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When performing bioforensic casework, it is important to be able to reliably detect the

presence of a particular organism in a metagenomic sample, even if the organism is only

present in a trace amount. For this task, it is common to use a sequence classification

program that determines the taxonomic affiliation of individual sequence reads by

comparing them to reference database sequences. As metagenomic data sets often

consist of millions or billions of reads that need to be compared to reference databases

containing millions of sequences, such sequence classification programs typically use

search heuristics and databases with reduced sequence diversity to speed up the analysis,

which can lead to incorrect assignments. Thus, in a bioforensic setting where correct

assignments are paramount, assignments of interest made by “first-pass” classifiers

should be confirmed using the most precise methods and comprehensive databases

available. In this study we present a BLAST-based method for validating the assignments

made by less precise sequence classification programs, with optimal parameters for

filtering of BLAST results determined via simulation of sequence reads from genomes of

interest, and we apply the method to the detection of four pathogenic organisms. The

software implementing the method is open source and freely available.
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ABSTRACT11

When performing bioforensic casework, it is important to be able to reliably detect the presence of a

particular organism in a metagenomic sample, even if the organism is only present in a trace amount. For

this task, it is common to use a sequence classification program that determines the taxonomic affiliation

of individual sequence reads by comparing them to reference database sequences. As metagenomic

data sets often consist of millions or billions of reads that need to be compared to reference databases

containing millions of sequences, such sequence classification programs typically use search heuristics

and databases with reduced sequence diversity to speed up the analysis, which can lead to incorrect

assignments. Thus, in a bioforensic setting where correct assignments are paramount, assignments

of interest made by “first-pass” classifiers should be confirmed using the most precise methods and

comprehensive databases available. In this study we present a BLAST-based method for validating the

assignments made by less precise sequence classification programs, with optimal parameters for filtering

of BLAST results determined via simulation of sequence reads from genomes of interest, and we apply

the method to the detection of four pathogenic organisms. The software implementing the method is

open source and freely available.
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INTRODUCTION26

In metagenomic analysis, comparing the genomic sequence content of a sample to a reference database is27

fundamental to understanding which organisms present in the sample were sequenced. There exist many28

bioinformatics software programs that perform this classification task (Bazinet and Cummings, 2012;29

Breitwieser et al., 2017; McIntyre et al., 2017; Sczyrba et al., 2017); some programs only estimate overall30

taxonomic composition and abundance in the sample (Koslicki and Falush, 2016; Schaeffer et al., 2015),31

while other programs assign a taxonomic label to each metagenomic sequence (Huson et al., 2007; Ames32

et al., 2013; Wood and Salzberg, 2014; Hong et al., 2014; Ounit et al., 2015; Gregor et al., 2016; Kim33

et al., 2016). In a bioforensic setting, one is often concerned with reliably detecting the presence of a34

particular organism in a metagenomic sample, which may only be present in a trace amount. For this task,35

one typically uses the latter class of programs just mentioned, which determine the taxonomic affiliation36

of each sequence using a reference database (Mashima et al., 2017; Kulikova et al., 2004; Benson et al.,37

2014) and a taxonomy (Balvočiūtė and Huson, 2017). A canonical metagenomic sequence classification38

workflow is shown in Figure 1.39

When classifying sequences, there is a general trade-off between sensitivity (the proportion of the40

total number of sequences assigned correctly) and precision (the proportion of assigned sequences41

assigned correctly), as well as between classification performance (combined sensitivity and precision)42

and computational resource requirements. Modern metagenomic sequence classification programs often43

use relatively fast heuristics and databases with limited sequence diversity to increase analysis speed,44

as metagenomic data sets often consist of millions or billions of sequences that need to be compared to45

millions of database sequences. Thus, while they are useful in performing a “first-pass” analysis, in a46
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bioforensic setting it is important to validate the assignments of interest made by such programs using the47

most precise methods available (Gonzalez et al., 2016). One could choose to validate only the assignments48

made to the taxonomic clade of interest (e.g., Bacillus anthracis), but depending on the compute capacity49

one has access to, one might choose to validate all assignments subsumed by a higher ranking taxon50

(e.g., the Bacillus cereus group or the Bacillus genus), which would enable the detection of possible false51

negative assignments as well as false positive assignments made by the first-pass classifier.52

