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Invasive species are a global threat to biodiversity. Cases where the invasion has been

tracked since its beginning are rare, however, such that the first interactions between

invasive and native species remain poorly understood. Communication behavior is an

integral part of species identity and is subject to selection. Consequently, resource-use and

direct interference competition between native and invasive species may drive its

evolution. Here, we tested the role of interactions between the recently-introduced

invasive lizard Anolis cristatellus and the native Anolis oculatus on variation in behavior

and communication in Calibishie (Dominica). From May-June 2016, we filmed 122 adult

males of both species displaying in banana farms under two contexts (allopatry and

sympatry). We then recorded i) the proportion of time spent displaying and ii) the relative

frequency of dewlap versus push-up displays. To control for habitat variation, we

measured and compared the habitat characteristics (canopy cover and habitat openness)

of 228 males in allopatry and sympatry. While the habitat characteristics and total display

time did not differ between the contexts for the two species, the proportion of display-time

spent dewlapping by A. cristatellus decreased in sympatry. The display of A. oculatus did

not differ between the contexts, however. Shifts in microhabitat use, predation pressure,

or interspecific interference are potential factors which might explain the behavioral

changes in display observed in A. cristatellus. This study highlights the role of behavioral

traits as a first response of an invasive species to recent competition with a closely-related

native species.
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11 ABSTRACT 

12 Invasive species are a global threat to biodiversity. Cases where the invasion has been tracked 

13 since its beginning are rare, however, such that the first interactions between invasive and native 

14 species remain poorly understood. Communication behavior is an integral part of species identity 

15 and is subject to selection. Consequently, resource-use and direct interference competition between 

16 native and invasive species may drive its evolution. Here, we tested the role of interactions between 

17 the recently-introduced invasive lizard Anolis cristatellus and the native Anolis oculatus on 

18 variation in behavior and communication in Calibishie (Dominica). From May-June 2016, we 

19 filmed 122 adult males of both species displaying in banana farms under two contexts (allopatry 

20 and sympatry). We then recorded i) the proportion of time spent displaying and ii) the relative 

21 frequency of dewlap versus push-up displays. To control for habitat variation, we measured and 

22 compared the habitat characteristics (canopy cover and habitat openness) of 228 males in allopatry 

23 and sympatry. While the habitat characteristics and total display time did not differ between the 

24 contexts for the two species, the proportion of display-time spent dewlapping by A. cristatellus 

25 decreased in sympatry. The display of A. oculatus did not differ between the contexts, however. 

26 Shifts in microhabitat use, predation pressure, or interspecific interference are potential factors 

27 which might explain the behavioral changes in display observed in A. cristatellus. This study 

28 highlights the role of behavioral traits as a first response of an invasive species to recent 

29 competition with a closely-related native species. 
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30 INTRODUCTION

31 Invasive species are a global threat to biodiversity, driving species to extinction and 

32 imperiling ecosystems (Parmesan, 2006; Van der Putten, 2012). Therefore, understanding how 

33 invasive species successfully establish in new environments and their impacts on native species 

34 have become some of the main contemporary challenges. However, only rarely are invasions 

35 tracked from their beginning. Yet, the first years of native-invasive species competition often 

36 determine its outcome (Puth & Post, 2005). By consequence, recent species invasions constitute 

37 an important field of research in evolutionary conservation biology by providing a natural 

38 experimental setting to test the role of interspecific competition on species evolution in action.

39 Evolutionary biologists have often considered behavior as an inhibitor of evolutionary 

40 change (Bogert, 1949), allowing individuals to avoid selection imposed by novel ecological 

41 contexts (reviewed in Huey, Hertz, & Sinervo, 2003; Duckworth, 2008; Muñoz & Losos, 2017). 

42 However, behavioral changes may directly alter selective pressures (Mayr, 1963; Duckworth, 

43 2008), insofar as they modify the interaction between individuals and their environment by 

44 determining how organisms forage (Grant & Grant, 2014), avoid predators (Losos, Schoener & 

45 Spiller, 2004), mate (Lande, 1981), maintain homeostasis (Muñoz & Losos, 2017), and respond to 

46 competitors (Anderson & Grether, 2010). From this perspective, while ecologists have focused on 

47 genetic, ecological and life-history characteristic of invasive species, the behavioral mechanisms 

48 determining the outcome of native-invasive species competition deserve more attention (Holway 

49 & Suarez, 1999; Mooney & Cleland, 2001). For example, native Californian ants were displaced 

