred to membrane (OWL electroblotting semidry system). Due to the low
molecular weight of targeted proteins (FATP8 9,5∼kDa; MATP8∼13 kDa), 0.2 µm
PVDF or nitrocellulose membranes (GE Healthcare, Little Chalfont, UK) were used and
electroblotting time did not exceed 30 min at 200 mV (longer transfer times were causing
over transfer of small proteins through membranes onto the Whatman filter papers).

The remaining procedures were performed in the standardmanner: membrane blocking
in 4% low fat dry milk in Phosphate-buffered saline buffer for 1 h, overnight incubation
with primary polyclonal antibody dilution 1:5,000 at 4 ◦C, rinsing with 0.05% Tween-20
in PBS 3 × 5 min, incubation with anti-rabbit secondary HRP-conjugated monoclonal
antibody dilution 1:10,000 for 1 h (Sigma-Aldrich, St. Louis, MO, USA), colorimetric
immunodetection with DAB (SigmaAldrich) or DAB supplemented with Co or Ni ions.
The whole procedure was repeated at least 6 times with different pairs of male and female
specimens and all tested specimens gave coherent results.

Polyclonal antibodies were custom-made by GenScript. It is worth mentioning that
due to the high similarity of the M and FATP8 protein N-terminus sequences, their
low antigenicity and predicted difficulties with solubility, the N-terminal hydrophobic
domain of both M and FATP8 proteins has been removed from the sequences at the
antibody designing step (Fig. 1). The MATP8 antigen was acquired through expression in
bacterial host with HisTag on C-term of the peptide and the FATP8 peptide was chemically
synthetized and purified before immunisation. Antibodies were acquired from rabbits after
a triple immunization procedure.

BN-PAGE/SDS-PAGE
Small specimens of M. edulis were sexed and sectioned for mitochondrial isolation (the
whole body, around 300mg, without the hepatic gland was used for the females and the ripe
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mantle/gonad tissues were used for the male individuals). Tissues were homogenised 10 s
at 4,000 RPM (Heidolph SilentCrusher M; tool 8F), with 1.5 ml of 440 mM sucrose, 1 mM
ethylenediaminetetraacetic acid, 20 mM 3-(N-morpholino) propanesulfonic acid, 1 mM
phenylmethylsulfonyl fluoride, 0.5 mM sodium orthovanadate, pH 7.2 and subsequently
centrifugated at 5,000× g for 10 min. The supernatant was discarded and the remaining
disrupted tissue pellet was suspended in 1.5 ml isolation buffer (1 M aminocaproic acid,
50 Mm Bis-Tris, 1 mM phenylmethylsulfonyl fluoride, 0.5 mM sodium orthovanadate pH
7.0) and homogenised 10 s at 20,000 RPM (Dabbeni-sala et al., 1997). Whole mitochondria
were collected by differential centrifugation with the first centrifugation at 5,000× g
for 20 min at 4 ◦C to remove unbroken cells and bigger cell fragments, followed by a
second centrifugation of the remaining supernatant (25,000× g, 20 min, 4 ◦C) to pellet
mitochondria and other small cell organelles. The resultant mitochondrial pellets were
then solubilized in 100 µl 19:1 solution of isolation buffer and Triton X-100. After 5 min
incubation, samples were centrifuged again at 25,000× g for 10 min at 4 ◦C. Typical Blue
Native 4–15% gradient gel (Eubel, Braun & Millar, 2005;Wittig, Braun & Scha, 2006; Fiala,
Schamel & Blumenthal, 2011) was substituted with discontinuous gradient gel (layers of
different percentage acrylamide gels 4/5/6/8/10/15%). Before loading, every 15 µl of sample
was supplied with 5 µl of 10% Coomassie G-250.