In this study, we present a method that uses BLAST (Camacho et al., 2009), the NCBI non-redundant53

nucleotide database (Coordinators, 2016) (nt), and the NCBI taxonomy (Coordinators, 2016) to validate54

the assignments made by less precise sequence classification programs. BLAST is widely considered55

the “gold standard” for sequence comparison, although it is generally known to be orders of magnitude56

slower than the most commonly used first-pass classifiers (see Bazinet and Cummings, 2012 for a57

comparison of BLAST runtimes to those of other sequence classification programs). For simplicity,58

we refer to the taxonomic clade of interest in our analyses as the “target taxon”, and we assume all59

metagenomic sequences are paired-end reads generated by the Illumina HiSeq 2500 sequencer (no60

assembled sequences). The BLAST-based validation procedure involves comparing each read against the61

nt database using BLASTN, and then filtering and interpreting the BLAST results based on data collected62

from simulated read experiments aimed at optimising detection of the target taxon; this workflow is shown63

in Figure 2. Before presenting additional details about the BLAST-based validation procedure, however,64

we first describe some related work from the literature.65

Related work66

Platypus Conquistador67

An existing software tool, “Platypus Conquistador” (Gonzalez et al., 2016), also uses BLAST to validate68

the classification of particular sequences of interest. Platypus requires the user to split their reference69

sequences into two databases: a database containing only sequences of possible interest, and a database70

composed of potential “background” sequences. BLAST queries are performed against both databases,71

and hits may be filtered by various combinations of percent identity or alignment length values, which72

need to be provided by the user. After filtering, query sequences with hits to the “interest” database are73

checked to see if they also have hits to the “background” database; if so, the bit scores of the respective74

best hits are compared and are roughly categorised as “equal”, “interest > background”, etc. While this75

could be a helpful diagnostic tool, there is no guidance provided to the user as to what parameter values to76

use or what difference in bit scores between interest and background should be regarded as significant.77

Furthermore, this tool no longer appears to be actively developed.78

Genomic purity assessment79

Whereas in this study we are concerned with the precision with which individual reads are classified80

so as to be confident in the detection of a target taxon in a metagenomic sample, a recently published81

study (Olson et al., 2017) addresses a different, but related problem, namely detecting contaminant82

organisms in ostensibly axenic (non-metagenomic) samples. Specifically, Olson et al. develop methods83

to determine the proportion of a contaminant required to be present in an otherwise pure material such84

that the contaminant can be detected with standard metagenomic sequence classification tools. As in our85

study, they simulate reads with ART (Huang et al., 2011) software (in their case from both “material” and86

potential contaminant genomes) to set up conditions under which sequence classification performance can87

be assessed. PathoScope (Hong et al., 2014) is used instead of BLAST for read classification. In general,88

they find that their method is able to identify contaminants present in a proportion of at least 10−3 for89

most contaminant-material combinations tested.90

Outlier detection in BLAST hits91

Shah et al. (Shah et al., 2017) have developed a method that detects outliers among BLAST hits in order92

to separate the hits most closely related to the query from hits that are phylogenetically more distant93

using a modified form of Bayesian Integral Log Odds (BILD) scores (Altschul et al., 2010) and a multiple94

alignment scoring function. In this way, they separate sequences with confident taxonomic assignments95

from sequences that should be analyzed further. The method was developed for and tested on 16S96

rRNA data, and thus is currently not applicable to whole genome sequencing (WGS) data sets. As a97

general-purpose filter, however, it can be used with any organism containing 16S rRNA data, whereas our98

methods are optimised for detection of specific taxa. It is also interesting to note that in the Shah et al.99
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study, BLAST is used as a first-pass classifier and subsequent analysis is performed with TIPP (Nguyen100

et al., 2014), whereas in the paradigm we present here, a much faster classifier than BLAST would be used101

for a first-pass (e.g., Kraken (Wood and Salzberg, 2014)), and then our BLAST-based method would be102

used for validation.103

METHODS104

Use of a “first-pass” taxonomic classifier105

We selected Kraken (Wood and Salzberg, 2014) (version 1.1) as the “first-pass” taxonomic classification106

program to be used in this study, primarily because of its widespread use in the bioinformatics community107

at large (the bioforensics community being no exception). Kraken was run in paired-end mode with108

default parameters and used standard Kraken databases for bacteria, archaea, viruses, plasmids, and109

human sequences.110

Read simulation111

For read simulation we used ART (Huang et al., 2011) (version 2016-06-05). To ensure thorough sampling,112

all experiments used simulated reads equivalent in total to 10× coverage of the source genome. For113

150-bp reads, we used the built-in HS25 quality profile with an insert size of 200± 10 bp (mean ±114

standard deviation). For 250-bp reads, we used a custom Illumina HiSeq quality profile that we generated115

from recent runs of our HiSeq 2500, with an insert size of 868±408 bp determined from recent library116

preparations. We supplied this information so that the simulated reads would have characteristics that117

closely matched what we would expect to obtain from a real HiSeq run in our laboratory, thus ensuring118

that the simulation results would be maximally useful to us. We recommend that others who emulate our119

procedures customise the attributes of their simulated reads to correspond to the real data they anticipate120

analysing.121

Similarity searches122

We used BLASTN from the BLAST+ package (Camacho et al., 2009) (version 2.2.25+) together with123

the NCBI non-redundant nucleotide database (Coordinators, 2016) (downloaded February 2017) for all124

classification experiments. Default parameters were used, except when excluding taxa from the reference125

database, in which case the -negative gilist option was added. The BLAST computation was126

distributed over many cluster nodes to complete the analyses in a timely manner.127