50 by the invasive Argentine ant (Lepithema humile) due to behavioral adaptations of the invasive 

51 species (Holway, 1999; Holway & Suarez, 1999; Human & Gordon, 1999). 
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52 Communication is subject to natural and sexual selection and is at the forefront of species 

53 divergence and recognition processes (Ord, Stamps & Losos, 2010; Macedonia et al., 2013; Wong 

54 & Candolin, 2015). Exploitative (resource use; Huber & Podos, 2006; Huber et al., 2007), direct 

55 interference (Anderson & Grether, 2010), and reproductive (Höbel & Gerhardt, 2003) competition 

56 between closely related species may drive its evolution. As a result, communication and display 

57 behavior are particularly likely to evolve in the context of interactions between native and invasive 

58 species. Nonetheless, despite the potential of invasive species to exert selection on native signalers 

59 (Servedio, 2004), the role of native-invasive species competition in the evolution of 

60 communication behavior remains poorly studied (Candolin & Wong, 2012). 

61 The present study aims to examine changes in communication and display behavior during 

62 the first stages of an invasion. Specifically, we studied interspecific interactions between an 

63 invasive species, Anolis cristatellus, from Puerto Rico and the native Anolis oculatus on the island 

64 of Dominica. The introduction history of A. cristatellus has been well documented in Dominica as 

65 this species was inadvertently introduced in 1998-2000 on the south Caribbean coast (Eales, Thorpe 

66 & Malhotra, 2008, 2010). Since then, A. cristatellus arrived in Calibishie in the North-eastern 

67 region no earlier than 2014. The species have been shown to fight with each other and diverge in 

68 their microhabitat use (i.e. perch height) in sympatry (Dufour, Herrel & Losos, 2017). In addition, 

69 because the spread of A. cristatellus has been patchy (due to the random spread of this species 

70 along the main road), allopatric populations occur in Calibishie, allowing the comparison of 

71 behavioral and ecological traits in the two contexts (i.e. allopatry vs. sympatry) for the two species.

72 Lizards of the genus Anolis have a colorful and retractable throat fan (dewlap) used to 

73 attract females, and repel rivals and predators (Jenssen, 1977; reviewed in Losos, 2009). Display 

74 behavior (mostly observed in males) is composed of a specific sequence of dewlap extensions and 
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75 push-ups (Fig.1). Both push-up display and dewlap extensions may be used as long distant signals 

76 (Losos, 1985; Fleishman, 1992; Irschick & Losos, 1996; Ord & Stamps, 2008) but their relative 

77 functions are not well-known. Nonetheless, while the vertical body movements appear to be 

78 equally important for fights in all anoles (Lailvaux & Irschick, 2007), the dewlap extension display 

79 seems to be more frequent in more territorial species (Hicks & Trivers, 1983; Losos, 1990; Irschick 

80 & Losos, 1996). 

81 Microhabitat motion (Ord et al., 2007; Ord & Stamps, 2008), predation (Leal & Rodriguez-

82 Robles, 1997), and species recognition (Ord & Martins, 2006; Macedonia et al., 2015) are all 

83 important drivers that shape anole display behavior and which might be impacted by interspecific 

84 competition. For instance, the commonly observed perch use divergence resulting from 

85 interspecific competition in Anolis lizards (Williams, 1972, 1983; Stuart et al., 2014; Dufour, 

86 Herrel & Losos, 2017) might induce new microhabitat pressures in terms of predation, light or 

87 motion background environment. In addition, interspecific interference (Grether et al., 2013) and 

88 reproductive competition (Ord & Martins, 2006) might shape the display in anoles (but see Hess 

89 & Losos, 1989).

90 From May-June 2016, we filmed male A. oculatus and A. cristatellus displaying in the field 

91 and recorded i) the proportion of time spent displaying and ii) the relative frequency of dewlap 

92 versus push-up displays. To test the effect of interspecific competition on the measured traits, we 

93 took advantage of the fact that allopatric and sympatric populations of the two species live in 

94 similar environments (banana farms) within the same climatic and altitudinal region. We also 

95 tested whether the general habitat characteristics (i.e. canopy cover and habitat openness) were 

96 similar in allopatry and sympatry. If display behavior is one of the first responses to recent 

97 interspecific competition, its duration, characteristics, or both should differ in sympatry compared to 
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98 allopatry, assuming that habitats are similar. Alternatively, differences in habitat characteristics 

99 between allopatric versus sympatric populations may lead to differences in display behavior 

100 independently of effects of interspecific competition. 