In-gel visualisation of Complex V (ATP synthase) was performed through overnight
incubation of Blue Native gel in 35 mM Tris Base, 276 mM Glycine, 14 mM MgCl2,
0.2% Pb(NO3)2 and 8 mM ATP pH∼7.8 as in (Dabbeni-sala et al., 1997). Gel fragments
containing stained ATPase complex were then cut out, incubated 45min in SDS-PAGE
running buffer to dissociate and denature ATP synthase complexes to individual subunits
and loaded horizontally on standard 10% (5% stacking) SDS-PAGE gel. Electrophoresis
and western blot procedure were performed as described above. Enzymatic detection was
completed according to manufacturer’s protocol with Ultra-Sensitive ABC Peroxidase
Rabbit IgG Staining Kit (Thermo Fisher, Waltham, MA, USA). Remaining Blue Native gel
fragments were slightly decolorized by longer (1–2 h) incubation in SDS containing Tris-
glycine buffer and electroblotted together with gels after two dimensional electrophoresis
(presence of Coomassie G-250 in Blue Native gels hinders later detection due to the high
binding affinity to the hydrophobic blotting membranes). Two-dimensional BN/SDS
PAGE procedure was repeated with at least 6 male and 6 female specimens.

RESULTS
Immunodetection with the anti-MATP8 antibody gave positive results only in male
mantle/gonad tissue (Fig. 2). The size of the signal generated was highly similar to the
predicted molecular weight of MATP8 (∼13.5 kDa) and also highly specific with no
additional protein bands. No signal was visible in other male and female tissue samples.
Contrary to anti-MATP8, anti-FATP8 antibody gave signal for every tissue (mantle,
gill, foot, hepatic gland) both for male and female specimens (Fig. 3). This signal also
corresponded to the predicted protein molecular weight of FATP8 (∼10 kDa). The signal
for FATP8 in male mantle/gonad tissue was visibly weaker than the signals for other tissues.
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Figure 2 Male ATP8: tissue segregation. CMATP8- positive control; M-mantle tissue where gonads are lo-
calized inMytilus spp.; G-gills; F-foot; H-hepatic gland, arrow indicates detected male version of ATP8
protein. The signal detected in male mantle/gonad tissue highly corelates with predicted 13.5 kDa molec-
ular weight of MATP8 protein. As expected (Skibinski, Gallagher & Beynon, 1994), MATP8 is absent in all
other tissues.

Full-size DOI: 10.7717/peerj.4897/fig-2

The anti-FATP8 antibody was also less specific then the anti-MATP8. Non-specific bands
were detectable on levels corresponding for proteins larger than 15 kDa.

In-gel detection (Fig. 4) of F and M ATP synthase activity (after Blue Native
electrophoresis) indicated the presence of one or two white lead phosphate precipitates
(depending on the sample). The higher band corresponded to the whole Complex V (F1Fo),
whereas the lower band corresponded to the dissociated catalytic part (F1). Blue Native gel
parts blotted after slight decolorization from Coomassie G-250 and dissociation in SDS
containing Tris-glycine buffer resulted with signals matching in-gel activity spots. Both
male and female mitochondrial isolates separated by two-dimensional BN-PAGE/SDS-
PAGE electrophoresis also gave positive results. Signals on the membrane were present for
separated parts of the whole F andMATP synthase complexes (F1Fo) at expectedmolecular
weight positions. No nonspecific bands were observed.

DISCUSSION
Before 2009, only five out of 31 bivalve mitochondrial genomes deposited in GenBank
have featured atp8 (Serb & Lydeard, 2003; Dreyer & Steiner, 2006). Since 2009, a constant
increase in the number of bivalve mitogenomes annotated with atp8 has been observed
(Fig. 5; Data S1). However, at the end of 2017 only 62% of all bivalvian mtDNAs available
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Figure 3 Female ATP8: tissue segregation. CFATP8-positive control; M-mantle with gonads; G-gills; F-
foot; H-hepatic gland, arrow indicates detected female version of ATP8 protein. Signal for FATP8 (pre-
dicted molecular weight 10 kDa) is present in all tissues both in male and female individuals. FATP8 and
MATP8 (Fig. 2) are both present in the male mantle tissue containing inseparable gonads and somatic
cells.