BLAST result filters128

The output from BLAST includes a number of statistics that can potentially be used to filter the results,129

including alignment length, alignment percent identity, E-value (the number of similar scoring alignments130

one can “expect” to see by chance in a database of the size being searched), and bit score (a database131

size-independent measure of alignment quality).132

We developed two basic ways of filtering BLAST results. The first we term an “absolute” filter, which133

simply removes BLAST hits that do not meet a particular criterion. Various possible criteria include134

minimum alignment length, minimum alignment percent identity, or maximum E-value. Of these three135

filters, this study only uses the E-value filter (abbreviated E), as E-value is fundamentally a composite of136

alignment length and alignment similarity. (Our software supports the use of all three filters, however,137

either individually or in combination.) If the best BLAST hit matches the target taxon after application of138

the absolute filters, it is then possible to apply a “relative” filter by computing the difference in E-value or139

bit score between the best hit and the best hit to a non-target taxon (should the latter exist). As very small140

E-values are typically rounded to zero, our software uses relative bit scores in this context for maximum141

applicability; we call this quantity the “bit score difference”, abbreviated b. If b is greater than or equal to142

a threshold determined via read simulation experiments, then we have validated the assignment of the143

read to the target taxon. Examples of the application of the bit score difference filter are given in Figures 3144

and 4.145

Evaluation of classification performance146

The two main metrics used in this study to evaluate classification performance are sensitivity and precision.147

The formula we use for sensitivity is slightly different from the standard one, though, and we also use a148

non-standard formula for precision in part of the analysis. Thus, here we explain the derivation of our149

sensitivity and precision formulas in detail.150
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Calculation of sensitivity151

To calculate sensitivity, one must determine the number of target taxon reads that were correctly assigned152

as a fraction of all the target taxon reads that were assigned. In this study, a true positive (T P) is a153

simulated read from the target taxon assigned correctly (either assigned directly to the target taxon or to154

a more specific taxon beneath the target), and a false negative (FN) is a simulated read from the target155

taxon assigned incorrectly (i.e., assigned to a taxon that is not part of the target taxon lineage). Note156

that the case of a non-specific but not incorrect read assignment (e.g., a B. anthracis read assigned to the157

B. cereus group) is neither considered a T P nor a FN; we term this an “inconclusive assignment” (IA).158

The count of true positives, false negatives, and inconclusive assignments can be easily determined by159

parsing the BLAST output associated with the target taxon. In all of our read simulation experiments,160

therefore, the calculation of sensitivity uses the formula (T P/(T P+FN + IA)).161

Calculation of precision162

To calculate precision, one must determine the number of non-target taxon reads incorrectly assigned to163

the target taxon, each of which is considered a false positive (FP). Naively, determining the count of false164

positives would require simulating reads and evaluating BLAST results for every non-target taxon in the165

database, but we currently regard this as computationally prohibitive. Instead, we offer two alternatives.166

The first, which we call “near neighbour”, computes FP using the genome in the database that is most167

globally similar to the target taxon as a proxy for all non-target database taxa. The intuition behind this168

approach is that a misclassified read (presumably due to sequencing error) is most likely to originate from169

a database genome that is very similar to the target taxon. Thus, with the near neighbour approach, the170

calculation of precision uses the formula (T P/(T P+FP)). The potential weakness of this approach is171

that there could be a region of local similarity to the target taxon in a database genome that is not the172

near neighbour. Thus, we offer a second approach that does not rely on selecting other genomes from173

the database, which we call the “false negatives” approach. This approach relies on the observation that174

if the sequencing error process is symmetric — i.e., the probability of an erroneous A to C substitution175

is the same as that of C to A, insertions are as probable as deletions, and so on — then the process that176

gives rise to false negatives can be treated as equivalent to the process that gives rise to false positives.177

While it is known that in practice this assumption of symmetry is violated (Schirmer et al., 2016), it may178

nonetheless suffice to use FN as a proxy for FP in this context. Thus, with the false negatives approach,179

it is only necessary to simulate reads from the target taxon, and the calculation of precision uses the180

formula (T P/(T P+FN)). Unfortunately, deciding which of the two heuristics is more effective would181

require comparison to a provably optimal procedure; in this study, we present results from simulated read182

experiments using both the near neighbour and false negatives approaches, and report the patterns we183

observe.184

BLAST result parsing, final taxonomic assignment, and calculation of statistics185