101 MATERIAL AND METHODS

102 This study was performed under the research permit from the Ministry of Agriculture and 

103 Fisheries, Forestry, Wildlife and Parks division of Dominica and with all the IACUC (n° 26-11) 

104 authorizations from Harvard University. 

105 Study sites and species

106 From May 1st – June 9th 2016, we sampled four sites at which both species occurred (“sympatric”), 

107 two sites at which only A. cristatellus occurred and three sites at which only A. oculatus occurred 

108 (the latter two sites termed “allopatric”) within the Calibishie region in Dominica (Fig.2). The 

109 allopatric populations of the invasive species may be the result of the extinction of the native 

110 species. Nonetheless, the recent arrival of A. cristatellus in Calibishie –2014—and the fact that we 

111 recorded extremely low population densities of A. oculatus (and no A. cristatellus) in some banana 

112 farms suggest that the allopatric populations of the invasive species result from its establishment 

113 in naturally unoccupied banana farms. To minimize the influence of the habitat characteristics on 

114 display behavior, populations were sampled in banana farms. Each site was sampled on three to 

115 five consecutive days. To prevent the risk of re-sampling the same individual within a field session, 

116 lizards were captured by noose or hand and marked with a non-toxic marker after recording and 

117 filming. Each sampled individual was replaced at the exact same spot within 10 hours after capture. 

118 Display behavior
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119 A total of 122 adult males, observed for the first time in a sitting position (A. cristatellus in 

120 allopatry (n=23) and sympatry (n=30); A. oculatus in allopatry (n=31) and sympatry (n=38)) were 

121 video recorded directly in the field. To record undisturbed behavior, the camera was positioned 

122 perpendicular to the long axis of the focal lizard in the horizontal plane and at a distance of at least 

123 five meters. Recording started when the focal individual initiated the first display. Recording 

124 sessions (mean ± SD: 8.24 ± 3.20 minutes) were long enough to observe several displays while 

125 maximizing the number of tested individuals (the recording stopped when the lizard moved away). 

126 With the software JWatcher, i) the proportion of time spent displaying and ii) the proportion of 

127 display-time spent dewlapping versus push-ups were recorded by the same observer (all displays 

128 were categorized as either dewlap or push-up displays; our metric was the proportion of display 

129 time spent in dewlap displays, which is a measure of the relative time spent in the two types of 

130 displays). 

131 Habitat characteristics

132 The habitat characteristics of a total of 81 A. cristatellus and 147 A. oculatus adult males were 

133 determined in allopatry and sympatry by measuring the canopy cover (as the number of squares 

134 with more than 50% of visible sky, measured with a densitometer) and the habitat openness 

135 (distance in cm to the closest perch available at the same horizontal plan than where the focal lizard 

136 was spotted) from the perch where the lizard was initially observed. 

137 Statistical analyses

138 Statistical analysis was conducted with R-v3. (R Development Core team, 2011). Normality and 

139 heteroscedasticity of distributions were verified graphically (data were log-transformed when 

140 necessary). The proportions of i) total displaying and ii) relative frequency of dewlap versus push-

141 up displays were analyzed with linear mixed effect models, testing for the effect of context 
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142 (allopatry versus sympatry), species and the interaction between the two as factors and site as 

143 random effect. Linear mixed effect models were performed on the log-transformed canopy cover 

144 and habitat openness data, with context as factor and site as random effect. When a two-way 

145 interaction was significant, post hoc analyses (Tukey test) were performed by separating the two 

146 species and testing the effect of context.

147 RESULTS

148 Display behavior

149 The proportion of time spent displaying did not differ significantly between the two contexts (Tab. 1, 

150 Fig. 3).

151 The proportion of display-time spent dewlapping versus performing push-up displays was 

152 significantly lower in sympatry compared to allopatry for A. cristatellus (Tukey, d.f. = 7, t = 3.121, 

153 P = 0.016), but did not change for A. oculatus (Tukey, d.f. = 7, t = 0.323, P = 0.756, Fig. 4, Tab.1).

154 Habitat characteristics

155 Canopy cover (Fig. 5) and habitat openness (Fig. 6) did not differ significantly in allopatry and 

156 sympatry for the two species (Tab. 1)

157 DISCUSSION

158 Invasive species are a global scourge, but data on the interactions between native and invasive 

159 species when they first come into contact are rare (Puth & Post, 2005). Our study revealed that, 

160 only two years after their arrival in Calibishie, males of A. cristatellus showed a shift in the type 

161 of displays performed in sympatry compared to allopatry, performing relatively more push-ups 

162 and fewer dewlap displays. No change was observed for the native A. oculatus. The similarity of 
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163 the habitat characteristics (i.e., canopy cover and habitat openness) between the two contexts 

164 suggests an important role for recent competition in driving the behavioral change observed in the 

165 invasive species. The following discussion addresses the potential role of predation, microhabitat 

166 use, and agonistic interaction as possible explanations for the differences between species in their 

167 response to sympatry. 