Full-size DOI: 10.7717/peerj.4897/fig-3

in GenBank had an annotated atp8 gene and only a small amount (if any at all) of old
submissions appeared to have been corrected. Although the percentage of annotated atp8
in bivalve mitogenomes published between 2010 and 2017 equals 77% (Data S1), there
still remain some scientists publishing bivalve mtDNAs without this gene, even within
the genus Mytilus (e.g., M. coruscus Lee & Lee, 2014), where amino acid sequences for this
protein are very similar among species (Fig. 1). As mentioned above, some authors have
suggested that sequences annotated as atp8 in Mytilus spp. could represent a pseudogene
(Uliano-Silva et al., 2016).

In the present study, protein products coded by both M and F mitochondrial ORFs
suggested to be atp8 were detected in male and female M. edulis mussels. The female
FATP8 was present in every studied tissue (male and female mantle, gill, foot, hepatic
gland). In contrast, MATP8 was shown to be present only in male mantle/gonad, a result
that was expected because male mitochondrial genome in Mytilus spp. has been observed
predominantly in gonad tissues and is the only mtDNA present in sperm cells (Skibinski,
Gallagher & Beynon, 1994). There are reports suggesting leakage of small amounts of M
mtDNA to somatic tissues (Garrido-Ramos et al., 1998; Dalziel & Stewart, 2002; Zbawicka,
Skibinski & Wenne, 2003; Obata et al., 2006; Kyriakou, Zouros & Rodakis, 2010). However,
the western blot technique is less sensitive than the polymerase chain reaction (PCR),
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Figure 4 ATP8 as an integral part of the ATPase complex. (A) Enzymatic staining of Blue native gels
and immunodetection of F1Fo and F1 (catalytic) parts of ATPase complex: white and white-blue bands
represent in-gel localization of ATP synthase complex after enzymatic staining; dark purplish blue bands
show immunodetection of MATP8 (in M), FATP8 (in F) as well as colocalization of those proteins with
ATP synthase complex (white bands in BN); BN-Blue native polyacrylamide gel enzymatic staining, WB-
Western blot immunodetection, F-female specimen, M-male specimen. (B) Immunodetection of ATP8 fe-
male version after two-dimensional SDS-PAGE electrophoresis: CFATP8-control, F1Fo-whole ATP synthase
complex. (C) Immunodetection of ATP8 male version after two-dimensional SDS-PAGE electrophoresis:
CMATP8-control, F1Fo-whole ATP synthase complex.

Full-size DOI: 10.7717/peerj.4897/fig-4
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Figure 5 Number of bivalvian mitochondrial genomes with and without annotated atp8 gene
deposited since 1992 in GenBank database.

Full-size DOI: 10.7717/peerj.4897/fig-5

and this could explain why we did not detect the MATP8 in somatic tissues. Also, our
results should not be extrapolated to all bivalvian species e.g., Venerupis philipinarium,
where gonad is located within main body of the clams and signal from male mtDNA is
predominant in most of male somatic tissues (Ghiselli, Milani & Passamonti, 2011).

Question: Is this protein active?
In-gel detection of ATP synthase activity and two-dimensional Blue Native and SDS
polyacrylamide electrophoreses suggested that proteins detected by anti-MATP8 and anti-
FATP8 antibodies are integral parts of the ATPase complex in M. edulis. Straightforward
blotting of Blue Native gels also supported these results.

CONCLUSIONS
Based on protein sequence similarities (Fig. 1) and the results above, we consider it likely
that active M and FATP8 proteins are present not only in M. edulis but through the genus
Mytilus. Even though this gives us no right to claim that the whole Bivalvia class possesses an
atp8 gene, we strongly encourage scientists to focus more attention on the subject of pres-
ence and absence of this gene in bivalve mitochondrial genomes. Especially because similar
atp8 annotation problems have been observed in other organisms (flatworms (Nickisch-
Rosenegk, Brown & Boore, 2000; Egger, Bachmann & Fromm, 2017) and nematodes
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(Hyman, 1988; Lavrov & Brown, 2001)) and because only proteomic based experimental
approaches are capable of unambiguously resolving issues concerning ‘‘uncertain’’
protein genes.
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