BLAST result parsing and final taxonomic assignment of each read was performed with a custom Perl186

script capable of querying the NCBI taxonomy database (Coordinators, 2016). If a target taxon is supplied187

as an argument to the script, assignments to the target taxon lineage that are more specific than the target188

taxon are simply reassigned to the target taxon. BLAST hits that do not meet the criteria specified by the189

absolute filters (minimum alignment length, minimum alignment percent identity, or maximum E-value)190

are removed, as are hits to the “other sequences” clade (NCBI taxon ID 28384), which are presumed to be191

erroneous. To make the final taxonomic assignment for each read, the lowest common ancestor (LCA)192

algorithm (Huson et al., 2007) is applied to the remaining hits that have a difference in bit score from the193

best hit less than a specified amount. If multiple parameter values are supplied for one or more filters,194

the script parses the BLAST results once for each possible combination of parameter values and writes195

the results to separate “LCA files”, thus enabling the user to efficiently perform parameter sweeps. The196

ultimate output from the script is one or more LCA files, each containing the final taxonomic assignment of197

each read for a particular combination of filter parameter values. Counts of true positives, false negatives,198

inconclusive assignments, and false positives (from which sensitivity and precision were calculated) were199

obtained using a separate Perl script that parses the LCA files produced by the BLAST result parser.200

Determination of optimal BLAST filter parameter values201

When deciding how the absolute and relative BLAST filters should be parameterised, an optimality202

criterion is needed. In the execution of bioforensic casework, it is important that any assignments made203
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are correct. Thus, we first chose filter parameter values that maximized precision (i.e., minimized incorrect204

read assignments). In the event that multiple combinations of parameter values yielded exactly the same205

maximum precision value, we chose from among these the combination that maximized sensitivity (i.e.,206

maximized detection of the target taxon). In the event that multiple combinations of parameter values207

yielded exactly the same maximum precision and sensitivity values, we reported the strictest combination.208

In this study, we present examples aimed at detecting a variety of pathogenic target taxa including209

Bacillus anthracis, Clostridium botulinum, pathogenic Escherichia coli, and Yersinia pestis. Due to210

inherent variation in the degree of interrelatedness among genomes from different taxonomic clades,211

optimal filter parameter values need to be set differently for each target taxon. To determine optimal212

filter settings, we must know the true origin of our test sequences; thus, we simulate reads from each213

target taxon genome, BLAST them against nt, and evaluate classification performance under different214

combinations of filter parameter settings. In each read simulation experiment, 81 different combinations215

of filter parameter values were tested — i.e., all combinations of maximum E-value (E) = {100, 10−1,216

10−2, 10−4, 10−8, 10−16, 10−32, 10−64, 10−128} and bit score difference (b) = {0, 1, 2, 4, 8, 16, 32, 64,217

128}. The parameter optimisation workflow is shown in Figure 5.218

Selection of near neighbour and alternate representative genomes219

For each target taxon, we used the “Genome neighbor report” feature of the NCBI Genome database (Co-220

ordinators, 2016) to select the most closely related complete genome of a different species or strain,221

as appropriate, to be used as the “near neighbour”. For species-level target taxa, we used the Genome222

neighbor report to select the complete genome of the same species that was most distantly related to the223

original representative genome, which we call the “alternate representative genome” (Table 1).224

Clade-level exclusion225

In the final read simulation experiment, clade-level exclusion (Brady and Salzberg, 2009) was performed226

to assess classification performance in the situation where the taxon for which one has sequence data227

is not represented in the reference database. In these tests, we simulated 250-bp reads from the taxon228

hypothetically missing from reference database, excluded this taxon from the reference database when229

performing BLAST searches, and then obtained optimal filter parameter values for classification of the230

target taxon, which in this case was the taxon immediately above the excluded taxon in taxonomic rank.231

RESULTS AND DISCUSSION232

Evaluation of a “first-pass” taxonomic classifier233

To demonstrate typical use of a first-pass taxonomic classification program, we analyzed all simulated234

reads from the B. cereus JEM-2 genome (Venkateswaran et al., 2017a,b) with Kraken. The majority of the235

reads (79%) were assigned to the Bacillus cereus group; of these, only 32% of the reads were assigned236

more specifically to B. cereus. Worryingly, however, a relatively small number of reads were assigned237

incorrectly to other Bacillus cereus group species, including B. anthracis, B. cytotoxicus, B. mycoides,238

B. thuringiensis, and B. weihenstephanensis. Had this benign strain of B. cereus (JEM-2) been the sole239

representative of the Bacillus cereus group in a metagenomic sample, an analyst using Kraken might240

have erroneously declared that a variety of Bacillus cereus group species were present in the sample,241

including pathogenic B. anthracis. As false-positive assignments are relatively commonplace with first-242

pass classification programs, we were motivated to develop a procedure to validate the assignments of243

interest made by such classifiers.244

Taxon selection245

To demonstrate the BLAST-based validation procedure, we selected four target taxa, all of which are246

biological agents that could conceivably be of interest in a bioforensic setting. The first is Bacillus247

anthracis, the bacterium that causes anthrax. The second is Clostridium botulinum, a bacterium capable248

of producing the lethal botulinum neurotoxin. The third is a pathogenic strain of Escherichia coli, E. coli249