168 Microhabitat use has been shown to be an important driver shaping communication 

169 behavior in species in general, and in Anolis lizards in particular (Ord, Stamps & Losos, 2010). 

170 For instance, the visual motion background and predation pressure are among the main factors 

171 driving communication behavior in anoles and in A. cristatellus in particular (Leal & Rodriguez-

172 Robles, 1995, 1997; Ord et al., 2007). Moreover, the role of interspecific competition in 

173 microhabitat species divergence has been demonstrated in anoles (Schoener, 1970; Williams, 

174 1972, 1983; Losos, 2009; Stuart et al., 2014). Nonetheless, studies on the direct link between recent 

175 habitat character displacement and the evolution of communication behavior are lacking and no 

176 such studies have been published on anoles.

177 In Dominica, and in Calibishie in particular, A. cristatellus and A. oculatus diverged in 

178 sympatry in perch height: the invasive species moved downward toward the ground while the 

179 native species used higher perches compared to populations in allopatry (Dufour, Herrel & Losos, 

180 2017). This microhabitat divergence might be correlated with a different visual background, 

181 potentially driving display variation. Indeed, the visual background is expected to be more variable 

182 higher up (due to foliage motion) than on the ground. It has been shown that the duration and the 

183 speed of the display of Anolis lizards increased under a visually motion background habitat (Ord 

184 et al., 2007; Ord, Stamps & Losos, 2010). Moreover, the Australian lizard Amphibolurus muricatus 

185 changed the structure of his communication behavior and increased the duration of its tail display 
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186 in a habitat characterized by background movement (Peters, Hemmi & Zeil, 2007). In our study, a 

187 more stable background lower to the ground may be associated with the shift toward displaying 

188 more with push-ups and less with dewlap displays observed in A. cristatellus in sympatry. Indeed, 

189 the time and energetic costs of the dewlap extension display may induce a trade-off between 

190 conspicuousness and metabolic cost (Vehrencamp, Bradbury & Gibson, 1989; Marler et al., 1995; 

191 Clark, 2012). Why the inverse pattern is not observed in A. oculatus, which perches higher in 

192 sympatry, is unclear, but could be related to a less drastic difference of the visual-motion 

193 background between the two contexts for this species as it is always perching relatively high in 

194 trees. 

195 The ecological character displacement in microhabitat use may also induce differences in 

196 predation pressure between the two contexts. Indeed, terrestrial anole predators such as rats or 

197 Ameiva lizards were found in abundance at the study sites. Anolis cristatellus performs a push-up 

198 display in presence of a snake predator and increases the rate thereof when the predator is closer 

199 (Leal & Rodriguez-Robles, 1997). Moreover, the dewlap is a colorful visual signal (Losos, 1985; 

200 Leal & Fleishman, 2004; Nicholson, Harmon & Losos, 2007; Ng et al., 2013; Ingram et al., 2016) 

201 and conspicuousness has been shown to increase predation rate in lizards (Fitch & Henderson, 

202 1987; Stuart-Fox et al., 2003; Husak et al., 2006). By consequence, the increase of the push-up 

203 display proportion of A. cristatellus in sympatry perching lower to the ground may be the result of 

204 evolutionary trade-off between predation and communication (Steinberg et al., 2014).

205 Alternatively, direct agonistic encounters between the two species might drive the display 

206 behavior shift observed in A. cristatellus in sympatry. Indeed, we observed the native A. oculatus 

207 initiating interspecific agonistic encounters, forcing A. cristatellus to move downward. Moreover, 

208 A. oculatus has a bigger head and can bite harder than A. cristatellus, suggesting the dominant 
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209 status of the native species during interspecific fights (Dufour, Losos & Herrel, in revision). Thus, 

210 by decreasing dewlap extension time, A. cristatellus might be more cryptic in sympatry to avoid 

211 the agonistic encounters with A. oculatus. 