O157:H7 str. Sakai, a bacterium that has been associated with major outbreaks of foodborne illness. The250

fourth and final target taxon is Yersinia pestis, the bacterium that causes bubonic plague. Thus, three out of251

the four target taxa represent particular species to be identified (B. anthracis, C. botulinum, and Y. pestis),252

whereas one target taxon represents a particular strain to be identified (E. coli O157:H7 str. Sakai). Species-253

level evaluations were performed using the representative strains indicated in Table 1. In two of the three254
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evaluations, the genome chosen was a reference genome for the species (C. botulinum A str. ATCC 3502255

and Y. pestis CO92). For the B. anthracis evaluation, the genome of the Ames Ancestor strain was used256

to ensure that the pXO plasmids were included, as presence of the pXO plasmids is normally required257

for B. anthracis to be fully virulent (Okinaka et al., 1999a,b; Pannucci et al., 2002). To evaluate the258

implications of representative genome choice, an alternate representative genome was selected for each259

species. Additional information about the target taxa and near neighbours is provided in Table 1.260

Simulated read experiments261

A total of four simulated read experiments were performed to determine optimal BLAST filter parameter262

values for the identification of various target taxa. A comparison of sensitivity across experiments on a263

per-taxon basis is available in Supplementary Figs. S1-S4, online.264

Experiment 1: 250-bp simulated reads265

The first experiment simulated 250-bp reads from the target and near neighbour genomes; the results are266

shown in Table 2.267

We observe that when requiring perfect precision, sensitivity was highest for identification of C. bo-268

tulinum (≈99%), followed by much lower sensitivity for B. anthracis and Y. pestis. These results are269

understandable, as it is well established that the species that comprise B. cereus sensu lato have very270

similar genomic content (Bazinet, 2017), and that Y. pestis and Y. pseudotuberculosis are also very closely271

related (Achtman et al., 1999). Sensitivity was lowest for identification of E. coli O157:H7 str. Sakai272

(≈0.4% for near neighbour and ≈0.08% for false negatives). Again, this result is consistent with the273

expectation that strain-level identification would be substantially more challenging than species-level274

identification, as the two E. coli strains in this case are ≈99.97% identical. Because the reads in this275

experiment were simulated from genomes that were present in the reference database, almost all read276

alignments had equally good scores, so the absolute E-value filter had little or no effect until it was set so277

stringently that it eliminated all T P (E = 10−128). In the case of B. anthracis, we observe that sensitivity278

increased from ≈0.8% to ≈8.9% when allowing exactly one FN assignment (precision ≈99.9995%;279

Table 2). This suggests that if one is willing to relax the perfect precision requirement very slightly, it280

may be possible to make significant gains in sensitivity. Finally, it is interesting to note that in most cases,281

b = 8 maximized sensitivity while achieving perfect precision. This likely represented a “sweet spot” (at282

least as compared to b = 4 or b = 16) for the level of taxonomic specificity represented by the selected283

target taxa.284

Experiment 2: 250-bp simulated reads, alternate representative genome285

Choosing a particular genome to represent a strain, species, or higher-level taxon could in principle286

have implications for the filter parameter values recommended by the optimisation procedure. While287

hopefully the taxonomy is structured such that members of a particular clade are more similar to each288

other than to members of other clades, taxonomies are well known to be imperfect in this regard. To289

test the implications of representative genome choice, we repeated the species-level evaluations from290

Experiment 1, except that we used an alternate representative genome for the target taxon, the database291

genome that was most distantly related to the original representative genome. The results are shown in292

Table 3.293

In general, the optimal parameter values recommended by this experiment and the resulting values294

of sensitivity and precision were highly concordant with the results of Experiment 1 (Tables 2 and 3).295

The optimal parameter values recommended for classification of B. anthracis when using the Cvac02296

strain were identical to those recommended when using the Ames Ancestor strain (E = 10−64 and b = 8),297

with the exception that it was possible to achieve perfect precision using the false negatives approach298

when b = 8. Likewise, when using C. botulinum B1 str. Okra, the false negatives approach recommended299

b = 4 rather than b = 8. These results suggest that the filter parameter values recommended by the300

false negatives approach are potentially more dependent on representative genome choice than those301

recommended by the near neighbour approach. The calculation of FP in the false negatives approach is302

based solely on the classification of reads simulated from the chosen representative genome, whereas in303

the near neighbour approach, FP can result from the assignment of a near neighbour read to any genome304

associated with the target taxon (any strain of B. anthracis, for example). Thus, it might behoove a user of305

our method to sample the diversity in their clade of interest by running the optimisation procedure for306

multiple representatives and using the globally most conservative recommended parameter values for307
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classification (if maximizing precision is the goal). Alternatively, one might devise a method for more308

exhaustive sampling of the diversity that might exist among target taxon genomes.309

Experiment 3: 150-bp simulated reads310

Experiment 3 was identical to Experiment 1, except that a simulated read length of 150 bp was used, thus311

making the classification task more difficult. The results are shown in Table 4.312

With optimal filter parameter values, we observe that sensitivity in detecting each target taxon313

decreased relative to the 250-bp experiment — e.g., in the case of C. botulinum, sensitivity decreased314

from ≈99% to ≈96% (Tables 2 and 4). Also, optimal values for the E-value and bit score difference315

filters varied somewhat relative to the 250-bp experiment, although it was always the case that E ≤ 10−64
316

and b ≤ 8.317

Experiment 4: clade-level exclusion, 250-bp simulated reads318

In a final simulated read experiment, clade-level exclusion of either species (B. anthracis) or strains319

(C. botulinum A str. ATCC 3502 and Y. pestis CO92) was performed to assess classification performance320

when the taxon for which one has sequence data is not represented in the reference database, a situation321

commonly encountered in practice. Only the false negatives method of computing FP was used; the322

results are shown in Table 5.323

In this experiment, we observe that it was not always possible to achieve perfect precision — maximum324

precision for identification of the B. cereus group when excluding B. anthracis was ≈93.9%, and maximum325

precision for identification of C. botulinum when excluding C. botulinum A str. ATCC 3502 was ≈99.9%.326

We note that sensitivity for identification of C. botulinum decreased from ≈98.5% in Experiment 1327

(Table 2) to ≈90.5% in the clade-level exclusion experiment (Table 5). By contrast, sensitivity for328

identification of Y. pestis hardly decreased at all (≈10.6% vs. ≈10.5%).329

Calculating precision: “near neighbour” versus “false negatives”330

Our results show that it was possible to achieve perfect precision in 3/4 simulated read experiments331

when using either the near neighbour or the false negatives approach (the exception being the clade-level332

exclusion experiment). In 7/11 cases, the filter parameter values recommended by the two approaches333

were identical; in the cases where they differed, the false negatives approach uniformly recommended334

more stringent filter parameter values than the near neighbour approach, resulting in reduced sensitivity335

(Tables 2, 3, and 4). As mentioned previously, deciding which of the two approaches to calculating336

precision is superior would require a comparison to a provably optimal approach, which we currently337

deem computationally intractable. Each heuristic makes assumptions that may not always hold: the near338

neighbour approach assumes that a single genome that is closely related to the target taxon is sufficient to339

serve as a proxy for all other non-target taxa in the database, and the false negatives approach assumes that340

the sequencing error process is symmetric. When seeking to avoid an erroneous claim that a particular341

biological agent is present in a sample, one may wish to use the more conservative set of parameter values342

recommended by the two approaches.343

Practical application of the BLAST-based validation procedure344

To demonstrate the practical application of the BLAST-based validation procedure, we downloaded a sub-345

set of metagenomic data collected from the New York City subway system (NCBI SRA ID SRR1748708),346

which the original study indicated might contain some reads from B. anthracis (Afshinnekoo et al., 2015).347

Indeed, analysis of this data with Kraken, our first-pass classifier, assigned 676 reads to B. anthracis348

(≈0.04% of reads). However, BLAST-validation of these 676 reads using the most conservative parameters349

recommended by our study (E = 10−64 and b = 128; Table 2) resulted in zero reads assigned to B. an-350

thracis. Even after significantly relaxing the minimum required bit score difference (setting b = 8), which351

was shown in Experiment 1 to significantly increase sensitivity (Table 2), still zero reads were assigned to352

B. anthracis. Thus, we would conclude that the 676 reads that Kraken assigned to B. anthracis were in353

fact false-positive assignments, which agrees with other follow-up studies that have been performed on354

the New York City subway data (Gonzalez et al., 2016).355

CONCLUSIONS356

We have shown how BLAST, a very widely used tool for sequence similarity searches, can be used357

to perform taxonomic assignment with maximal precision by using BLAST result filters fine-tuned via358
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read simulation experiments in conjunction with an LCA algorithm. We demonstrated the parameter359

optimisation process for four different pathogenic organisms, and showed that optimal parameter values360

and resulting values of sensitivity and precision varied significantly depending on the selected taxon, taxo-361

nomic rank, read length, and representation of the sequenced taxon in the reference database. Furthermore,362

the addition or removal of a single sequence from the reference database could change the recommended363

optimal parameter values, so the optimisation process should be re-run every time the database is updated.364

Once optimal BLAST filter parameter values for a particular taxon have been determined, they can be365

subsequently used to perform validation of sequence assignments to that taxon. Given the massive size of366

many metagenomic data sets, however, we envision most users employing a “two-step” approach that367

involves first producing candidate target taxon sequence assignments using a relatively fast classification368

program — one that is not necessarily optimised for precision — and then confirming the veracity of369

those sequence assignments using the BLAST-based validation procedure.370

One would be hard-pressed to define a “typical” metagenomic experiment, and the probability that a371

particular genome that is physically present in a metagenomic sample at some abundance is ultimately372

represented in the sequencing library and sequenced to a particular degree of coverage is a function of373

many factors that are outside the scope of this study. The methods we present here are concerned with374

read-by-read taxonomic assignment (each read interrogated independently of all other reads), and the375

selection of optimal BLAST result filters for this assignment process — in our case, we define “optimal”376

to mean correct assignment of the greatest possible number of reads without any incorrect assignments.377