212 It is possible that the two types of display observed in A. cristatellus might be the result of 

213 different social contexts (assertion, courtship or challenge; Carpenter., 1967; Jenssen, 1977) 

214 encountered in allopatry and sympatry. However, more recent studies have revealed that the 

215 characterization of different display types depending to the social context confuse the form and 

216 the function of the displays (Decourcy & Jenssen, 1994; Lovern et al., 1999; Bloch & Irschick, 

217 2006). 

218 CONCLUSION

219 To conclude, this study reveals the presence of character displacement (Brown & Wilson, 1956) 

220 in elements of the behavioral display in the invasive species A. cristatellus in Dominica. More 

221 research is required to elucidate whether these display shifts are plastic or the result of genetic 

222 change. As plasticity has been suggested to account for most of the display behavior variation in 

223 Anolis lizards (Ord, Stamps & Losos, 2010), this is also likely the case here. This study represents 

224 a rare case in which the impact of competition between native and invasive species is studied at 

225 the early stages of the invasion process, highlighting the importance of the communication 

226 behavior as one of the first responses to environmental change. 
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Figure 1

Anolis cristatellus (A) and A. oculatus (B) males displaying (dewlap extension) in

Calibishie (Dominica).

Photo source credit: C MS Dufour.
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Figure 2

Distribution of the sites sampled (S1-S9) across Calibishie (Dominica). Shading indicates

context (allopatry, sympatry) and species sampled.
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Figure 3

Proportion of time spent displaying for males recorded in Calibishie (2016) across

species (grey: A. cristatellus, orange: A. oculautus) and context (allopatry vs. sympatry)

and according to the sites of sampling.

Box-plots (calculated from all individuals) show the median (thick line), first and third

quartiles. Non-overlapping notches are roughly equivalent to 95% confidence intervals.
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Figure 4

Proportion of display-time spent dewlapping for males video-recorded in Calibishie

(2016) across species (green: A. cristatellus, orange: A. oculautus) and context

(allopatry vs sympatry) and according to the sampling sites

Box-plots (calculated from all individuals) show the median (thick line), first and third

quartiles. Non-overlapping notches are roughly equivalent to 95% confidence intervals.
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Figure 5

Canopy cover (densiometer) of the habitat used by adult males from Calibishie across

the species (grey Anolis cristatellus, orange A. oculatus) and the context (allopatry,

sympatry) and according to the sites of sampling.

Box-plots (calculated from all individuals) show the median (thick line), first and third

quartiles. Non-overlapping notches are roughly equivalent to 95% confidence intervals.
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Figure 6

Openness (closest perch available) of the habitat used by adult males from Calibishie

across the species (grey Anolis cristatellus, orange A. oculatus) and the context

(allopatry, sympatry) and according to the sites of sampling.

Box-plots (calculated from all individuals) show the median (thick line), first and third

quartiles. Non-overlapping notches are roughly equivalent to 95% confidence intervals.
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Table 1(on next page)

Statistical results from the final linear mixed-effect models (based on AIC) testing the

behavioral and ecological traits of adult males according to the variables (i.e. species,

context and the interaction of the two), the site was set as random effect.
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1

2 Table 1. Statistical results from the final linear mixed-effect models (based on AIC) testing the behavioral 

3 and ecological traits of adult males according to the variables (i.e. species, context and  the interaction of 

4 the two), the site was set as random effect.

Trait Variable Value SE d.f. t-value P-value

Intercept 0.062 0.017 112 3.746 <0.001

Context -0.011 0.019 7 -0.553 0.597
Proportion of total 

display
Species 0.033 0.016 112 2.064 0.041

Intercept 0.636 0.054 111 11.708 <0.001

Context -0.225 0.072 7 -3.121 0.017

Species 0.277 0.072 111 3.869 <0.001

BEHAVIOR
Proportion of 

display-time spent 

dewlapping
Context:species 0.205 0.096 111 2.138 0.034

Intercept 3.313 0.095 361 35.052 <0.001

Context 0.147 0.104 7 1.416 0.199Habitat openness

Species 0.234 0.097 361 2.418 0.016

Intercept 1.469 0.157 361 9.352 <0.001

Context 0.203 0.189 7 1.076 0.318

ECOLOGY

Habitat canopy 

cover
Species -0.153 0.131 361 -1.163 0.246

5

6
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Figure 1. Anolis cristatellus (A) and A. oculatus (B) males displaying (dewlap extension) in 1	

Calibishie (Dominica, 2016). Photo source credit: C MS Dufour. 2	

Figure 2:	 Distribution of the sites sampled (S1-S9) across Calibishie (Dominica, 2016). 3	