In a real-world detection scenario, an additional question will often be asked: how many reads should378

be assigned to a particular target taxon before one deems it “present” in the sample? In principle, if one379

assumes that the reads in question originate from a genome that is present in the reference database, and380

that there was no error associated with the read simulation process or choice of optimal filter parameter381

values, then the answer is simply “one read”. In practice, however, if only one read out of millions382

or billions is assigned to a particular taxon, it is only natural that one may hesitate to claim that a383

potential pathogen or other biological agent is present in a sample on the basis of such scanty evidence.384

Unfortunately, meaningful additional guidance on this point would require a comprehensive accounting385

of all possible sources of error associated with the analysis of a metagenomic sample.386

Potential users of the software will find scripts for parsing BLAST results, performing parameter387

sweeps, and assigning final taxon labels to sequences at https://github.com/bioforensics/388

blast-validate.389

ADDITIONAL INFORMATION390

Software and data availability391

All genome data used in this study is available from the NCBI RefSeq database (O’Leary et al., 2015)392

(assembly accessions provided in Table 1). The software implementing the methods described in this393

study, as well as simulated reads, analysis results, and other files germane to this study are available online394

at the following URL: https://github.com/bioforensics/blast-validate395
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FIGURES AND TABLES519

unidentified 
DNA sequence 

(ACTACGATC…) 

sequence classification 
program (Centrifuge, Kraken, 

MEGAN, PhyloPythiaS+, etc.) 

DNA sequence with 
taxonomic label 

(E. coli: ACTACGATC…) 

p t

sequence reference database 
(DDBJ, EMBL, GenBank, etc.) 

taxonomy (Greengenes, NCBI, 
OTT, SILVA, RDP, etc.) 

ssif

oPy

input output 

Figure 1. Canonical workflow for the classification of metagenomic sequences. A sequence

classification program, which typically makes use of a reference database and a taxonomy, is used to

assign taxonomic labels to unidentified DNA sequences.
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assign taxonomic 
labels to metagenomic 

reads using a “fast” 
sequence classification 

program (e.g., Kraken) 

BLAST reads assigned to 
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the NCBI non-redundant 
nucleotide database 

filter the BLAST results 
using parameter values 

derived from simulations 
to remove false-positives 
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CCTTTGAGG… 
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1 
2 3 
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Figure 2. Workflow for BLAST-based validation of taxonomic assignments. Taxonomic labels are first

assigned to metagenomic reads using a “first-pass” classification program. Reads assigned to a target

taxon of interest are then compared against the NCBI nt database using BLAST. Final taxonomic

assignments are obtained by filtering the BLAST results using parameter values that were previously

determined to be optimal for the target taxon.

-

-

-

-

Figure 3. Demonstration of the “bit score difference” filter. In this first example, application of the bit

score difference filter does not result in the assignment of the read to the target taxon.
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Figure 4. Demonstration of the “bit score difference” filter. In this second example, application of the

bit score difference filter results in the assignment of the read to the target taxon.

simulate reads from 

target taxon genome

BLAST reads against the 

NCBI non-redundant 

nucleotide database

evaluate classification 

performance under 

different combinations of 

filter parameter values

1
2

3

true positive (TP) = a simulated read from the target taxon assigned correctly

false negative (FN) = a simulated read from the target taxon assigned incorrectly

inconclusive assignment (IA) = a simulated read from the target taxon assigned non-specifically

sensitivity = (TP / (TP + FN + IA))

false positive (FP) = a simulated read from a non-target taxon incorrectly assigned to the target taxon

precision = (TP / (TP + FP))1 OR (TP / (TP + FN))2

1 Standard definition of precision, used with the near neighbour approach.

2 Non-standard definition of precision where FN are used as a surrogate for FP, used with the false negatives approach.

Figure 5. Workflow for determining optimal BLAST filter parameter values. Simulated reads from the

target taxon genome are compared against the NCBI nt database using BLAST, and classification

performance is evaluated under different combinations of parameter values used to filter BLAST results.
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Taxon Taxonomic rank Type NCBI Taxonomy ID RefSeq assembly accession