Different shapes indicate context (allopatry, sympatry) and species sampled. The grey and 4	

white areas represent the sea and land, respectively. The country border (dashed line), the 5	

roads (thick grey lines) and the unpaved paths (thin grey lines) are represented. Source of the 6	

map: Stamen. 7	

Figure 3. Proportion of time spent displaying by male Anolis recorded in Calibishie 8	

(Dominica, 2016) across species (A. cristatellus, A. oculatus) and context (allopatry,  9	

sympatry) and according to the sites of sampling. Box-plots (calculated from all individuals) 10	

show the median (thick line), first and third quartiles. The lines extending vertically from the 11	

boxes indicate the lowest datum still within 1.5 IQR (interquartile range) of the lower quartile, 12	

and the highest datum still within 1.5 IQR of the upper quartile. Individual points beyond 13	

these lines represent outliers. The notches indicate 95% confidence intervals so that the 14	

distributions differ significantly if the notches do not overlap.  15	

 16	

Figure 4. Proportion of display-time spent dewlapping versus performing push-up displays by 17	

male Anolis video-recorded in Calibishie (Dominica, 2016) across species (A. cristatellus, A. 18	

oculatus) and context (allopatry, sympatry) and according to the sampling sites. Box-plots 19	

(calculated from all individuals) show the median (thick line), first and third quartiles. The 20	

lines extending vertically from by male Anolis the boxes indicate the lowest datum still within 21	

1.5 IQR (interquartile range) of the lower quartile, and the highest datum still within 1.5 IQR 22	

of the upper quartile. Individual points beyond these lines represent the outliers. The notches 23	
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indicate 95% confidence intervals so that the distributions differ significantly if the notches 32	

do not overlap.  33	

 34	

Figure 5. Canopy openness (number of densiometer squares out of 24 with more than 50% of 35	

visible sky) of the habitat used by adult male Anolis from Calibishie (Dominica, 2016) across 36	

the species (A. cristatellus, A. oculatus) and the context (allopatry, sympatry) and according 37	

to the sites of sampling. Box-plots (calculated from all individuals) show the median (thick 38	

line), first and third quartiles. The lines extending vertically from the boxes indicate the 39	

lowest datum still within 1.5 IQR (interquartile range) of the lower quartile, and the highest 40	

datum still within 1.5 IQR of the upper quartile. Individual points beyond these lines represent 41	

the outliers. The notches indicate 95% confidence intervals so that the distributions differ 42	

significantly if the notches do not overlap.  43	

 44	

Figure 6. Habitat openness (distance to closest available perch, cm) of the habitat used by 45	

adult male Anolis from Calibishie (Dominica, 2016) across the species (A. cristatellus, A. 46	

oculatus) and the context (allopatry, sympatry) and according to the sites of sampling. Box-47	

plots (calculated from all individuals) show the median (thick line), first and third quartiles. 48	

The lines extending vertically from the boxes indicate the lowest datum still within 1.5 IQR 49	

(interquartile range) of the lower quartile, and the highest datum still within 1.5 IQR of the 50	

upper quartile. Individual points beyond these lines represent the outliers. The notches 51	

indicate 95% confidence intervals so that the distributions differ significantly if the notches 52	

do not overlap.  53	
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Table 1. Statistical results from the final linear mixed-effect models (based on AIC) testing the 66	

behavioral traits and ecological characteristics of Anolis cristatellus and A. oculatus adult males 67	

according to the variables (i.e. species, context and the interaction of the two). The site was set as a 68	

random effect. 69	

 
Trait Variable Value SE d.f. t-value P-value 

Behavioral 
traits 

Proportion of total 
display 

Intercept 0.062 0.017 112 3.746 <0.001 
Context -0.011 0.019 7 -0.553 0.597 
Species 0.033 0.016 112 2.064 0.041 

Proportion of 
display-time spent 
dewlapping 

Intercept 0.636 0.054 111 11.708 <0.001 
Context -0.225 0.072 7 -3.121 0.017 
Species 0.277 0.072 111 3.869 <0.001 
Context:species 0.205 0.096 111 2.138 0.034 

Ecological 
characteristics 

Habitat openness 
Intercept 3.313 0.095 361 35.052 <0.001 
Context 0.147 0.104 7 1.416 0.199 
Species 0.234 0.097 361 2.418 0.016 

Canopy openness 
Intercept 1.469 0.157 361 9.352 <0.001 
Context 0.203 0.189 7 1.076 0.318 
Species -0.153 0.131 361 -1.163 0.246 
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