Bacillus cereus group species group target 86661 N/A

B. anthracis species target 1392 N/A

B. cereus species near neighbour 1396 N/A

B. anthracis Ames Ancestor strain representative 261594 GCF 000008445

B. anthracis Cvac02 strain representative (alternate) N/A GCF 000747335

B. cereus JEM-2 strain representative N/A GCF 001941925

Clostridium genus 1485 N/A

C. botulinum species target 1491 N/A

C. sporogenes species near neighbour 1509 N/A

C. botulinum A str. ATCC 3502 strain representative 413999 GCF 000063585

C. botulinum B1 str. Okra strain representative (alternate) 498213 GCF 000019305

C. sporogenes NCIMB 10696 strain representative N/A GCF 000973705

Escherichia genus 561 N/A

E. coli species 562 N/A

E. coli O157:H7 str. Sakai strain target 386585 GCF 000008865

E. coli SRCC 1675 strain near neighbour N/A GCF 001612495

Yersinia pseudotuberculosis complex species group 1649845 N/A

Y. pestis species target 632 N/A

Y. pseudotuberculosis species near neighbour 633 N/A

Y. pestis CO92 strain representative 214092 GCF 000009065

Y. pestis Angola strain representative (alternate) 349746 GCF 000018805

Y. pseudotuberculosis PB1/+ strain representative 502801 GCF 000834475

Table 1. Taxonomic data and metadata for target taxa and near neighbour species or strains.
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Target taxon
Taxonomic

rank

Number

of reads

Approach used

to compute FP

Maximum

E-value

Bit score

difference

Validated

reads
Sensitivity Precision

B. anthracis species 220,140

near neighbour 10−64 8 19,491 0.088539 1.0

false negatives 10−64 8 19,491 0.088539 0.9999951

false negatives 10−64 128 1,751 0.007954 1.0

C. botulinum species 156,120
near neighbour 10−64 8 153,786 0.985050 1.0

false negatives 10−64 8 153,786 0.985050 1.0

E. coli O157:H7

str. Sakai
strain 223,760

near neighbour 10−64 1 838 0.003745 1.0

false negatives 10−64 8 184 0.000822 1.0

Y. pestis species 193,170
near neighbour 10−64 8 20,398 0.105596 1.0

false negatives 10−64 8 20,398 0.105596 1.0

1
In the case of B. anthracis, we observe that sensitivity increased from ≈0.8% to ≈8.9% when allowing exactly one FN assignment (precision ≈99.9995%).

Table 2. Experiment 1: simulated 250-bp reads from four target taxa. Optimal parameter values for

filtering BLAST results were chosen to maximize precision (first) and sensitivity (second) using two

different approaches to compute false positives.

Target taxon
Taxonomic

rank

Number

of reads

Approach used

to compute FP

Maximum

E-value

Bit score

difference

Validated

reads
Sensitivity Precision

B. anthracis species 209,080
near neighbour 10−64 8 20,114 0.096202 1.0

false negatives 10−64 8 20,114 0.096202 1.0

C. botulinum species 164,270
near neighbour 10−64 8 162,069 0.986601 1.0

false negatives 10−64 4 162,594 0.989797 1.0

Y. pestis species 187,470
near neighbour 10−64 8 22,576 0.120425 1.0

false negatives 10−64 8 22,576 0.120425 1.0

Table 3. Experiment 2: simulated 250-bp reads from three target taxa using alternate representative

genomes. Optimal parameter values for filtering BLAST results were chosen to maximize precision (first)

and sensitivity (second) using two different approaches to compute false positives.
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Target taxon
Taxonomic

rank

Number

of reads

Approach used

to compute FP

Maximum

E-value

Bit score

difference

Validated

reads
Sensitivity Precision

B. anthracis species 366,920
near neighbour 10−32 8 16,904 0.046070 1.0

false negatives 10−32 8 16,904 0.046070 1.0

C. botulinum species 260,200
near neighbour 10−32 8 250,915 0.964316 1.0

false negatives 10−32 8 250,915 0.964316 1.0

E. coli O157:H7

str. Sakai
strain 372,960

near neighbour 10−64 4 709 0.001901 1.0

false negatives 10−64 8 180 0.000483 1.0

Y. pestis species 321,970
near neighbour 10−32 8 19,965 0.062009 1.0

false negatives 10−32 8 19,965 0.062009 1.0

Table 4. Experiment 3: simulated 150-bp reads from four target taxa. Optimal parameter values for

filtering BLAST results were chosen to maximize precision (first) and sensitivity (second) using two

different approaches to compute false positives.

Target taxon
Taxonomic

rank

Excluded

taxon

Number

of reads

Maximum

E-value

Bit score

difference

Validated

reads
Sensitivity Precision

B. cereus group species group B. anthracis 220,140 10−64 64 36,003 0.163546 0.939339

C. botulinum species
C. botulinum

A str. ATCC 3502
156,120 10−64 32 141,277 0.904926 0.999385

Y. pestis species Y. pestis CO92 193,170 10−64 8 20,272 0.104944 1.0

Table 5. Experiment 4: simulated 250-bp reads from three taxa that were summarily excluded from the

reference database. Optimal parameter values for filtering BLAST results were chosen to maximize

precision (first) and sensitivity (second) using the “false negatives” approach to compute false positives.
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